OBJECTIVE

Perform Bayesian calibration of three hydrological parameters in the Community Land Model (CLM) using observed latent heat fluxes (LH) from the US-ARM site

- Parameters of interest Θ = {subsurface runoff decaying factor, maximum subsurface drainage, Clapp-Hornberger exponent}.
- -Quantify the uncertainty in the parameter estimation
- Use Markov chain Monte Carlo (MCMC) to solve the calibration problem and develop probability density function for parameters.

BACKGROUND

- Community Land Model (CLM) is the land component of the **Community Earth System Model. It simulates bio-geophysical** processes such as energy and water fluxes from canopy and soil; heat transfer in soil and snow; hydrology of soil, canopy, and snow; and stomatal physiology and photosynthesis.

- Sensitivity analysis of LH simulated by CLM to 10 parameters was performed: the top three parameters contributing to the variance of LH are F_{drai} (subsurface runoff decaying factor), Q_{dm} (maximum subsurface drainage), and b (Clapp-Hornberger exponent in the soil water retention curve).
- MCMC requires O(10⁴) evaluations of CLM version 4. The expense of running CLM becomes prohibitive for these calculations, especially when one needs to run CLM for multiple years to compare latent heat fluxes.
- -Surrogates have been explored, but the accuracy of the surrogates could be questionable depending on the variables and/or sites of interest,

– Our solution is to examine parallel MCMC chains. This will allow exploration of the parameter space using multiple communicating chains so that surrogates could be avoided.

Bayesian Inverse Problems

- -Let y^{obs} (t) be the observed monthly latent heat at month t; let M(t; Θ) be the CLM model prediction for the same month.
- Observation model: $y^{obs}(t) = M(t; \Theta) + \varepsilon$, $\varepsilon \sim N(0, \sigma^2)$ is a model-data mismatch modeled as i.i.d. Gaussian.
- Calibration problems involves developing an expression for the posterior probability distribution $P(\Theta | y^{obs}(t))$ using Bayes' rule.

 $-\Pi(\Theta)$ is our prior belief in Θ i.e., uniform distributions over the ranges of F_{drai} , $log_{10}(Q_{dm})$ and b.

$$P(\Theta, \sigma^2 | \mathbf{y}^{obs}) \propto P(\mathbf{y}^{obs} | \Theta) \Pi(\Theta)$$

$$\propto \frac{1}{\sigma} \exp\left[-\frac{\left\|\mathbf{y}^{obs} - M(t; \Theta)\right\|_2}{\sigma^2}\right] \Pi(\Theta)$$

- This is a 3-parameter estimation.

-Will use an adaptive MCMC method to compute estimates in the form of a multidimensional posterior distribution.

ENERGY

Pacific Northwest

NATIONAL LABORATOR

roudly Operated by Battelle Since 1965

Bayesian calibration of the Community Land Model using a multi-chain Markov chain Monte Carlo method

Laura Swiler^{1,} J. Ray², M. Huang³, Z. Hou³

¹Sandia National Laboratories, Albuquerque, NM, ²Sandia National Laboratories, Livermore, CA, and ³Pacific Northwest National Laboratory, Richland, WA

8.4

- Chains for F_{drai} and Q_{dm} have not converged; the median values computed using a surrogate are quite different.

- Inference using surrogate models are plotted in green in the figures.

- The chain for b has converged and recovered the value estimated using surrogate models.

SUMMARY

- We have a version of SaChES working to estimate CLM parameters. The estimated parameters are more predictive than the default values. The b parameter appears to have converged for our CLM problem, still
- need more runs to determine convergence for F_{drai} and Q_{dm}.
- Parameter inferences using CLM have been compared to those obtained using surrogates. They agree for b.

Next step: Investigate efficiency of parallel methods with coordinating chains vs. multiple independent chains.

Acknowledgements

The project was funded by the Department of Energy Office of Science, via the Office of Advanced Scientific Computing Research (OASCR).

References

1. J. A. Vrugt, C.J.F. ter Braak, C.G.H. Diks, B. A. Robinson, J. M. Hyman, and **D. Higdon. "Accelerating Markov Chain Monte Carlo Simulation by** Differential Evolution with Self-Adaptive Randomized Subspace Sampling." International Journal of Nonlinear Sciences and Numerical Simulation, 10(3, March 2009, pages 271-288.

2. H. Haario, M. Laine and A. Mira, "DRAM: Efficient adaptive MCMC", **Statistical Computing**, 16:339-354, 2006.

3. A. Solonen, P. Ollinaho, M. Laine, H. Haario, J. Tamminen, and H. Jarvinen, "Efficient MCMC for climate model parameter estimation: Parallel adaptive chains and early rejection", Bayesian Anal., 7 (2012), pp. 715–736.

For additional information, please contact:

J. Ray, Sandia National Laboratories, jairay@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RLO1830.