
 

‒ The LH predictions based on posteriors 
(not yet final) are substantially better 
than those based on default CLM 
parameters. 

‒ Figure (right) shows an ensemble plot 
from each of the chains, plotted against 
observations. 

‒ Predictions with the default values of the 
parameters are in red. 

 

 

‒ We modeled four years of monthly 
latent heat (LH) data, from the US-ARM 
flux tower site.  The four years of data 
were climatologically averaged, to 
obtain 12 months of average LH flux.  
These 12 monthly averaged 
observations were then compared to 
the same four years of CLM predictions 
which were also climatologically 
averaged.  

‒ Range of the parameters 

‒ 0.1 < Fdrai < 5.0; default: 2.5 

‒  -6 < log10(Qdm) < -2;; default : log10(5.5 x 
10-3) 

‒ 1< b < 15 ; default : 9.76 

‒ The parallel 8-chain MCMC is still in 
progress, but early chain results show 
that the parameter b appears to be 
converging, Fdrai and Qdm are not yet.  

 

SUMMARY 

Bayesian calibration of the Community Land Model using a  
multi-chain Markov chain Monte Carlo method 

OBJECTIVE 
Perform Bayesian calibration of three hydrological 
parameters in the Community Land Model (CLM) using 
observed latent heat fluxes (LH) from the US-ARM site 
‒ Parameters of interest Θ = {subsurface runoff decaying factor, 

maximum  subsurface drainage, Clapp-Hornberger exponent}. 

‒ Quantify the uncertainty in the parameter estimation . 

‒ Use Markov chain Monte Carlo (MCMC) to solve the calibration 
problem and develop probability density function for parameters. 
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MPI Implementation 

Scalable Adaptive Chain-Ensemble Sampling 

SaChES is a hybrid method that incorporates: 

‒ DREAM to utilize multiple chains to obtain high-quality proposal 
densities; useful in the early part of the sampling epoch. 

‒ DRAM to obtain posterior distributions efficiently; useful only after 
a few samples have been collected by DREAM. 

‒ Parallel chains to accelerate computations. 

DREAM:  DiffeRential Evolution Adaptive Metropolis  

‒ DREAM [1] uses information from multiple chains to construct a 
new chain position that is a weighted value of previous chain 
positions. 

‒ DREAM chains communicate in pairs every MCMC step but these 
communication are unconnected to the communication of other 
pairs. There is no need for synchronization. 

DRAM:  Delayed Rejection Adaptive Metropolis  
‒ DRAM [2, 3] is an MCMC algorithm which uses accepted samples 

from a MCMC chain to construct a very efficient proposal 
covariance. The covariance is updated periodically and requires 
all-to-all communication 

‒ DRAM performs best if there are a few informative samples to 
begin with. This is difficult to do in practice. DREAM can perform 
the task of collecting the initial informative samples. 

‒ Community Land Model (CLM) is the land component of the 
Community Earth System Model. It simulates bio-geophysical 
processes such as energy and water fluxes from canopy and soil; 
heat transfer in soil and snow; hydrology of soil, canopy, and snow; 
and stomatal physiology and photosynthesis. 

‒ Sensitivity analysis of LH simulated by CLM to 10 parameters was 
performed: the top three parameters contributing to the variance of 
LH are Fdrai (subsurface runoff decaying factor), Qdm (maximum 
subsurface drainage), and b (Clapp-Hornberger exponent in the soil 
water retention curve). 

‒ MCMC requires O(104) evaluations of CLM version 4.  The expense of 
running CLM becomes prohibitive for these calculations, especially 
when one needs to run CLM for multiple years to compare latent heat 
fluxes.    

‒ Surrogates have been explored, but the accuracy of the surrogates 
could be questionable depending on the variables and/or sites of 
interest. 

‒ Our solution is to examine parallel MCMC chains. This will allow 
exploration of the parameter space using multiple communicating 
chains so that surrogates could be avoided. 

Bayesian Inverse Problems 

‒ Let  yobs (t) be the observed monthly latent heat at month t;  let M(t; Θ) 
be the CLM model prediction for the same month. 

‒ Observation model: yobs (t) = M(t; Θ) + ε, ε ~ N(0, σ2) is a model-data 
mismatch modeled as i.i.d. Gaussian. 

‒ Calibration problems involves developing an expression for the 
posterior probability distribution P(Θ | yobs(t)) using Bayes’ rule. 

‒  Π(Θ) is our prior belief in Θ i.e., uniform distributions over the 
ranges of Fdrai, log10(Qdm) and b. 

 

 

 

 

‒ This is a 3-parameter estimation. 

‒ Will use an adaptive MCMC method  to compute estimates in the form 
of a multidimensional posterior distribution.  
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CLM Posterior Traces from 8 Chains  
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Stage i-1

Stage i

‒  We have a version of SaChES working to estimate CLM parameters. 

‒  The estimated parameters are more predictive than the default values. 

‒  The b parameter appears to have converged for our CLM problem, still 
need more runs to determine convergence for Fdrai and Qdm. 

‒  Parameter inferences using CLM have been compared to those obtained 
using surrogates. They agree for b. 

‒  Next step: Investigate efficiency of parallel methods with coordinating 
chains vs. multiple independent chains. 
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‒ SAChES is implemented using one-sided MPI-2 communication. 

‒ Done to ensure scalability, given that chains are loosely coupled. 

‒ Also, for resilience – MPI-2 allows for re-spawning of dead processes. 

‒ Useful if chains have to be restarted. 

‒ DREAM requires chain-to-chain communications between arbitrary, 
mutually disjoint chain pairs during differential evolution. 

‒  Implemented using lock synchronization (MPI_Win_[lock(),unlock()]. 

‒ DRAM requires all-to-all communications between processors to 
construct proposal covariances. 

‒ MPI_allreduce() is the preferred implementation. 

‒ Alternative implementation with active target synchronization also exists. 

‒ Uses MPI_Win_[start(), complete(), post(), wait()]. 

‒ Actual data transfers done using MPI_Get(). 

Test #1: Sampling a 2D Rosenbrock 
distribution. 

‒  Analytical expression of a very twisted 
probability distribution; sampling is a 
challenge. 

‒  Figure (top left) shows that our chains 
are exploring the correct distribution. 

‒  Figure (bottom right) shows that our 4 
chains (different colors) are sampling 
uniformly i.e., not stuck in one part of 
the distribution. 

‒  This is also shown in the marginal 
PDFs. 

Test #2: Solving a statistical inverse 
problem to estimate elastic modulus 
(E) and width (w) of a cantilever beam. 

‒  measurements are of stress and 
deflection, collected over 10 
repeated experiments. 

‒  Dashed line = true value. 

 Posterior Histograms (across chains) 

Fdrai Qdm b
Nominal	
  Value 2.500 -­‐5.203 9.760
Median	
  Posterior	
  with	
  surrogate 0.400 -­‐5.620 1.120
Median	
  from	
  SaChES	
  Parallel	
  runs	
  thus	
  far 2.589 -­‐3.769 1.171
1st	
  quartile	
  from	
  SaChES	
  Parallel	
  runs	
  thus	
  far 1.528 -­‐4.452 1.096
3rd	
  quartile	
  from	
  SaChES	
  Parallel	
  runs	
  thus	
  far 3.471 -­‐2.979 1.281

-  Chains for Fdrai and Qdm have not converged; the median values computed 
using a surrogate are quite different. 

-  Inference using surrogate models are plotted in green in the figures. 

-  The chain for b has converged and recovered the value estimated using 
surrogate models. 

Schematic of 4 SAChES chains and their communication patterns for 
updating proposal covariance. 

Comparing Model Predictions Against 
Observations   


