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OBJECTIVE SaChES Test Problem Results Posterior Densities
: . : : Scalable Adaptive Chain-Ensemble Sampling Test #1: Sampling a 2D Rosenbrock - mwwmemamwnimon Parmter | Posterior Histograms (across chains)
Perform Bayesian calibration of three hydrological distribution. | - /. \ S
parameters in the Community Land Model (CLM) using SaChES is a hybrid method that incorporates: O & - ] 2 - )
i : - _ _ o _ — Analytical expression of a very twisted g o e " ¢
observed latent heat fluxes (LH) from the US-ARM site - DREAI.VI to utilize _multlple chains to obtain hlg_h-quallty proposal probability distribution; sampling is a : S ik =0 ) :
— Parameters of interest ® = {subsurface runoff decaying factor, densities; useful in the early part of the sampling epoch. challenge. = : 5 :
maximum subsurface drainage, Clapp-Hornberger exponent}. — DRAM to obtain posterior distributions efficiently; useful only after _ Figure (top left) shows that our chains R E, s— : : 8 :
— Quantify the uncertainty in the parameter estimation . a few samples have been collected by DREAM. are exploring the correct distribution. . ] r |
— Parallel chains to accelerate computations. e bottom riaht) shows that our 4 i : - e
— Use Markov chain Monte Carlo (MCMC) to solve the calibration - ;Igtfre ((d(')ff om :'9 I) S )°Ws a °If" ) - | :
ili ' ' : DREAM: DiffeRential Evolution Adaptive Metropolis chains tdirrerent colors) are sampling
problem and develop probability density function for parameters P P uniformly i.e., not stuck in one part of 3 r— adm 0
_ . . - . the distribution. =° Nominal Value 2.500 -5.203 9.760
DREAM .[1] use.s. mforma.tlon frc.)m multiple chains t.o constrflct a e distribution : Median Posterior with surogate 200 =620 120
new chain position that is a weighted value of previous chain _ This is also shown in the marginal |/ g R, & Median from SaChES Parallel runs thus far 2.589 -3.769 1.171
positions. PDE S : .' — g 1st quartile from SaChES Parallel runs thus far 1.528 -4.452 1.096
S. & & 3rd quartile from SaChES Parallel runs thus far 3.471 -2.979 1.281
BAC KG ROU N D — DREAM chains communicate in pairs every MCMC step but these et e oo o o
co.mmunicati.on are unconnected to t.he .communication of other [ Test #2: Solvm_g a statlstl.cal inverse - Chains for F_, and Q. have not converged; the median values computed
— Community Land Model (CLM) is the land component of the pairs. There is no need for synchronization. ) ?Er;)bledm th:s(;tl;nafte elas:;c mobdulus using a surrogate are quite different.
. . . . _ . and wi w) of a cantilever beam.
Community Earth System Model. It simulates bio-geophysical DRAM: Delayed Rejection Adaptive Metropolis 5 - Inference using surrogate models are plotted in green in the figures.
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processes such as energy and water fluxes from canopy and soil;
heat transfer in soil and snow; hydrology of soil, canopy, and snow;
and stomatal physiology and photosynthesis.

— measurements are of stress and _ _ _
deflection, collected over 10 - The chain for b has converged and recovered the value estimated using

repeated experiments. surrogate models.

995

— DRAM [2, 3] is an MCMC algorithm which uses accepted samples |
from a MCMC chain to construct a very efficient proposal :

covariance. The covariance is updated periodically and requires = = = \ \
— Sensitivity analysis of LH simulated by CLM to 10 parameters was all-to-all communication — Dashed line = true value.

performed: the top three parameters contributing to the variance of
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— DRAM performs best if there are a few informative samples to
LH are F,,.; (subsurface runoff decaying factor), Q,,,, (maximum : p- i giges : : P SU M MARY
_ _ _ begin with. This is difficult to do in practice. DREAM can perform
subsurface drainage), and b (Clapp-Hornberger exponent in the soil . e r : .
the task of collecting the initial informative samples. CLM Inversion Results

water retention curve). : : :
— We have a version of SaChES working to estimate CLM parameters.

—MCMC requires O(10%) evaluations of CLM version 4. The expense of Stage i-1guea
running CLM becomes prohibitive for these calculations, especially
when one needs to run CLM for multiple years to compare latent heat
fluxes.

— We modeled four years of monthly CLM Posterior Traces from 8 Chains — The estimated parameters are more predictive than the default values.

I h LH f h -ARM
atent heat (LH) data, from the US ° — The b parameter appears to have converged for our CLM problem, still

flux tower site. The four years of data | | _
: : : : need more runs to determine convergence for F ., and Q..
were climatologically averaged, to

- [\
| L | [hid -
obtain 12 months of average LH flux. ey e H b M 2 LN J 151 (I — Parameter inferences using CLM have been compared to those obtained
T

— Surrogates have been explored, but the accuracy of the surrogates

_ _ _ _ Th 12 monthlv averaaed ~ | - using surrogates. They agree for b.
could be questionable depending on the variables and/or sites of ese _ y 9 A=A, ] LH 1
interest. observations were then compared to Bl | =iy L — Next step: Investigate efficiency of parallel methods with coordinating
the same four years of CLM predictions L - ~ ~ ~ 52 s chains vs. multiple independent chains.
— Our solution is to examine parallel MCMC chains. This will allow Stage | which were also climatologically P
exploration of the parameter space using multiple communicating averaged. & l - Acknowledgements
chains so that surrogates could be avoided. —Range of the parameters -1 |- : [LT st 8 ﬁ The project was funded by the Department of Energy Office of Science, via the
Schematic of 4 SAChES chains and their communication patterns for ; . r JUER A I Office of Advanced Scientific Computing Research (OASCR).
: i i —0.1<F,., <5.0; : 2. 3 ' E
Bayesian Inverse Problems updating proposal covariance. 0.1 < Fyri < 5.0; default: 2.5 E Ny = J ‘
— -6 <109,0(Qy,,) < -2;; default : log,,(5.5 x | f i qU— References
—Let y°Ps (t) be the observed monthly latent heat at month t; let M(t; ©) 10-3) o . | | | | |
be the CLM model prediction for the same month. _ : e s MCMC”" ﬁ o N b 1. J. A. Vrugt, C.J.F. ter Braak, C.G.H. Diks, B. A. Robinson, J. M. Hyman, and
MPI |mp|ementathn —1<b <15 ; default : 9.76 P D. Higdon. “Accelerating Markov Chain Monte Carlo Simulation by
— Observation model: y°bs (t) = M(t; ®) + ¢, ¢ ~ N(0, 0?) is a model-data _ _ o ) Differential Evolution with Self-Adaptive Randomized Subspace Sampling.”
mismatch modeled as i.i.d. Gaussian. — The parallel 8-chain MC_MC Is still in International Journal of Nonlinear Sciences and Numerical Simulation, 10(3,
—SAChES is implemented using one-sided MPI-2 communication. progress, but early chain results show s March 2009, pages 271-288.
— Calibration problems involves developing an expression for the _ " : - that the parameter b appears to be -
. o heren - , Done to ensure scalability, given that chains are loosely coupled. converaina. F... and Q.. are not vet : 2. H. Haario, M. Laine and A. Mira, “DRAM: Efficient adaptive MCMC”,
posterior probability distribution P(© | y°°s(t)) using Bayes’ rule. Al - _ ging, Fy,; dm yet. o _ _
— Also, for resilience — MPI-2 allows for re-spawning of dead processes. Statistical Computing, 16:339-354, 2006.
— II(®) is our prior belief in O i.e., uniform distributions over the — Useful if chains have to be restarted. Comparing I\g;l)odel Prtta_dictions Against ~ I . M. 3. A. Solonen, P. Ollinaho, M. Laine, H. Haario, J. Tamminen, and H. Jarvinen,
I'an eS Of F i |O and b. . . . . . . Serva Ions MCMC generations cc = . = - - . -
g drais 10910(Qqgpm) — DREAM requires chain-to-chain communications between arbitrary, l Eff-ICIent MCMC fc_)r c_llmate mod_el parameter estimation: Parallel adaptive
_— " mutually disjoint chain pairs during differential evolution. T A e b o _ chains and early rejection”, Bayesian Anal., 7 (2012), pp. 715-736.
P(©,0° ly"™) < P(y" 10)I1(O) ) _ o _ é —The LH p_redlctlons based on posteriors
Implemented using lock synchronization (MPl_Win_[lock(),unlock()]. g (not yet final) are substantially better
1 ‘ y - M(t;@)” — DRAM requires all-to-all communications between processors to S than those based on default CLM For additional information, please contact:
X geXp - o’ 11(®) construct proposal covariances. . ° o\ parameters. J. Ray, Sandia National Laboratories, jairay@sandia.gov
! 1 — MPI_allreduce() is the preferred implementation. f;) - L ". — Figure (right) shows an ensemble plot
. _ ] ] . ] s . from each of the chains, plotted against Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
o _ _ — Alternative implementation with active target synchronization also exists. TR _ Martin C for the United States of E ' & National Nuclear S it
—This is a 3-parameter estimation. o | A observations. 2 el Vel e Linlise. elelize O sEligy @ Blellotiel INUSEEl ety
— Uses MPI_Win_J[start(), complete(), post(), wait()]. N &S LA, Administration under contract DE-AC04-94AL85000.
: : : : - | £ e — Predictions with the default values of the _ _ _
—Will use ?n_ adapt_lve MCMC lT-lethC-)d .tO C.OmPUte estimates in the form _ Actual data transfers done using MPI_Get(). ; ! L : R | barameters are in red. PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy
of a multidimensional posterior distribution. — under contract DE-AC05-76RL0O1830.




