

Estimation of Structural Error in the Community Land Model Using Latent Heat Observations

J. Ray, M. Huang, Z. Hou and L. Swiler

Contact: jairay@sandia.gov

Sandia National Laboratories, CA & NM and Pacific Northwest National Laboratory.

SAND2014-2431C

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Introduction (1/2)

- Aim: Calibrate the Community Land Model (CLM) using measurements of Latent Heat (LH) at 2 sites
 - Estimate 3 hydrological parameters to which LH is sensitive, along with uncertainty
 - Estimate structural error (model-form error) for LH using 2 different models
- Challenges
 - CLM is expensive 45 minutes/invocation per site
 - No previous work on optimal site-specific parameters or relative importance of structural versus parametric uncertainty
 - No idea of the 'shape' of the structural error
 - No previous work on the Bayesian calibration of CLM parameters (except 1 paper)

Introduction (2/2)

- Our approach to Bayesian calibration of CLM
 - Create surrogates of CLM
 - MCMC calibration of the parameters (3 CLM parameters + those of structural error model)
 - Shortlist physical processes that may be causing the structural error
- So, what is CLM?
 - A model for biogeochemical processes on land
 - Used in conjunction with an atmosphere and ocean model in earth system / climate change simulations
 - Models heat and mass transfer on and under the ground
 - A collection of 1D PDEs (depth), coupled by algebraic equations horizontally
 - Can be forced with measured meteorology if no atmosphere model
 - Soil, vegetation etc. parameters are inputs
 - Can be run in site-specific or global mode

Our approach (1/2)

- Pick 2 sites: US-MOz and US-ARM
 - Monthly averaged LH measurements & meteorology available for 48 months
 - 3 most important hydrological parameters are in literature
- Construct surrogate models $log(LH) = G(p_1, p_2, p_3)$
- Calibrate (estimate parameters) using least-square minimization ("optimal parameters", p_{opt})
- Compute data model mismatch; propose structural error model
- Calibrate CLM parameters and structural error parameters using MCMC (i.e., parameter estimates and uncertainty bounds)

Our approach (2/2)

- To investigate
 - Does posterior PDF contain **p**_{opt}?
 - Does the choice of structural error model affect parameters' PDFs?
 - Does climatological averaging affect parameters' PDFs?
- Constructing surrogate model
 - Model a 5th order polynomial

$$\log(LH) = \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=0}^{5} \sum_{l=0}^{5} a_{ij} p_{i}^{k} p_{j}^{l}, \quad (k+l) \le 5$$

- {p₁, p₂, p₃} = {F_{drai}, log(Q_{dm}), b} for US-ARM; {S_y} for US-MOz
- Uniform priors for all parameters
- Generate a training set of data to capture the parametric dependence of log(LH) - 282 *p* samples via QMC sampling
 - Each *p* sample -> CLM -> 48-month time-series of log(LH) predictions
- Construct a separate surrogate model for each month

Preventing overfitting of surrogate models

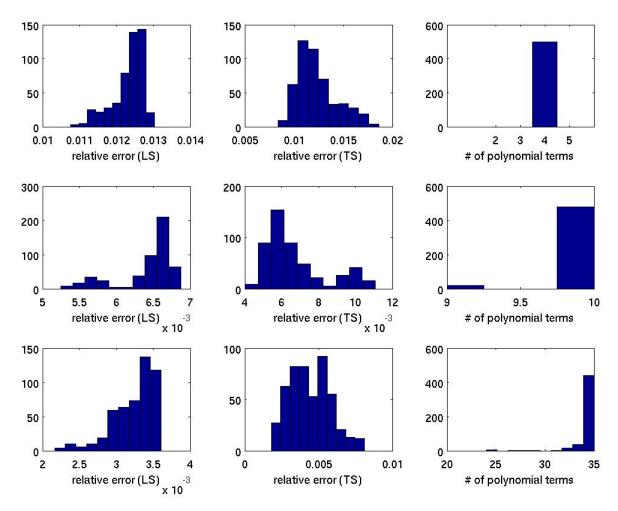
- We need the sparsest polynomial model i.e., set as many a_{ij} to zero as possible
 - Done via AIC and 500-fold cross-validation
- Cross-validation
 - The training set is split into a Learning Set (LS; 85% runs) and a Testing Set (TS)
 - Polynomial model fitted to LS runs and simplified using AIC
 - most cubic and higher-order terms drop off
 - Fitted model is used to predict TS log(LH) values; relative errors are computed for both LS and TS
 - We repeat 500 times using different LS/TS partitions
 - We want models to be equally prediction for LS and TS
 - If overfitting, LS errors < TS errors
 - We also want models to have rel. errors < 10%

Surrogate modeling and calibration

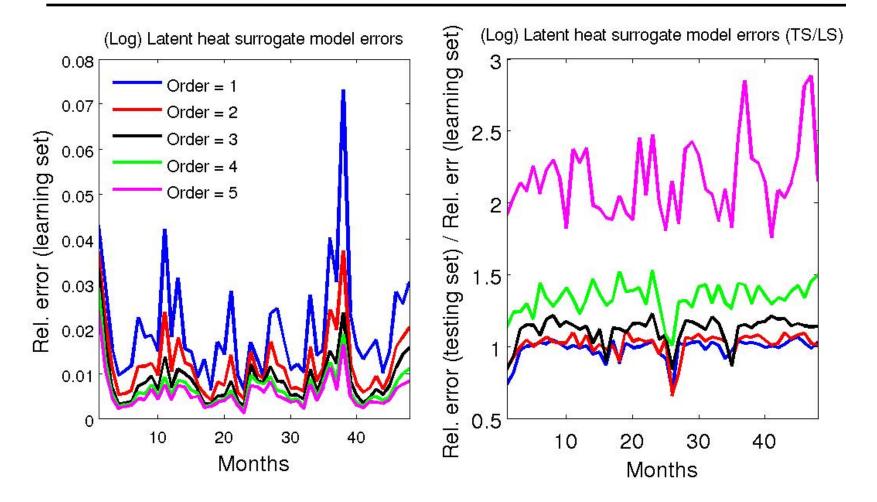
US-ARM

Surrogate model performance – April 2003

- Quartic model suffers from overfitting
- Even the # of terms in polynomial does not remain constant



Surrogate model performance – 48 months



• We will stay with quadratic models

Deterministic calibration

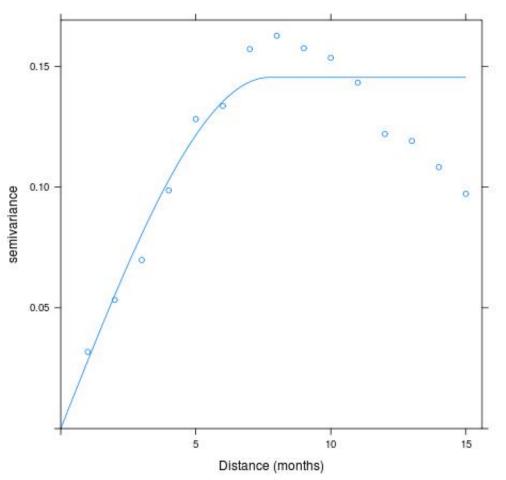
- Least squares fit using L-BFGS-B
 - Trouble; multiple minima
- $\mathbf{p}_{opt} = \{F_{drai}, \log(Q_{dm}), b\}$ = {0.97, log(10⁻²), 0.1}
- Improvement in predictive skill
- Suggests 2 structural error models
 - uncorrelated errors
 i.e., ε ~ N(0, σ²)
 - Temporally correlated errors, i.e. ε ~ N(0, Γ)



Calibration with CLM surrogate; US-ARM site

Structural error model

- Uncorrelated errors
 - i.i.d. Gaussians
 - Prior model for σ^2 is an inverse Gamma
- Correlated error model
 - Modeled as a stationary 1D multiGaussian field
 - Spherical semi-variogram for covariance
 - Sill (σ²) and range (τ) are to be estimated from data
 - Exponential priors for sill and range
 - Prior means are obtained from the p_{opt} solution



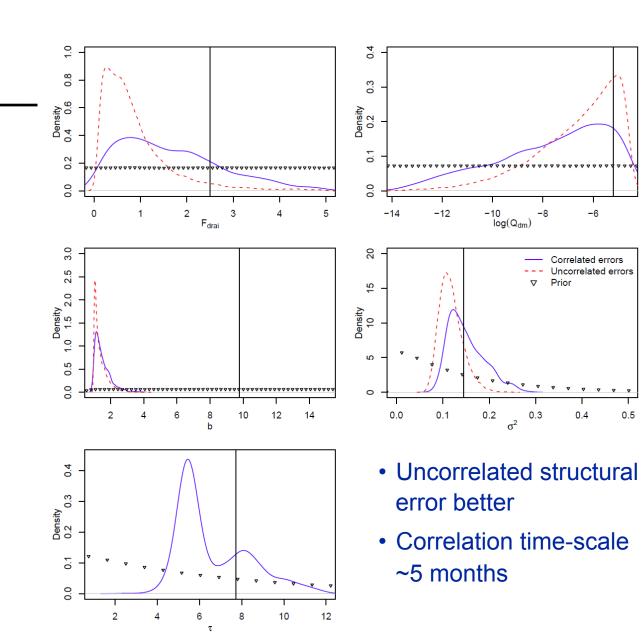
Spherical semi-variogram model

Solving the Bayesian calibration problem

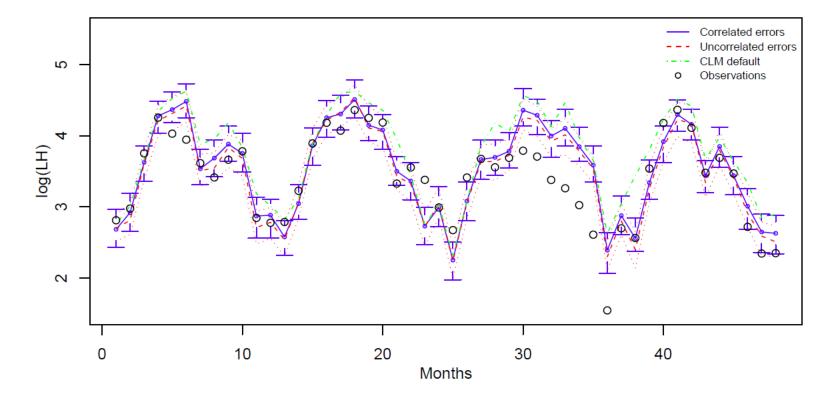
- Conventional formulation using Bayes' theorem and independent priors for all parameters
 - 4 parameter inversion when using uncorrelated errors; 5 with correlated ones
- 10⁵ model invocations needed for converged parameter posterior distributions
 - Convergence checked with Raftery-Lewis statistic
 - Calibration quality checked using (1) posterior predictive tests and (2) verification rank histogram
- Check the following
 - How far off are the nominal/default parameter values?
 - Is **p**_{opt} contained inside the posterior PDFs?
 - Which model gives a smaller structural error correlated or uncorrelated?
 - What is the time-scale of correlated structural error?

Posterior distributions

- Default parameters very suboptimal
- **p**_{opt} in the PDF's support



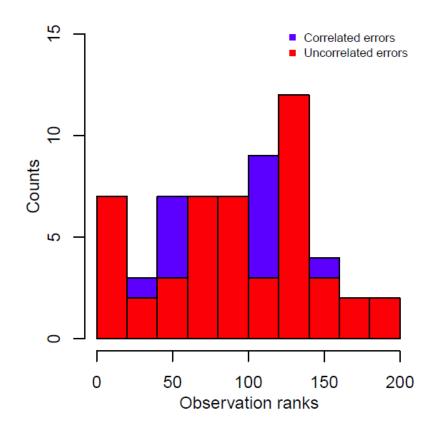
Posterior predictive test



Most observations are captured

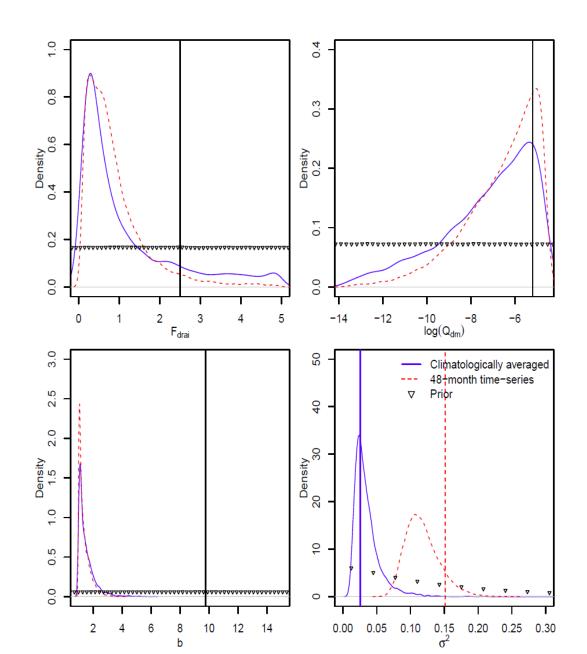
Quality of the calibration

- Ideally the distribution of observation ranks should be uniform
- If bunched in the middle, over-dispersive calibration
- In our case, ranks bunched towards the higher side
 - Under-dispersive calibration
- Choice of structural error model is immaterial



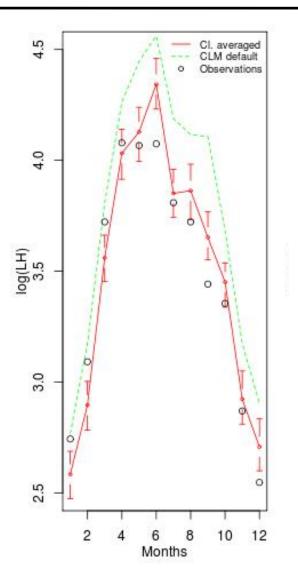
Effect of climatological averaging

- Climatological averaging results in a 12-month time-series
- Not much change in parameter PDFs
 - CLM is probably not meant to capture year-to-year variability



Posterior predictive test

- Big improvement over the default parameter values
- Error bars capture most of the observations

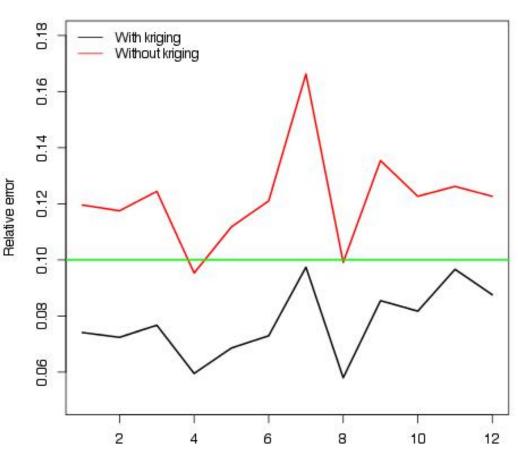


Surrogate modeling and calibration

US-MOZ

Surrogate models

- Parameters: {F_{drai}, log(Q_{dm}), S_y}
- Could not make surrogate models without climatological averaging
- Quadratic models after averaging had 15%-20% errors
- Modeled defect as a 3D mGaussian field
 - Exponential variogram
- Regression kriging model

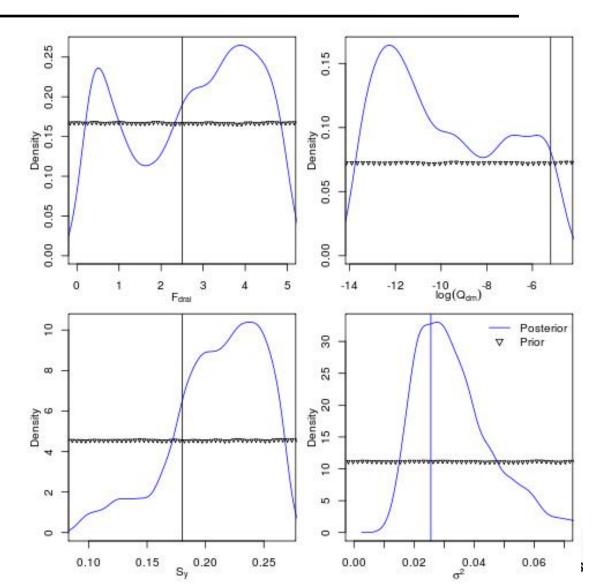


Month

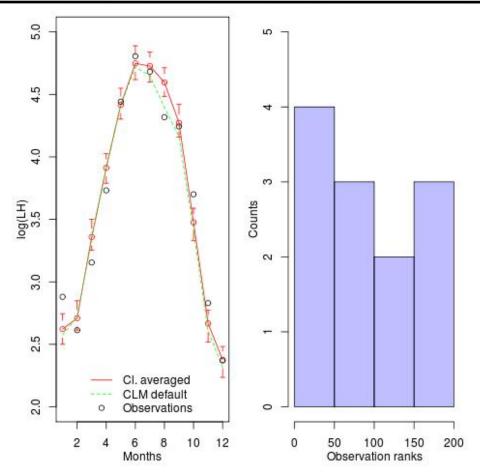
Relative error, TS

Parameter estimation

- **p**_{opt} = {2.6, log(4.43 × 10-3), 0.2 }
- Default & optimal parameter values not near PDF peaks
- Model-data mismatch accurately estimated by both deterministic & Bayesian approaches



Posterior predictive tests



- Calibration captures observations
- Not much improvement over default parameter values

Conclusions

- It is possible to create fast-running surrogates of CLM
- In such cases, we can
 - Perform Bayesian calibration of parameters and obtain their PDFs
 - Estimate the structural error, under various error model
- The structural error tells us
 - The accuracy of CLM, post calibration
 - Some characteristics of the physical processes that cause the structural error
- The most difficult aspect of the study is proposing a model form for the surrogate models
 - Requires testing & improvement on a month-by-month basis
 - No guidance on what model form might work for a given month
- Details: J. Ray, Z. Hou, M. Huang and L. Swiler, "Bayesian calibration of the Community Land Model using surrogate models" Sandia Technical Report, SAND2014-0867

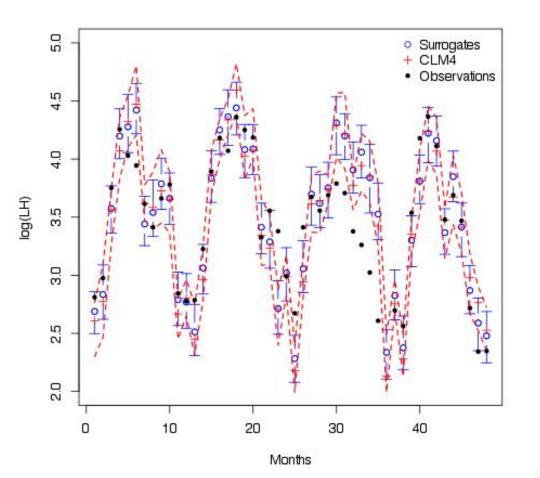
BACKGROUND

Current verification/validation status of CLM

- Sensitivity analysis lots of work
 - Total ~80 parameters
 - Most sensitive parameter depend on (1) observable and (2) location
 - For LH, hydrological process are most important; captured by 3 parameters. Different parameters for different sites
- Bayesian calibration of CLM
 - 1 published paper; calibrated 10 parameters using LH and runoff measurements
 - MCMC using CLM as-is; expected values of parameters were obtained (converged values)
- Yet to be done
 - Construction of PDFs, not expected values, of CLM parameters from observations
 - Structural error estimation

Usefulness of calibration with CLM

- Calibrated parameters
 improve predictive skill
- Doesn't matter whether we use surrogates or CLM for the prediction



National Laboratories