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Abstract

We present results from the Bayesian calibration of hydrological parameters of the Community Land
Model (CLM), which is often used in climate simulations and Earth system models. A statistical inverse
problem is formulated for three hydrological parameters, conditional on observations of latent heat sur-
face fluxes over 48 months. Our calibration method uses polynomial and Gaussian process surrogates
of the CLM, and solves the parameter estimation problem using a Markov chain Monte Carlo sampler.
Posterior probability densities for the parameters are developed for two sites with different soil and
vegetation covers. Our method also allows us to examine the structural error in CLM under two error
models.

We find that surrogate models can be created for CLM in most cases. The posterior distributions are
more predictive than the default parameter values in CLM. Climatologically averaging the observations
does not modify the parameters’ distributions significantly. The structural error model reveals a correla-
tion time-scale which can be used to identify the physical process that could be contributing to it. While
the calibrated CLM has a higher predictive skill, the calibration is under-dispersive.
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1 Empirical semi-variogram for the discrepancy yc(p)−y1(p;ΘΘΘ1) in the ξ1−ξ2−ξ3 space (in
symbols) and its approximation using an exponential variogram. Results are for log(LH) in
April, for US-MOz, climatologically-averaged over 2004-2007. . . . . . . . . . . . . . . . . . . . . . . . 20
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3 Left: We plot E(LS)
M for US-ARM, for all months using climatologically-averaged CLM4

predictions over 2003-2006. We use M = 1 . . .5. Right: We plot η for the same months. We
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5 We plot E(LS)
M for US-MOz, for all months, using climatologically-averaged CLM4 predic-

tions over 2004-2007. We use M = 1 . . .5. Right: We plot η for the same months. Quali-
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8 Marginalized posterior distributions for {Fdrai, log(Qdm) ,b,σ2,τ}, after calibrating to US-
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1 Introduction

The Community Land Model (CLM, [1]), the land component of the Community Earth System Model
(CESM, [2]), is used to simulate terrestrial water, energy, and biogeochemical processes in coupled climate
simulations. The CLM contains a large number of parameters that govern its behavior, many of which
are not directly measurable. They are estimated from indirect measurements, and are therefore subject
to great uncertainty. Further, many parameters are site-dependent i.e., they vary within certain ranges [3,
4, 5]. In addition, due to difficulties in estimating such parameters at a global scale, CLM is released
with default values for these parameters obtained by benchmarking its simulations against global datasets
using simple statistics [6]. The predictive accuracy of CLM is, to a large degree, dependent on obtaining
“correct” values of these parameters, and calibrating to site-specific observational data is the best means of
doing so. Model calibration, to date, has meant optimizing parameter values to reduce the discrepancies
between historical observations and their corresponding model predictions (e.g., from CLM). This leads
to a number of practical challenges. For example, gradient-descent optimization methods e.g., L-BFGS-
B [7] are sensitive to their starting guesses and can yield multiple “optimal” parameter combinations. More
seriously, due to the limited amount of observational data, the measurement errors in observations, and
the modeling shortcomings/simplifications in CLM, parameters cannot be estimated with a high degree of
accuracy. As a result, the parameter estimates are uncertain, but such parametric uncertainty has not been
well quantified. Consequently, CLM is not distributed with “error bounds” that reflect parametric uncertainty
after calibration.

The problem of parametric uncertainty can be addressed using Bayesian calibration. It develops param-
eter estimates as probability density functions (PDFs). The PDFs can be general i.e. we do not have to
stipulate a canonical family of distributions like Gaussian, log-normal etc. or make any approximations in
the numerical scheme, if the Bayesian calibration problem is solved using a Markov chain Monte Carlo
(MCMC) method. The PDF captures parametric uncertainty and the correlation between parameter esti-
mates concisely. Further, such a calibration also improves the predictive skill of CLM; instead of attempting
to predict observations with one “optimal” parameter combination, one samples the PDF and constructs an
ensemble of CLM predictions. Simple statistical measures [8, 9] can be used to summarize the “goodness
of fit”; further, the statistical measures also reveal other aspects of the fit (e.g., over-/under-dispersive cali-
brations) that provide specific directions to pursue to improve CLM. However, Bayesian calibration poses
two technical challenges. Firstly, like contemporary optimization methods, Bayesian calibration minimizes
the model-observation discrepancy; in addition, it also requires one to specify a statistical model for the dis-
crepancy (henceforth called the structural error model). The sensitivity of calibration to this choice then has
to be gauged. Secondly, MCMC can require many (O(104)-O(105)) CLM evaluations to reach converged
posterior estimates, which is prohibitive. Thus while Bayesian calibration holds much promise for CLM
calibration, its use has been somewhat rare [10, 11].

In this paper, we will describe a method that can allow MCMC calibration of CLM. The method is based on
surrogates of CLM - inexpensive polynomial or Gaussian process representations of the mapping between
CLM parameters being calibrated and the CLM outputs for which we have measurements. We therefore
build on, and extend, recent developments on the use of surrogates to calibrate computationally expensive
models [12, 13] and MCMC calibration of complex (e.g., those based on partial differential equations)
models including structural errors (i.e., the fundamental inability of the model to reproduce observations due
to modeling simplifications) [14, 15]. Our method is general, but we will demonstrate it in the estimation
of three hydrological parameters using observations from two sites, US-ARM, located in Oklahoma and
US-MOz, located in Missouri. The method will also yield an approximation of CLM’s structural error.
Our method is dependent on being able to actually build an accurate surrogate model; in its absence, our
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calibration method does not work. We will also present an example of this shortcoming.

The novel contributions of this paper are:

1. Procedure for building CLM surrogates: While the idea of building surrogates for computationally
expensive models is not new [16], the particular form chosen for the surrogate is problem dependent.
We describe the practical details of sampling the space of calibration parameters, performing the runs
(which, in our case, produce a time-series of outputs), and the process of constructing surrogates while
simultaneously simplifying them using sparsity. In particular, we will exploit a sparse reconstruction
method, Bayesian compressive sensing [17], to perform model simplification.

2. Choice of error model and their ramifications: Bayesian calibration requires one to specify an error
model. If competing models exist (as they do in our case), there has to be a systematic way of selecting
one. We present an illustration of how to select an error model.

3. Gauging the post-calibration predictive skill of CLM: When one has a “point” estimate of parame-
ters (the defaults or optimal values obtained from deterministic optimization), the predictive skill of a
model is estimated by calculating bias and root-mean-square-error (RMSE) with respect to observa-
tions. When parameters are estimated as PDFs, a different set of error metrics can be used; further,
some of them can reveal how the model needs to be improved. We will compute these error metrics
as a demonstration of the usefulness of Bayesian calibration beyond just parameter-estimation-with-
uncertainty-quantification.

The paper is organized as follows. In Sec. 2, we review some background literature on surrogate models,
sparse reconstruction, kriging and MCMC methods. We also review our previous work, based on sensitivity
analysis of CLM at the two chosen sites, which underlie the selection of the calibration parameters, given the
observational dataset at hand. In Sec. 3 we construct surrogate models. In Sec. 4, we use them to perform
the calibration and discuss the implications of the results. We conclude in Sec. 5.
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2 Background

2.1 Probabilistic calibration of climate models

The implications of parametric uncertainty in climate models (or their submodels) have long been appre-
ciated and there have been efforts to estimate them as PDFs [18]. Due to the computational cost of such
models, these methods have sought to reduce the number of model invocations necessary, largely via ap-
proximations in the numerical formulation of the estimation problem. Variants of the Very Fast Simulated
Annealing Method (VFSA, [19, 18]) have been used to tune the parameters of the CAM5 Zhang-McFarlane
convection scheme [20]. VFSA leverages simulated annealing to reduce CAM5 (Community Atmosphere
Model, version 5) runs, whereas multiple starting points allowed an efficient search in a high-dimensional
parameter space. The same method was used to tune 6 parameters in the Weather Research and Forecast-
ing [21] model in [22]; about 150 runs, divided between 3 separate starting points were used. PDFs of
parameters that had higher predictive skill than the default parameter settings were plotted but the quality of
the calibration was checked only using an optimal parameter estimate from the calibration i.e., the accuracy
of a point summary, rather than the full probabilistic calibration was checked. The ensemble Kalman filter
(EnKF, [23]) provides a scalable Bayesian calibration technique, under the assumption that the calibrated
PDFs of the parameters are Gaussian. In [24], the authors calibrated a coupled AOGCM of intermediate
complexity using EnKFs while [25] optimized a hydrology-crop model using data from central Belgium.

Of late, due to advances in computational resources, there have been attempts to perform the calibration
without any approximations i.e., to solve the Bayesian calibration problem using MCMC. In [10], 10 hy-
drological parameters of the CLM version 4 (CLM4) were calibrated using latent heat flux measurements
from the flux tower sites at US-ARM and US-MOz. Parameter samples from the posterior PDF (the post-
calibration PDFs of the parameters) provided better predictions compared to the default CLM4 settings when
their predictions were model averaged. In [11], the authors present a MCMC calibration of 6 parameters
of a CLM crop model. The convergence of the MCMC chain was checked via the Brooks-Gelman-Rubin
statistic [26]. The paper does not contain any plots of the parameter PDFs or any discussion on estimates of
structural error of the model. The improved ability of the calibrated PDFs to predict observations is shown.
In [27], the authors applied Bayesian uncertainty analysis to 12 parameters of the Bern2.5D climate model.
They first defined a nonparametric set of prior distributions for climate sensitivity and then updated the en-
tire set using MCMC. Motivated by practical needs in estimating parameters of climate and Earth system
models, the authors in [28] evaluate the computational gains attainable through parallel adaptive MCMC
and Early Rejection using a realistic climate model.

2.2 Surrogate models

The task of calibrating computationally expensive models can be considerably eased if one can devise a
computationally inexpensive surrogate. A surrogate model approximately captures the input-output map-
ping of the true (computationally expensive) model. It can prove to be an efficient solution to problems
in sensitivity analysis and optimization that require multiple model invocations. Frequently surrogates are
lower-fidelity or statistical models (e.g., regression models) obtained by fitting to a limited number of sam-
ple runs of the true model (also called the training data). In [29, 30], the authors compare various smoothing
predictors and non-parametric approaches that can act as surrogate models. In [31] the authors provide an
overview of statistical surrogates and lower-fidelity models that can be used as proxies for computationally
expensive models.
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Polynomials and kriging (also called Gaussian process or GP models) are two very common surrogates; they
are also used together (called regression kriging models). Polynomial surrogates are called trend functions
when used together with GP models. Polynomials are very efficient in capturing large-scale variations/trends
in the parameters space. A multivariate polynomial form is postulated (with unknown coefficients multi-
plying the terms) and their values are estimated from the training data via regression. The orders of the
polynomial and the terms to be retained are dictated by the training data. One can incrementally simplify
(remove terms from) the polynomial expression, refit to data and gauge the improvement in fit using the
Akaike Information Criterion [32]. Alternatively, one may use shrinkage regression methods like Bayesian
compressive sensing (BCS, [17]) to simplify an overly complex model, conditioned on data; see [33] for an
example of its use to make a polynomial surrogate for CLM4. Note that the terms retained in the polynomial
are dependent on the training data. K-fold cross-validation [34] of the model is recommended.

Stationary smooth Gaussian processes [35, 36, 37] are the approach we adopted for surrogate models, which
embody the input-output mapping via a set of multivariate normal random variables. A parametric covari-
ance function is then constructed as a function of the inputs. The covariance function is based on the idea
that when the inputs are close together, the correlation between the outputs will be high. As a result, the
uncertainty associated with the model’s predictions is small for input values that are close to the training
points, and large for input values that are not close to the training points. Gaussian processes are popular
surrogate models because they (1) typically interpolate the data from which they are built, (2) provide a
spatially varying estimate of the variance of the error in their predictions, and (3) do not require a specific
type of input sample design. As mentioned above, they are often used in conjunction with simple polyno-
mial models (linear or quadratic), which model the large-scale trends whereas the GP represents short-range
deviations from the polynomial predictions. A Bayesian perspective on such models is in [16].

2.3 Bayesian inverse problems and their MCMC solution

Estimation of parameters from observations can be cast as a Bayesian inverse problem. Let y = m(p) be a
model with parameters p. The model outputs are related to observations y(obs) as

y(obs) = y+ ε = m(p)+ ε, ε∼N (0,Γ) (1)

where ε is a combination of measurement and structural error and N (0,Γ) denotes a multivariate Gaussian
distribution with zero mean and Γ as the covariance matrix. Let π(p,Γ) be the prior belief regarding the
distribution of the parameters and the structural error. By Bayes’ theorem, the posterior PDF P(p,Γ|y(obs))
of the parameters, conditioned on observations, can be given by

P(p,Γ|y(obs)) ∝

(
y(obs)−m(p)

)T
Γ
−1
(

y(obs)−m(p)
)

︸ ︷︷ ︸
Likelihood,L(y(obs)|p,Γ)

π(p,Γ) = G(p,Γ) (2)

This is the post-calibration or posterior distribution of the parameters p. It can be constructed by sampling
from the right hand side of Eq. 2 and generating a histogram of the samples. Markov chain Monte Carlo
(MCMC) methods [38] allow the sampling to be performed efficiently. In MCMC, one starts with a guess
of the parameter p0. Using this as the base, a proposal p′ is chosen from a proposal PDF (often, but not
necessarily, a multivariate Gaussian) q(p′|p0). The proposed parameters p′ are chosen or rejected according
to the ratio α(p′|p0)

α(p′|p0) = min
(

1,
G(p′,Γ)q(p0|p′)
G(p,Γ)q(p′|p0)

)
(3)
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At each step, a random number between 0 and 1 is generated. If α is greater than the random number, the
proposal p′ is retained in the MCMC chain. Thus the MCMC chain describes a random walk through the
parameter space. Accepting p′ based on a random number ensures that the MCMC chain will visit all param-
eter locations in the limit of infinite samples (ergodicity). If a symmetric distribution such as a Gaussian is
used for the proposal PDF, q(p′|p0) = q(p0|p′). If the structural error is modeled in a simple manner, e.g., as
independent, identical Gaussians and ε∼N (0,σ2), it is possible to use a conjugate prior for σ2 (usually an
inverse Gamma distribution) and sample ε using a Gibbs sampler. This forgoes any complications involving
the efficiency of proposal distribution. Otherwise ε is modeled and p is augmented with the parameters of
the structural error model (called hyper-parameters). Thus, the MCMC method collects samples of (pi,Γi)
which can be used to obtain distributions for the model parameter and the structural error.

The mixing of the MCMC chain in the parameter space is largely dependent on q(:). Adaptive MCMC
methods [39] seek to tune an optimal q i.e., estimate its covariance periodically using samples pi that
have already been collected by the MCMC chain. Multichain MCMC methods [28, 40] that use multi-
ple concurrent chains to explore the parameter space have been used in the estimation of climate model
parameters [41]. The MCMC chain is stopped when the samples it collects results in a stationary posterior
distribution P(p,Γ|y(obs)). A efficient MCMC method can require O(104) samples to represent a posterior
distribution for 3-4 parameters; for complex-shaped distributions, far more samples may be required. The
convergence of a MCMC chain can be judged using the Raftery-Lewis [42] or Brooks-Gelman-Rubin [26]
statistics. An unconverged MCMC chain usually leads to parameter PDFs that are too narrow i.e., it underes-
timates parametric uncertainty, and provides erroneous estimates of high-order moments of the distribution
such as inter-parameter correlations. The quality of a Bayesian calibration is gauged by posterior predictive
tests (PPTs; chapter on “Model Checking and Improvement” in [43]). Samples of (pi,Γi) are drawn from
the posterior distribution and used to replicate observations via an ensemble of model simulations using
Eq. 1. The predictive skill of the ensemble is gauged by metrics such as the cumulative rank predictive
score (CRPS), verification rank histogram (VRH), mean absolute error (MAE) etc. [8, 9]. The significance
of these metrics will be discussed in Sec. 4 where we use them to test our calibration.

2.4 Calibration parameters and sites

This paper is one in a series of studies focused on CLM calibration using data from two Ameriflux tow-
ers: US-ARM (US Atmospheric Radiation Measurement Climate Research Facility, Southern Great Plains
site, http://www.arm.gov/sites/sgp) and US-MOz (the Missouri Ozark tower, http://ameriflux.
lbl.gov/SitePages/siteInfo.aspx?US-MOz). US-ARM, located in Oklahoma, has clay soils and a
vegetation cover of shallow-rooted grasses [44, 45]. US-MOz has loamy soil and deciduous broadleaf vege-
tation [46, 47]. Observations of latent heat (LH) surface fluxes, obtained from the towers, have been used in
a number of previous studies aiming to explore parametric sensitivity and the possibility of inverting param-
eters in CLM. In [4], the authors examined the sensitivity of LH fluxes and runoff computed using CLM4
to 10 hydrological parameters with a view of ranking the important parameters. In [10], the authors lever-
aged the sensitivity analysis to calibrate all 10 parameters, using LH and runoff observations and MCMC.
It was found that LH was more informative than runoff for calibration purposes. The study also identified
parameters whose posterior distributions were appreciably different from the prior. The study used daily and
monthly observations, collected over 2003-2006, for US-ARM; for US-MOz, the duration was 2004-2007.
Meteorological forcing, site information (vegetation, soil type etc.), satellite-derived phenology, and valida-
tion data (water and energy fluxes) were obtained from the North American Carbon Program; see [4, 10]
for details on site information and calibration data. An MCMC calibration of 10 hydrological parameters of
CLM4 was performed in [10]. In this study, CLM4 was used as-is, and the study does not present any of
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the statistical details such as convergence analysis and posterior predictive tests. However, the authors did
present results on the improvement in predictive skill, post-calibration, by averaging the model predictions
generated by the samples collected by their MCMC chain. Issues related to structural error etc. were not
investigated.

Our study is an extension of the calibration performed in [10]. We limit ourselves to the top three parameters
that could be calibrated from observations; these parameters were identified via the sensitivity analysis in [4]
and the preliminary tuning that was performed in [10]. These parameters are {Fdrai, log(Qdm) ,b} for US-
ARM and {Fdrai, log(Qdm) ,Sy} for US-MOz. Fdrai represents the reciprocal of the effective storage capacity
of the subsurface aquifer used in subsurface runoff generation and is positively correlated to LH. Small val-
ues of Fdrai lead to quick drainage of water away from the shallow root zone, reducing evapotranspiration
and LH fluxes. Beyond Fdrai ≈ 2, the sensitivity of LH to Fdrai decreases. Qdm is the maximum subsur-
face drainage rate and its high values lead to water depletion in the shallow root zone i.e., it is negatively
correlated with LH. Sy is the drainable porosity under gravity and it is positively correlated with LH. b is
the Clapp-Hornberger exponent [48] describing the characteristic curves that relates the soil potential to the
volumetric water content. In this study, we perform our calibration using quick running surrogates of CLM4
so that the MCMC scheme can be run to convergence. The surrogates also introduce an approximation error
(the inability of the surrogate to reproduce CLM4 outputs) motivating us to model and estimate structural
error. We will perform our calibration using both monthly and climatologically averaged observations, such
that daily / stochastic variability in observations can be averaged out, and structural error models other than
i.i.d. Gaussians can be examined. PPTs and metrics such as CRPS etc., discussed in Sec. 2.3 are used to
gauge the quality of the calibration and also identify shortcomings in the model (surrogate or CLM4). Thus
the aim of this study is to investigate, in detail, the preliminary calibration performed for US-ARM and
US-MOz in [10], with emphasis on statistical rigor of the calibration e.g., structural errors, predictive skill,
and the effect of climatological averaging.

Significant errors have been observed in simulating energy fluxes and runoff at these sites using default
parameter values currently hard-coded in CLM4. This shortcoming makes it necessary to optimize the
model parameters through inversion/calibration using flux and streamflow observations. Given the high-
dimensionality of input parameter space, and the complexity in model behavior, sensitivity analyses have to
be performed first, to identify a subset of parameters that could be optimized with the available observational
data [49, 50]. A reliable sensitivity analysis framework can help quantify system behavior (e.g. understand-
ing the relationships between input and output variables). Such a sensitivity analysis framework usually
requires an efficient sampling technique (e.g., quasi Monte Carlo, Latin Hypercube) to explore the high-
dimensional parameter space, particularly when the numerical simulations are computationally demanding.
In [4, 5], the authors performed such sensitivity tests at the above sites, and illustrated that by influencing soil
moisture, uncertainty in input parameters related to hydrological processes can affect how surface energy is
partitioned between sensible and latent heat fluxes, which has important implications to land-atmosphere in-
teractions for climate and earth system models. They explored the parameter space using Quasi Monte Carlo
sampling and then used generalized linear model analyses and AIC (Akaike’s Information Criterion [51])-
based backward removal approach to identify the significant parameters for each climatologically averaged
monthly output (e.g., latent heat flux) for each field site.
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3 Surrogate models

In this section we will develop polynomial and GP surrogates for yc(p) = log(LH) where LH are the latent
heat fluxes predicted by CLM4 for parameter setting p = {p1, p2, p3} = {Fdrai, log(Qdm) ,b} for US-ARM
and {Fdrai, log(Qdm) ,Sy} for US-MOz. The fluxes are averaged over a month. The surface fluxes are log-
transformed to reduce the dynamic range of LH, which spans an order of magnitude. The prior distributions
are:

Fdrai = U(0.1, 5.0)

log(Qdm) = U(log(10−6), log(10−2))

Sy = U(0.09, 0.27)

b = U(1, 15) (4)

where U(a, b) denotes a uniform distribution with (a,b) as the lower and upper limits. The parameter space
p1− p2− p3 is thus a cuboid, which is also the domain of applicability of our surrogate models. The default
values of the parameters are Fdrai = 2.5, log(Qdm) = log(5.5×10−3), Sy = 0.18 and b = 9.76.

In order to construct surrogate models, we generate a training set of CLM4 runs. We draw 256 samples from
the p1− p2− p3 cuboid via quasi Monte Carlo sampling; see [4] or details. This training set is augmented
with the 8 corners, 6 face-centers and 12 edge-centers of the parameter cuboid, leading to N = 282 parameter
samples where CLM4 is evaluated. For each parameter set, at each site, the model is spun up by cycling the
forcing at least five times (i.e., 282×5 for the entire set of parameter samples) until all state variables reach
equilibrium. Using the initial conditions generated by the spin-up, CLM simulates hourly latent heat (LH)
fluxes over 2003-2006 for US-ARM and 2004-2007 for US-MOz. These are archived and averaged over
each month to generate a monthly time-series of LH predictions. The training set consists of {pl,y

(l,m)
c }, l =

1 . . .N,m= 1 . . .Nm, Nm being the number of months (48 for both US-ARM and US-MOz) in the time-series.

3.1 Formulation

For a given month, we will represent the monthly-averaged, log-transformed surface fluxes as

yc(p) = y1(p;ΘΘΘ1)+ y2(p;ΘΘΘ2)+δ (5)

where y1(p;ΘΘΘ1) is a polynomial surrogate, y2(p;ΘΘΘ2) is a GP surrogate and δ is a surrogate model error. In
our model, we will aim for ‖δ‖2/‖yc(p)‖2 < 0.1. ΘΘΘ1 and ΘΘΘ2 are parameters of the surrogate models that
are estimated from the training set. We postulate a polynomial surrogate model, of order M, as

y1(p;ΘΘΘ1) =
M

∑
i=0

M

∑
j=0

M

∑
k=0

ci jk pi
1 p j

2 pk
3, ci jk ∈ΘΘΘ1, i+ j+ k ≤M. (6)

Not all ci jk (or terms in the polynomial) are required to model yc(p). Also, since they have to be estimated
from a limited training set, some of the estimates may have significant uncertainty, especially if yc(p) is
not very sensitive to them. Consequently, we estimate them using shrinkage regression, specifically BCS.
Separate surrogate models are made for each month.

Modeling with polynomial chaos expansions: The problem of estimating ci jk is rendered much easier if
the pi

1 p j
2 pk

3 terms in Eq. 6 are collated into orthonormal bases. We accomplish this by recasting Eq. 6 in terms
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of polynomial chaos expansions. We normalize pi = Ci +Diξi, where ξi ∼U(0,1, ), ξi are independently
and identically distributed, i = 1 . . .3. Eq. 6 can then be written as

y1(p;ΘΘΘ1) =
M

∑
m=1

βmΨΨΨm(ξξξ),

where ΨΨΨ(ξξξ) is an orthonormal polynomial basis and ξξξ = {ξi}, i = 1 . . .3. Each index m corresponds to a
multi-index vector r(m) = {r(m)

1 ,r(m)
2 ,r(m)

3 } such that

ΨΨΨm(ξξξ) = ΨΨΨr(ξξξ) = Ψr1(ξ1)Ψr2(ξ2)Ψr3(ξ3), ri ∈ {1 . . .M},
M

∑
i=1

ri = M. (7)

In our case, Ψri(ξi) are obtained from univariate Legendre polynomials Ln(ζ)

L0(ζ) = 1

L1(ζ) = ζ

L2(ζ) =
1
2
(
3ζ

2−1
)

Ln+1(ζ) =
2n+1
n+1

ζLn(ζ)−
n

n+1
Ln−1(ζ). (8)

We will work with normalized Legendre polynomials i.e., Ψn(ζ) =
√

2n+1Ln(ζ). Note that the RHS of
Eq. 7 and Eq. 6 are formally identical. Having cast the problem in terms of orthogonal polynomials, we seek
to estimate βm via shrinkage regression.

Shrinkage regression: For a given month, we divide our N-member training set into a learning set (LS) with
85% of the runs and a testing set (TS) with the remaining 15%. The set {pl,y

(l,m)
c }, l ∈ LS and m = 1 . . .Nm

are used to set up a shrinkage regression problem. We write the likelihood L(y(LS)
c |βββ), βββ = {βm}, as

L
(

y(LS)
c |βββ

)
∝ (2πς)−

|LS|
2 exp

(
−‖y

(LS)
c −∑m βmΨΨΨ(ξξξ

(LS)
)‖2

2
2ς2

)
(9)

where y(LS)
c is the vector of CLM4 predictions from the LS runs, ξξξ

(LS) are the corresponding (normalized)
CLM4 parameters and the discrepancy between the CLM4 and polynomial surrogate model predictions is
modeled using i.i.d. normals N (0,ς2). In order to estimate the sparsest model conditional on the data, we
impose a Laplace prior

π(βββ|λ) = λ

2

M+1

exp

(
−λ

M

∑
m
|βm|

)
and solve the deterministic optimization problem to obtain the maximum a posteriori (MAP) values of βm

arg max
βββ

[
log
(

L
(

y(LS)
c |βββ

))
−λ‖βββ‖1

]
.

We cast this into a hierarchical Bayesian setting that removes the discontinuous nature of a `1 norm. We
model βm with a Gaussian prior with standard deviation sm and, in turn, model all sm with a Gamma prior

π
(
βm|s2

m
)

=
(
2πs2

m
)− 1

2 exp
(
−β2

m

s2
m

)
,

π
(
s2

m|λ2) =
λ2

2
exp
(
−s2

mλ2

2

)
.
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This hierarchical formulation can be solved using a greedy algorithm commonly used in BCS and described
in [17]. It returns non-zero values of βm that can be estimated from the LS , revealing, in theory, the exact
form of the polynomial i.e., the terms in Eq. 6 that are required to model yc. Further information on the use
of BCS to develop surrogate models of CLM4 is in [33].

Cross-validation studies revealed that BCS could be somewhat imperfect i.e., if we start with a large M (e.g.,
M = 10) the non-zero βm returned by BCS depend on the LS used. While some low-order terms are always
chosen, a significant number of high-order terms were chosen quite often (we will provide an example of
this uncertainty below). This uncertainty in the identity of high-order terms led us to use cross-validation
to choose an appropriate M. Note that choosing an Mth order polynomial for surrogate modeling does not
imply that we retain all the terms in the polynomial.

Using cross-validation to choose the polynomial order M: We divided the training set into K LS/T S
pairs, K = 500, to perform K-fold cross-validation. Polynomial models, with M = 1 . . .5 were fitted using
the CLM4 runs in the LS to estimate βm. The βm were then used to predict log(LH) using pi in the TS.
Relative errors were calculated for both the LS and T S, for all K LS/T S pairs and then averaged to obtain

the mean errors for a given order M i.e., E(LS)
M and E(T S)

M ,

E(s)
M =

1
|s|

|s|

∑
l=1

E(s)
M,l =

1
|s|

|s|

∑
l=1

‖y(s)c −∑
M
m=1 βmΨΨΨm

(
ξξξ
(s)
)
‖2

‖y(s)c ‖2

, s ∈ {LS,T S}.

If the fitting is proper and no spurious terms are retained, then E(LS)
M ≈ E(T S)

M , i.e., the fitted model is equally
predictive for the LS and T S. In case of overfitting, the polynomial model will be more predictive for the
LS. We will choose a value of M for developing surrogate models if

η =
E(T S)

M

E(LS)
M

≤ 1.05 (10)

GP models : Fitting a polynomial model does not ensure that ‖yc(p)− y1(p;ΘΘΘ1)‖2/‖yc(p)‖2 < 0.1. If
∆y(p) = yc(p)− y1(p;ΘΘΘ1), where p are samples from the training set, is smoothly distributed in the p1−
p2− p3 space, and the mean over the training set samples is zero, then the discrepancy can be modeled as
multivariate Gaussian i.e., ∆y(p) ∼ N (0,Σ). The key is to model Σ appropriately. In Fig. 1 we show the
empirical semi-variogram for ∆y(p) in the normalized p1− p2− p3 space and its approximation using an
exponential semi-variogram. The approximation was fitted to ∆y data from the LS. ∆y was obtained by fitting
a quadratic polynomial to CLM4 predictions of log(LH) at the US-MOz site, for April, climatologically
averaged over 2004-2007. A better fit could not be obtained using other semi-variogram models such as
spherical, linear etc. Henceforth, we will use an exponential semi-variogram to model Σ for all months, but
check the accuracy of the resultant model via K-fold cross-validation. The form of the variogram model and
its parameters (the sill and the range) constitute the parameter ΘΘΘ2.

3.2 Models for US-ARM

As a first step we examine polynomial fits to the LS data by BCS, for April, climatologically averaged over
2003-2006. In Fig. 2 we plot the distribution of E(LS)

M,l and E(T S)
M,l for M = {1,2,4} generated via a 500-

fold cross-validation test. The top, middle and bottom rows of plots are obtained for M = 1,2 and 4. The
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Figure 1: Empirical semi-variogram for the discrepancy yc(p)− y1(p;ΘΘΘ1) in the ξ1− ξ2− ξ3 space (in
symbols) and its approximation using an exponential variogram. Results are for log(LH) in April, for
US-MOz, climatologically-averaged over 2004-2007.
.

distribution of errors from the LS (240 CLM4 runs), in the first column, is somewhat different from that of
the T S errors (42 runs); however, for M = 1 and 2, the average of LS and T S errors are very similar. This is
not the case for M = 4. We also plot the distribution of the number of terms retained in the polynomial by the
BCS algorithm. For M = 1 and 2, there is little uncertainty; all the terms in the polynomial are retained. The
same behavior, i.e., linear and quadratic models proving to be “well-behaved” was seen for other months
too. This is not the case for the quartic model, where there is considerable uncertainty in the number of
terms retained (it varies form 25 to 35), leave alone the identity of the terms retained in polynomial. It is
this uncertainty that led us to use cross-validation (CV) and Eq. 10 to choose the model order M.

In Fig. 3 we examine the order of polynomial model to use. These models are obtained by BCS-fitting of the
model to LS data. We see that while the linear and quadratic models have all their terms, the higher-order

models do not. The data is obtained from a 500-fold CV. On the left, we plot E(LS)
M for all months using

climatologically averaged CLM4 predictions over 2003-2006. We use M = 1 . . .5. On the right, we plot η

for the same months. We see, on the left, that E(LS)
M decreases as M increases i.e., model complexity improves

predictive skill, even though shrinkage regression removes many of the polynomial terms. However, this
improvement is largely due to overfitting, as is shown in the plot of η on the right. For cubic and higher-

order models, E(T S)
M is larger than E(LS)

M and the improvement of predictive skill with model complexity is
not seen. Since we wish to have models that are equally predictive everywhere, we see that quadratic models
(M = 2) offer the best solution. Also, note that the relative errors are small, less than 2%. This allows us set
y2(p;ΘΘΘ2) = 0 in Eq. 5 i.e., skip any GP modeling for US-ARM, and yet meet the accuracy requirement for
surrogate models (‖yc(p)− y1(p;ΘΘΘ1)‖2/‖yc(p)‖2 < 0.1).

In Fig. 4 we plot E(LS)
M for 48 months in 2003-2006. We use M = 1 . . .5. On the right, we plot η for the

same months. We see the same qualitative features of Fig. 3. The BCS algorithm returns polynomial terms
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Figure 2: Distribution of E(LS)
M,l and E(T S)

M,l for M = {1,2,4} as calculated from a 500-fold cross-validation
test. In the top row, we use M = 1. The corresponding values for M are 2 and 4 for the middle and bottom
row of plots. In the first column, we plot the distribution of E(LS)

M,l from a LS of 240 CLM4 runs. In the second

column, we plot the distribution of E(T S)
M,l from a T S of 42 runs. In the last column, we plot the distribution

of the number of terms retained in the polynomial model by the shrinkage regression algorithm.
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Figure 3: Left: We plot E(LS)
M for US-ARM, for all months using climatologically-averaged CLM4 predic-

tions over 2003-2006. We use M = 1 . . .5. Right: We plot η for the same months. We see that, as expected,
high-order polynomial models provide lower errors when fitted to LS. This is largely due to overfitting since
η≈ 1 holds only for linear and quadratic models; in the rest of the models, higher predictive skill in the LS
does not carry over to the T S.
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Figure 4: Plots of E(LS)
M (left) and η (right) for US-ARM, for all 48 months in 2003-2006. We see from the

left subfigure that model complexity seems to provide spurious accuracy in the LS, since the same predictive
skill is not seen in the T S.

that are LS-dependent; as the order of the model increases, E(LS)
M decreases implying an improvement in

predictive skill. Yet η, in the right subfigure, shows that the resulting model is not as predictive for the
T S, when M > 2. Thus, again, a quadratic model is found to offer the best fit. Further, all the terms in the
quadratic model are retained. In addition, there is no need to use a GP model y2(p;ΘΘΘ2) since the quadratic
model is found sufficient to meet the 10% accuracy requirement.

3.3 Models for US-MOz

In Fig. 5 we plot E(LS)
M for 12 months, computed using climatologically averaged CLM4 predictions over

2004-2007. We use M = 1 . . .5. On the right, we plot η for the same months. The basic conclusions from the
surrogate modeling for US-ARM carry over to US-MOz. The shrinkage regression algorithm is imperfect

and E(LS)
M reduces with model complexity (left subfigure), but the same predictive skill of the surrogate
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models is not evident when tested using the T S (right subfigure). Again, quadratic models provide the best

balance between minimizing E(LS)
M while keeping η ≤ 1.05. Note that E(LS)

M , M = 2, is between 15% and
20% and hence we will augment the polynomial model in Eq. 5 with a GP approximation y2(p;ΘΘΘ2).

We construct GP models y2(p;ΘΘΘ2), for each month, using ∆y(p) = yc(p)−y1(p;ΘΘΘ1) computed from the LS
data. As mentioned above, an exponential variogram is used to model Σ. The resulting model, y2(p;ΘΘΘ2)
in Eq. 5, is added to y1(p;ΘΘΘ1), and used compute the relative error for the T S dataset. The relative errors
are averaged over a 500-fold cross-validation test and plotted in Fig. 6 in black. The errors without the GP
augmentation are also plotted (in red). We see that including the GP surrogate halves the surrogate modeling
error to bring it below the 10% relative error target that we have adopted for the surrogate models.

We next attempted to construct surrogate models without climatological averaging the data i.e., using the
48-month time-series spanning 2004-2007. We found that we could construct only 40 (out of 48) such
models that met the 10% relative error requirement. We conjecture that this may be due to meteorological
anomalies or extremes. This difficulty was not seasonal in nature - after climatological averaging, surrogate
models could be constructed for all the months. This also implies that for US-MOz, we will only be able to
calibrate CLM4 using climatologically averaged observations.

24



2 4 6 8 10 12
0.05

0.1

0.15

0.2

0.25

0.3

Months

R
el

at
iv

e 
er

ro
r 

(L
S

)

Surrogate model errors (LS)

 

 

Order = 1

Order = 2

Order = 3

Order = 4

Order = 5

2 4 6 8 10 12
0.5

1

1.5

2

2.5

3

Months

R
el

at
iv

e 
er

ro
r 

(T
S

) 
/ R

el
at

iv
e 

er
ro

r 
(L

S
)

Surrogate model errors ratios (TS/LS)

 

 

Order = 1

Order = 2

Order = 3

Order = 4

Order = 5

Figure 5: We plot E(LS)
M for US-MOz, for all months, using climatologically-averaged CLM4 predictions

over 2004-2007. We use M = 1 . . .5. Right: We plot η for the same months. Qualitatively, the behavior is

the same as in US-ARM - quadratic models provide the best option for further use (minimize E(LS)
M while

keeping η < 1.05). Note that E(LS)
M does not satisfy the 10% accuracy requirements and these quadratic

models will require augmentation with GP surrogates.
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Figure 6: The relative error obtained using a quadratic polynomial model and a GP model is plotted in
black for all 12 month, for US-MOz, using climatologically averaged CLM4 predictions for 2004-2007.
The error obtained without the GP surrogate is plotted in red. The green line is the 10% accuracy threshold
for surrogate models. These errors were computed using only the T S data from a 500-fold CV test.
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4 Calibration

In this section we use the surrogate models created in Sec. 3 to calibrate 3 hydrological parameters of
CLM4. Having established that quadratic polynomials and GPs with their covariance modeled using an
exponential variogram suffice, we remake the surrogates using all the training data. This implies that the
(surrogate model) error estimates presented in Sec. 3, which reflect those constructed using only the LS,
are conservative. We will use the surrogate models in an MCMC calibration effort to obtain PDFs of the
parameters of interest. We address the following issues:

1. Accuracy: Does calibration improve predictive skill vis-à-vis the default CLM4 parameter setting?

2. Impact of climatological averaging: Does using the climatological mean of the observations have a
significant impact on the parameter estimates?

3. Impact of the structural error model: The 48-month time-series model allows us to explore 2 struc-
tural error models of differing complexities. What are the ramifications of using a simple versus a
complex structural error model?

4.1 Formulation

Let Y (obs) = {y(obs)
m },m = 1 . . .Nm be the observed values of log-transformed latent heat surface fluxes,

averaged over a month. We rewrite Eq. 5 for month m as

yc,m(p) = ys,m(p)+δm = y1(p;ΘΘΘ1,m)+ y2(p;ΘΘΘ2,m)+δm,

where ys,m(p) is the surrogate model prediction for month m, for parameter setting p. Note that y2(p;ΘΘΘ2,m) is
zero for US-ARM. Let Ys(p)= {ys,m(p)},m= 1 . . .Nm. Since the surrogate model parameters were estimated
from the training set, we will consider them known constants. We relate the observations to the model
predictions as

Y (obs) = Ys(p)+ εεε, εεε = {εm},m = 1 . . .Nm, εεε∼N (0,Γ) (11)

The parameter vector is p = {pk} = {Fdrai, log(Qdm) ,Sy} (for US-ARM) and {Fdrai, log(Qdm) ,b} for US-
MOz. Per Eq. 2, the posterior distribution is given by

P
(

p,Γ|Y (obs)
)

∝

[
Y (obs)−Ys(p)

]T
Γ
−1
[
Y (obs)−Ys(p)

]
π(Γ)

3

∏
k=1

π(pk) , (12)

where we have explicitly imposed independent priors on the elements of p, as given by Eq. 4. We will
consider two models for εεε:

1. Uncorrelated errors: We will assume that the monthly model-observation discrepancies εi are uncor-
related and can be modeled as εi ∼ N (0,σ2). We will estimate σ2 along with p. Γ = diag(σ2). The
modeling and sampling of precision χ = σ−2 is described below.

2. Temporally correlated errors: We will model εεε∼N (0,Γ). We assume a stationary distribution and
model Γ using a two-parameter variogram. The variogram model will be chosen by fitting to the
defect γγγ = {Y (obs)−Ys(popt)}, where popt is obtained via a deterministic optimization method. The
variogram model’s parameters, sill (σ2) and range (τ), are calibrated along with p.
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Modeling and sampling χ : The standard deviation σ2 of uncorrelated errors is modeled and sampled as
χ = σ−2 since it allows us to use a conjugate prior. We model

χ∼ Gamma
(

n0

2
,
n0S2

0
2

)
where n0 and S0 are user-supplied values. The first parameter is the shape parameter and the second the rate
(the reciprocal of the scale) parameter of the Gamma distribution. The posterior is the written as

P
(

p,χ|Y (obs)
)

∝ χ
Nm
2 exp

(
−χ

2
‖Y (obs)−Ys(p)‖2

2

)
π(p)

n0S2
0

2

(
χn0S2

0
2

) n0
2 −1

exp
(
−

χn0S2
0

2

)
∝

(
χn0S2

0
2

) n0
2 +Nm

2 −1

exp

[
−χ

(
‖Y (obs)−Ys(p)‖2

2
2

+
n0S2

0
2

)]

Here we have removed π(p) since the uniform distribution used as priors lead to a constant value for π(p).
This particular form allows the sampling of χ in a very simple manner. One can use a Metropolis-Hastings
(MH) sampler to estimate p|χ. Then χ, conditional on the new p is sampled using a Gibbs sampler

χ|p∼ Gamma

(
n0S2

0
2

,
‖Y (obs)−Ys(p)‖2

2
2

+
n0S2

0
2

)
(13)

where the first and second parameters of the Gamma distribution are the shape and rate parameters respec-
tively. We use n0 = 0.1 and S2

0 = 0.01 so that the prior has little impact on the estimated distribution.

The inverse problem in Eq. 12 was solved using the DRAM algorithm [39], which is an adaptive MH
sampler. Convergence of the chain was monitored using Raftery-Lewis (RL) statistic [42]. The RL statistic
ensures that the sampler has collected sufficient samples to estimate (in our case) the median value of each
parameter within a tight tolerance. It does so by recursively downsampling the chain (e.g., retain every
alternate sample in the stream of samples collected by the MCMC method) till the chain resembles a first-
order Markov process. It then checks whether there are sufficient samples in the downsampled (or thinned)
chain to approximate the stationary solution of the Markov process within the specified tolerance. The code
was written in R [52] and we used the DRAM implementation in FME [53], which contains the MH-Gibbs
combination discussed above.

Posterior predictive test (PPT) and error metrics: MCMC solution yields the posterior distribution
P(p,σ2|Y (obs)) (or P(p,σ2,τ|Y (obs)), if using temporally correlated errors) which is checked using posterior
predictive tests (PPT). We choose Ns samples from the posterior distribution and generate a set of predictions
Y (ppt)

l = {yppt
l,m } = {ys,m(pl) + εεεl}, l = 1 . . .Ns,m = 1 . . .Nm, where εεεl ∼ N (0,Γl),Γl = diag(σ2

l ) or Γl =

Γ(σ2
l ,τl). Thus for each observation y(obs)

m , we obtain Ns predictions yppt
l,m , l = 1 . . .Ns. The quality of these

predictions is gauged using the mean absolute error (MAE), continuous rank probability score (CRPS) and
the verification rank histogram (VRH). CRPS and MAE are integrated measures of the error in the ensemble
predictions vis-à-vis observations. The VRH is a metric that is used to probe the calibration further. The
details of these metrics are in [8, 9], but they are summarized below.

MAE: The MAE is calculated as

MAE =
1

NmNs

Ns

∑
l=1

Nm

∑
m=1
|y(obs)

m − yppt
l,m |
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CRPS; The CRPS is calculated as a mean over Nm CRPSm, the CRPS for month m. For a given month m,
we use Ns predictions {yppt

l,m }, l . . .Ns to compute the cumulative distribution function (CDF) Fm(y). We use
it in the computation of CRPSm as:

CRPSm =
∫

∞

∞

(
Fm(y)−H(y− y(obs)

m )
)

dy.

H(z) is the Heaviside function.

VRH: For each month m, we sort the predictions and the observation to find the rank of the observation. The
Nm ranks are binned and used to create a histogram. In a perfect calibration, the ranks of the observed values
should resemble draws from a uniform distribution. If the observations’ ranks are clustered at the lower
or upper end, the calibration in under-dispersive i.e., model predictions are not sufficiently sensitive to the
model parameters. If the observations’ ranks are clustered in the middle of the distribution, the calibration
is over-dispersive. In either case, a change in CLM4 or the structural error model is indicated.

4.2 Calibration using US-ARM data

The observational dataset for US-ARM consists of Nm = 48 months of log(LH) readings (2003-2006).
As a first step towards calibration, we use the surrogate models to perform a deterministic calibration
using a box-constrained optimization method (L-BFGS-B, [7]) to obtain popt = {Fdrai, log(Qdm) ,b} =
{0.97, log(10−2),0.1}. Note that the “optimal” values for two of the parameters are at the edge of the
prior distribution. In Fig. 7, (left) we plot 48 months of observations of log(LH), and the predictions using
surrogate models generated using popt and pde f , the default values of {Fdrai, log(Qdm) ,b}= {2.5, log(5.5×
10−3),9.76}. We see that popt provides far better predictions than pde f , which are largely over-predictions.
Further, we clearly see that the model-data discrepancy is correlated in time. We assume that the tempo-
rally correlated discrepancies are stationary and model Γ using a variogram. In Fig. 7 (right), we plot the
empirical semi-variogram and a fit with a spherical variogram model,

ρ(t) = σ
2
[(

3t
2τ
− t3

2τ3

)
H(τ− t)+H(t− τ)

]
obtaining σ2

opt = 0.1515 and τopt = 7.32 months. Here t is time measured in months. Note that when τ = 0
i.e., uncorrelated errors, the variogram model reduces to an i.i.d. Gaussian model for the errors. Fits with
exponential, linear etc. variogram models were inferior.

Next we use the dataset to estimate p with a temporally-correlated structural error model. We use the spher-
ical variogram above to model Γ, and estimate {Fdrai, log(Qdm) ,b,σ2,τ}. The priors are σ2 ∼ Exp(σ2

opt)
and τ ∼ Exp(τopt); it is not very easy to design and apply conjugate priors when using temporally corre-
lated errors. Note that the exponential priors are informative, and we will need to check their impact on
the parameter estimates. In Fig. 8, we plot the priors (symbols), the marginalized posterior distributions for
{Fdrai, log(Qdm) ,b,σ2,τ}, along with their default values (or σ2

opt or τopt). There is considerable uncertainty
in the parameter estimates; the marginalized PDFs are not narrow. For log(Qdm), the default value and the
peak of the posterior PDF agree. For Fdrai, there is considerable disagreement between the peak of the PDF
and default parameter value. The calibrated value of the Clapp-Hornberger exponent b bears little resem-
blance to the default CLM4 value. The exponential priors adopted for σ2 and τ accomplish two functions -
they use the “optimal values” from the L-BFGS-B fit, while expressing a prior belief that MCMC calibra-
tion could calibrate them to smaller values. Small values of σ2 define p that are more predictive. A small
τ, preferably 0, indicates that the structural error is uncorrelated in time. The PDFs in Fig. 8 show that the
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Figure 7: Left: Plots of log(LH) as observed at US-ARM over 2003-2006 (plotted with symbols). We
plot the CLM4 predictions (using surrogates) generated with popt . The predictions with default values of p,
pde f , are in green. Right: We plot the empirical semi-variogram calculated from the defects γγγ and a spherical
variogram fit to the data.

PDF of σ2 peaks to the left of σ2
opt i.e., the MCMC calibration provides realizations of p that have smaller

disagreements with observations. The PDF for τ peaks to the left of τopt , but is far from zero. Thus the
calibration indicates that errors are correlated, though the correlation timescale is less than the 7.72 months
obtained by L-BFGS-B fit. Thus the spherical variogram does not reduce to i.i.d. Gaussian errors. 105

MCMC steps (and model invocations) were required to obtain converged posterior distributions.

We repeat the calibration after modeling the structural error as uncorrelated i.i.d. Gaussians. This calibration
has one less parameter to estimate (no τ). The prior on σ2 was the conjugate inverse Gamma distribution, as
discussed earlier. The marginalized posterior distributions are plotted in Fig. 8 using dashed lines. We see
that the peaks of the PDFs of Fdrai and log(Qdm) are approximately at the same location as the PDFs obtained
using the temporally correlated structural error model; however, the PDFs obtained using the uncorrelated
structural error model are sharper. The PDF for b, the Clapp-Hornberger exponent, shows that the default
value is far too large. The PDF for σ2 is narrower for the uncorrelated structural error model and peaks to
the left i.e., calibration may be slightly more predictive than the one performed with temporally correlated
errors. Comparing with popt , we find that the deterministic calibration converges to the peak of the PDF for
Fdrai (at Fdrai = 0.97). It reached the boundaries for the other two parameters.

We next perform PPTs for both the calibrations and plot their results in Fig. 9. We use Ns = 200 runs in
our posterior predictive tests. Above, we plot the median predictions from PPTs generated using both the
calibrations. The error-bars denote the inter-quartile range (IQR). Observations and predictions using popt

are also plotted. There is little doubt that calibration draws predictions closer to observations; pde f causes
over-predictions. Further, the IQR captures all the observations except in the latter half of 2005 (months
30-36), when all observations are systematically lower than the predictions. The observations tend to be
near the upper end of the IQR. There is little to choose between the PPTs generated using the competing
structural error models. Lower left, we plot the VRH for the two calibrations. An ideal calibration would
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Figure 8: Marginalized posterior distributions for {Fdrai, log(Qdm) ,b,σ2,τ}, after calibrating to US-ARM
data. The vertical line is the default value or σ2

opt or τopt . The symbols denote the prior distribution. The
solid line denotes calibration using a temporally correlated structural error model while the dashed line is
obtained when we assume the structural error is uncorrelated and can be modeled as i.i.d. Gaussian.
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have yielded a uniform distribution; clearly, we are far from being so. The low observations during months
30-36 (which lead to low ranks for the observations) are clearly seen in the peak at the lower end. Otherwise,
the observation ranks are clustered in the range 100-150, for both the calibrations. In Table 1, we tabulate the
CRPS and MAE for the two calibrations; they are the same. Lower right, we plot an individual realization
of predictions generated by the two calibrations. The observations and the mean prediction are plotted
for reference. The prediction generated using correlated errors, which varies smoothly around the mean is
plotted in blue. The red prediction varies in an uncorrelated fashion around the mean. We see that these
variations, due to differing structural error models, are insignificant compared to the seasonal variations and
are hardly distinguishable. This can be seen from Fig. 8 - σ2 is around 0.1, whereas log(LH) varies between
2.5 - 4.5 during a year. This also provides an estimate of the relative magnitudes of the structural error
vis-à-vis predictions.

Given the small differences in both the posterior distributions of the parameters and the predictive skill of
the models when the two structural error models are used, the simpler structural error model based on uncor-
related errors is preferable. However, the use of the temporally correlated model does reveal the timescales
of the structural error (around 5.5 months). This, in turn, can help identify and improve parameterizations of
physical processes that may be contributing to them and potentially result in greatly reduced model structural
uncertainty.

Finally, we explore the impact of climatological averaging. This reduces the time-series from 48 months to
12; we model the structural error as uncorrelated to reduce the dimensionality of the calibration problem.
The deterministic calibration revealed popt = {0.1, log(5.9×10−4),1.0}, which shows that the optimization
has reached the edge of the prior distribution for 2 out of 3 parameters. The deterministic optimization
was seen to be sensitive to the starting guess and we report the best of 10 runs, starting from different
guesses. In Fig. 10, we plot the marginalized posterior PDFs with solid lines; with dashed lines, we plot
the calibration obtained without climatological averaging and with uncorrelated structural errors. We see
modest changes in the calibrations for Fdrai and log(Qdm). Further, we see that, like the calibration studies
above, the peaks of the PDF do not agree with the default values of the parameters. The calibrations for b are
similar and very different from the default value. We also see that σ2 is far smaller when the observations
are climatologically averaged, as it reduces the impact of outliers e.g., the low log(LH) observations during
months 30-36. Further, the peak of the PDF corresponds to the value obtained via deterministic calibration.

In Fig. 11 (left) we plot the results from the PPT, along with the prediction using pde f . Ns = 200. Clearly,
the default CLM parameters over-predict log(LH) and the calibration largely rectifies this shortcoming.
The IQR of the predictions (the error bars) capture the observations. Right, we plot the VRH from the
calibration. Clearly, the calibration is not ideal, but since the histogram reflects just 12 ranks, it is difficult to
draw conclusions regarding the finer aspects of the calibration. In Table 1 we mention the MAE and CRPS
for the calibration; these error metrics are almost half of those achieved with the non-averaged data. The
MCMC method required 50,000 model invocations to reach a converged posterior distribution.

4.3 Calibration with US-MOz data

We next estimate {Fdrai, log(Qdm) ,Sy} using data from US-MOz to check the variation of these parameters
with sites. We could not construct accurate surrogates for US-MOz without climatological averaging, and
consequently, we will perform calibration only with climatologically averaged data. The data (latent heat
surface fluxes) spans 2004-2007, averaged monthly. The observations are climatologically averaged and log-
transformed. Note that the surrogate models for US-MOz consist of a quadratic and a GP component. The
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Figure 9: Top: Results from the PPT performed using posterior distributions generated using both the
correlated and uncorrelated models for the structural error, for US-ARM. The PPT tests were performed
with 200 samples. The solid line is the median prediction, from the correlated-errors calibration; the dashed
line is the corresponding prediction from the uncorrelated-error calibration. The error bars denote the inter-
quartile range (IQR). The observations of log(LH) are plotted with symbols. The prediction with pde f
is plotted with a dotted line. Lower left: VRH for both the calibrations, using blue for correlated-errors
calibration and red for the other. The mauve sections denote the regions where the red and blue bars overlap.
Lower right: Comparison of two realizations of predictions vis-à-vis the observations (in green). We plot the
average prediction from the PPT, generated using correlated structural errors, in black. One realization of
these predictions is plotted in blue; it shows the smooth variation in time that the observations show. The red
plot shows a prediction generated using the uncorrelated structural error model. Compared to the seasonal
variation in log(LH), the variation in predictions due to the two different structural error models is not very
noticeable.
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The default parameter values are plotted as vertical lines.
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Table 1: CRPS and MAE for the four calibrations performed for US-ARM and US-MOz. The units of CRPS
and MAE are the same as those of observations.

Calibration test case MAE CRPS
US-ARM, 48-months of data, correlated errors 0.37 0.18

US-ARM, 48-months of data, uncorrelated errors 0.37 0.18
US-ARM, climatologically-averaged data, uncorrelated errors 0.203 0.096
US-MOz, climatologically-averaged data, uncorrelated errors 0.205 0.098

model-observation mismatch is modeled as uncorrelated-in-time. The MCMC chain was run 50,000 steps
to convergence. pde f = {2.639, log(4.43×10−3),0.2}, but the optimization method was seen to converge to
multiple (local) minima depending upon the starting guess; the figures provided here correspond to the best
of 10 runs. Note that the second parameter is not far from its default value.

In Fig. 12 we plot the marginalized PDFs for the CLM4 parameters being calibrated, along with the prior.
Fdrai and log(Qdm) how strong disagreement with the default CLM values, though Sy peaks close to it. The
PDF for Fdrai and log(Qdm) are bimodal, which also explains the inaccuracy in popt . The deterministic
method correctly captured the peak in the Sy PDF, but converged to the smaller peaks (in fact, locations in
the PDF with zero slope) in the PDFs for log(Qdm) and Fdrai. MCMC, being a global optimization method,
has the practical benefit of being resilient to many of the complexities of the optimization surface and locates
the peak of the PDF which our 10 attempts with a deterministic optimization method failed to capture.

The three parameters show complex interdependence, as seen in Fig. 13. There is a negative correlation
between Fdrai and Sy, with high values of Fdrai compensating for lower Sy and a weak positive correlation
between log(Qdm) and Sy. In Fig. 14, left, we plot the PPT runs using Ns = 200. We see minor improvement
over the default parameters. Right, we plot the VRH, which is inconclusive due to the small number of ranks
being histogrammed. The MAE and CRPS values are in Table 1, and the PPT for US-MOz is seen to have
errors similar to US-ARM.

4.4 Discussions

The four calibrations discussed above have clearly led to more predictive parameter estimates. Further,
they have demonstrated the importance of using MCMC for the calibration. Deterministic methods, in our
case L-BFGS-B, showed a significant sensitivity to the starting guess and frequently fell into local minima
that we later isolated in the PDFs of the parameters. Further, the posterior distribution of the parameters
bears no resemblance to a Gaussian and methods such as Ensemble Kalman Filters (which assume Gaussian
distributions) should not be used to estimate them. Finally, the PDFs for the parameters are quite wide and
parameter estimates are uncertain. The width of the PDFs could be due to the fact that the surrogates (and
by implication, CLM4) are not sufficiently responsive to our three calibration parameters. This suspicion is
bolstered by the VRH in Fig. 9 which shows ranks clustered at the top end, indicating an under-dispersive
posterior prediction. The under-dispersed nature could be a reflection of model shortcomings or because we
have varied only 3 parameters in this study. While these parameters are the most sensitive individually, their
interaction with other parameters (which are currently held constant) need not have an insignificant effect
on LH prediction.

The estimates could perhaps be improved i.e., the PDFs made narrower, by using a second observation
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Figure 12: Posterior distributions for {Fdrai, log(Qdm) ,Sy,σ
2} for US-MOz, using climatologically averaged

observations. The priors are plotted with symbols and the default values are vertical lines. The vertical line
for σ2 is the value obtained using deterministic calibration.
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Figure 13: Correlation between {p1, p2, p3}= {Fdrai, log(Qdm) ,Sy} in the posterior distribution developed
using US-MOz observations. We plot histograms and pair-wise scatter plots for the three parameters and
compute their correlations.
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stream. However, the previous calibration effort [10] identified that runoff, when used in conjunction with
latent heat fluxes, was not very informative on the parameters of interest and our experiments with sensible
heat fluxes (not presented here) removed it as a contender. It is not clear what the other observational variable
should be.

We found that climatological averaging had a modest impact on the PDFs of the estimated parameters. Note
that the climatologically averaged dataset is quarter the size of the original one. The muted impact of such
a drastic decrease in the observational dataset size seems to imply that the original observations were not
very informative i.e., they could be approximated as minor variations about a repeated annual profile (the
climatological mean). The smooth observational time-series obtained after climatological averaging also led
to smaller structural error estimates and tighter posterior predictions (see CRPS and MAE in Table 1).

One of the main aims in this study was to model and estimate the structural error and explore the impact
of the model on parameter estimation and prediction accuracy. We examined an uncorrelated-in-time and a
temporally-correlated structural error model. Their impact on the parameter PDFs was modest and the effect
on posterior predictions, smaller still. The latter was due to seasonal variation in LH, which dwarfed the
structural error magnitude. From a purely predictive point of view, the simpler uncorrelated-in-time struc-
tural error model is preferable. However, the temporally-correlated error model identified the correlation
timescale of the error, which in turn can be used to identify (models of) physical processes which may be
responsible for it.

Different priors were used for the two structural error models; there is no convenient way of specifying
a conjugate prior for the temporally-correlated structural error model. The uncorrelated-in-time structural
error model used a non-informative conjugate prior; the other used informative exponential priors. Yet the
estimates for the structural error magnitude from the two competing models are not too dissimilar and both
are unequivocally better than the estimate obtained using L-BFGS-B. This implies that (1) L-BFGS-B failed
to find the global optimal for the parameters and (2) the impact of the exponential priors was rather muted.

The use of surrogates proved to be a mixed blessing. It allowed us to develop converged PDFs of the
parameters without recourse to approximations (except the surrogates themselves) and examine the impact
of surrogate error models and climatological averaging. These would have been impossible had we used
CLM4 as-is, as in [10]. Yet the structural error that we estimate is that of the surrogate and not of CLM4.
While that does not impact the correlation timescale of the structural error, its magnitude, σ2, should be
considered an approximation to CLM4’s structural error.

Finally, we compare our parameter estimates with those developed in [10]. The PDFs do not agree. There
could be a number of causes. They used daily observations whereas we averaged them to monthly values.
Further, the authors calibrated 10 parameters to our 3; we have kept the remaining 7 fixed at their defaults.
In addition, the calibration in [10] used CLM4 directly and does not incur errors due to surrogate modeling;
given that such errors are around 4%, this is probably a minor contributor to the difference. Also, the
convergence criterion used in [10] is based on the mean statistics of the posterior samples during the burn-in
period, and but not convergence statistics on their PDFs. Reconciling the differences between these two
calibrations is left for future work.
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5 Conclusions

We have investigated the Bayesian calibration of three hydrological parameters of CLM4 using observa-
tions of monthly averaged latent heat fluxes, collected over a 4-year period. We computed the posterior
distribution of the parameters using surrogate models of CLM4 and MCMC. The surrogate models were
constructed using polynomial trend functions and Gaussian process modeling. The Bayesian inverse prob-
lem posed to estimate the parameters incorporated two alternative representations of the structural error (or
the model—data discrepancy). We investigated their impact on the parameter estimates and the predictive
skill, after calibration. We also explored the impact of using the climatological mean of the observations
for the calibration. We demonstrated our method on data from two sites, US-ARM and US-MOz, each with
three unknown parameters.

We developed an approach to construct surrogate models for CLM4. In particular, we investigated a shrink-
age regression method, Bayesian Compressive Sensing (BCS), to fit a polynomial model to a training set of
CLM4 runs. BCS was augmented with cross-validation to construct a robust procedure for devising polyno-
mial surrogates for computationally expensive models. The method is general, and can be used elsewhere
too.

We found that Bayesian calibration led to posterior distributions of parameters that improved the predictive
skill of CLM4. The marginal PDFs of the parameters were quite wide i.e., there is a considerable amount
of uncertainty in the parameter estimates. The choice of the surrogate error model impacts the parameters’
PDFs modestly and its effect on the posterior predictions is marginal. However, the more sophisticated
model allowed us to estimate the time-scale of the structural error, which can help identify and improve
models of the physical processes that contribute to the error.

Climatological averaging had a modest impact on the estimated parameters. We conjecture that this may be
due to the limited information content of the original LH observation time-series.

Our calibration yielded PDFs which are at variance with those developed in a previous calibration study.
The two investigations are similar, but not identical, with respect to observations, the calibration parameters
and the numerical method. We have speculated about the causes of this discrepancy, but identifying the
causes is beyond the scope of this study. We will investigate it in the future.
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