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Abstract

The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measure-
ments of CO2 concentrations will form a key component of the monitoring of treaties aimed at the
abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametriza-
tion for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization
does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, non-
stationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at
night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The
parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse
problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at
measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction
of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission
field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit
ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the
optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains
only of those wavelets whose weights could be estimated from the observations. Further, our method for
the imposition of boundary conditions leads to a 10× computational saving over conventional means of
doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability
of the spatial parametrization for use in inverse problems with a significant degree of regularization.
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1 Introduction

The potential role of anthropogenic greenhouse gas emission in climate change has led to a host of policies
that seek to reduce them e.g., the UN-REDD program [5] and the UNFCCC [6]. Emissions of CO2 from the
burning of fossil fuels (for power generation, transportation, industrial and residential use) form the largest
component of these greenhouse gas emissions and any policies aimed at the abatement of fossil-fuel (ffCO2)
emissions are expected to have significant socioeconomic impacts. Monitoring the ability of such policies
to reduce greenhouse gas emissions is a complex endeavor and is expected to receive increasing attention
in the future. To this end, The United States National Academy of Sciences considered the design of a
Greenhouse Gas Information System that would combine measurements of CO2 concentrations and fluxes,
with reports of national inventories of fossil fuels, to estimate ffCO2 emissions [7].

In this report, we present a method for estimating ffCO2 emissions from CO2 concentration measurements
at observation towers. We develop a spatial parameterization for the emissions and an inversion scheme,
based on sparse reconstruction, to calibrate the parametrization. The method is demonstrated on ffCO2
in the United States using synthetic data. Its extension to global scale inversion is conceptually simple.
It will, naturally, require more data. It will also be significantly more computationally demanding, thus
necessitating the development of scalable counterparts of the sparse reconstruction methods described in
this report.

Currently, the best data on ffCO2 emissions are obtained from inventories/databases that are constructed
from national reporting of the consumption of fossil fuels. Some inventories [8, 9, 10] start with national
or provincial estimates of fossil-fuel consumption and disaggregate them using proxies of human habitation
(e.g., population density), whereas others aggregate them from local information of fossil-fuel use pat-
terns [4]. Their accuracy depends on the data used for constructing the inventories, as well as the method;
see [11, 12] for a discussion on their uncertainties and revisions when more data becomes available. In some
cases, these revisions can be large [13].

An alternate way of estimating CO2 emissions is via atmospheric inversion. In this process, time-varying
CO2 fluxes f are estimated from measurements of time-varying CO2 concentrations at certain ground-based
locations (towers) or satellite soundings of column-integrated CO2 concentrations (yobs). The CO2 fluxes f
are defined on a gridded domain and related to yobs via an atmospheric transport model. Since the magnitude
of f does not impact the wind velocity field and dispersion, CO2 is modeled as a passive scalar and a linear
relationship holds

yobs = y+ ε = Hf+ ε, (1)

where H is the transport or sensitivity matrix, obtained from a transport model like Weather Research and
Forecasting Model (WRF, [14]). y is the CO2 concentration predicted by the atmospheric model which
differs from its measured counterpart by an error ε. Atmospheric inversion has become a routine tool for
estimating biospheric CO2 fluxes, conditioned on both satellite and ground-based observations [15, 16, 17,
18, 19]. The inverse problem is set up as an optimization between the need to reproduce observations
while adhering to a prior belief regarding the spatio-temporal distribution of fluxes. Since biospheric CO2
fluxes vary smoothly in space (see Fig. 1), the prior modeling of CO2 fluxes is performed with a stationary,
multivariate Gaussian field. The prior covariance provides the regularization in the inverse problem and
allows high-dimensional gridded emissions to be estimated from relatively few measurements, at the cost of
smoothing out fine-scale spatial structures in the estimated fluxes.

There are two methods for calculating these emission estimates : (1) deterministic methods, based on a
variational formulation (which provide a “mean” or a “best-fit” estimation and (2) Bayesian methods that
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Figure 1: Differences in the nature of spatial distribution of biospheric (left) and fossil-fuel (right) CO2
fluxes. The biospheric fluxes are stationary, whereas ffCO2 emissions are multiresolution (non-stationary)
and correlated with human habitation. The biospheric fluxes are for June 1 - June 8, 2004, obtained from
CASA-GFED [1]. The post-processing steps to obtain the fluxes as plotted are described in [2]. The units of
fluxes/emissions are µmoles s−1 m−2 of C. The ffCO2 emissions are obtained from the Vulcan database [3,
4]. Note the different colormaps; ffCO2 emissions can assume only non-negative values.

provide a measure of the uncertainty in the estimate in addition. These methods have been reviewed in [20].
Kalman filters, too, have been used in these inversions [21]. All these methods are strongly influenced by
the choice of the prior model, and the geostatistical inversion method [22] was developed to lessen the
dependence.

Fig. 1 contrasts the spatial distribution of biospheric CO2 fluxes against fV , the ffCO2 emissions from the
Vulcan database [3, 4]. Vulcan provides emissions for the lower 48 states of the US, on a 0.1◦ grid and at an
hourly resolution. The emissions are coarsened to a 1◦ resolution and averaged over the entire year, to obtain
fV . It is clear that the spatial distribution of ffCO2 is correlated with human habitation, is strongly multiscale,
and may be difficult to represent with a variogram. Instead, we seek a different spatial parameterization that
can represent its strongly multiresolution character. Further, the spatial parametrization must necessarily be
low-dimensional (i.e., have few free/independent parameters) so that it can be used for estimation within the
context of an inverse problem with sparse observations.

In this paper, we construct a spatial parametrization for ffCO2 based on wavelets. We will refer to it as the
Multiscale Random Field (MsRF) model. Wavelets have compact support, form an orthogonal basis set and
are widely used to model non-stationary fields e.g. images [23, 24]. We will reduce the dimensionality of
the MsRF using an easily-observed proxy of human habitation e.g., images of lights at night (henceforth
called nightlights), maps of built-up areas etc. The MsRF so formed will be used in a synthetic atmospheric
inversion test using a novel, sparsity-enforcing optimization method. The inversion assumes a pure ffCO2
signal i.e., we can measure the fossil-fuel contribution to the CO2 concentration in a sample, as done in [25,
26]. This procedure will identify the subset of wavelets in the MsRF that can be actually estimated from the
synthetic observations, while “turning off” the rest. In doing so, it will ensure that the MsRF, as designed, has
sufficient flexibility to extract the information on ffCO2 in the observations. We conclude with a discussion
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on the efficiency of the inversion/ffCO2 estimation. The Vulcan inventory will serve as the ’ground-truth”
in our synthetic data inversions.

The paper is structured as follows. In Sec. 2, we review existing literature on the construction of ffCO2
inventories, with emphasis on how proxies of human habitation (population density, nightlights etc) are used
to disaggregate national and provincial-level fossil-fuel emissions to finer resolution. We will also review
existing literature on atmospheric inversions (both biospheric and fossil-fuel CO2 fluxes) and compressive
sensing, a wavelet-based image-processing technique that we adapt to our inversion problem. In Sec. 3, we
construct two MsRF models, based on nightlights and maps of built-up areas. Sec. 4 contains the formulation
of the inverse problem and the algorithm to solve it. In Sec. 5, we perform tests with synthetic data, discuss
the quality of the competing MsRFs and examine the impact of various features of the inverse problem (e.g.
number of measurements, errors in measurements etc.). Conclusions are in Sec. 6.
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2 Background

In this section, we review how ffCO2 emission inventories are currently calculated and the shortcomings
in them. This is followed by a discussion of CO2 flux (both fossil-fuel and biospheric) estimation via
atmospheric inversion. We identify the essential difference between fossil-fuel and biospheric CO2 fluxes
and motivate the need for a spatial parameterization for ffCO2 emissions. We then review existing literature
on compressive sensing, which provides the kernel of the spatial parametrization, as well as the optimization
techniques which exploit the regularization such random field models can provide.

2.1 Estimation of CO2 fluxes

ffCO2 emissions, calculated from the consumption of fossil fuels, are reported by most countries and pub-
lished by the International Energy Agency (http://www.iea.org) as well the United Nations Statistics Di-
vision [27]. They are usually published after aggregation to the national (and sometimes provincial/state)
levels. ffCO2 emissions can be thought of as a combination of intense point-sources (e.g., electricity gen-
eration and cement production) and diffuse spatially distributed emissions associated with transportation,
residential and commercial activities. Emissions from individual, geotagged power plants can be obtained
from CARMA [28] whereas [29] provides cement production data; both can be subtracted from national
inventories. The remainder, constituting the diffuse sources, can be disaggregated onto a grid based on a
number of easily-observed proxies of human activity. Emission inventories are generally employed in their
gridded form.

Images of lights at night [30] have been correlated to many socioeconomic parameters [31] and are a com-
mon tool for disaggregating national or regional ffCO2 emission onto a grid. This is discussed in [8], where
gridded inventory with a kilometer resolution was constructed. In contrast, EDGAR (Emission Database for
Global Atmospheric Research, [32]) and CDIAC (Carbon Dioxide Information Analysis Center, [33]) use
population density to perform the disaggregation [10, 34]. In [9] both population density and nightlights
are jointly assimilated to perform the disaggregation. The Vulcan inventory [3, 4] and its follow-on, Hes-
tia [35, 36], follow a more complex method, consisting of both aggregation from census-tract data, as well as
disaggregation to obtain their gridded inventory. They are not directly dependent on nightlights or popula-
tion density. Nightlights and population density differ in their spatial distribution at the small (10 kilometer)
scale and therefore the two disaggregation methods produce different results (see [9, 8] for discussion);
further, the inventories are ultimately dependent on the accuracy of national reporting of emissions, which
raises its own set of uncertainties [37, 12, 11].

ffCO2 emissions or source strengths can also be back-calculated from measurements of CO2 concentrations
using a CO2 transport model. Such an approach requires one to measure the concentration of ffCO2 ,
rather than CO2 , in a given sample. This can performed by either measuring ∆14CO2 or measuring CO
and estimating ffCO2 from CO/CO2 ratios observed in incomplete combustion; see [25] for an example
of the estimation of emissions from Sacramento, California, using airborne measurements. Alternatively,
in conjunction with an atmospheric transport model, one can scale the emissions from an inventory, e.g.,
Vulcan, to reproduce observations in the vicinity of an urban area to estimate its emissions, as performed
for Salt Lake City in [26]. In both cases a single variable was evaluated from the data - the source strength
in case of Sacramento and the scaling factor for Salt Lake City. There was no attempt to back-calculate a
spatially variable quantity.

Spatially variable biospheric CO2 fluxes are routinely obtained via atmospheric inversions, using both
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ground-based and satellite measurements. The spatial domain (a region or the entire Earth) is discretized
with a grid; each grid-cell hosts a CO2 flux source. A Bayesian inverse problem is posed using a transport
model that linearly relates CO2 concentration measurements at a set of locations to the strength of each of
the sources. The resolution of the grid and the temporal discretization employed for temporally-varying
– diurnal and seasonal– biospheric CO2 fluxes result in more unknowns that can be constrained by the
observations and regularization is used to reduce the effective dimensionality of the problem. The “true”
fluxes are assumed to be distributed around a “prior”/guess (often obtained from process-based models of
biospheric CO2 fluxes e.g. CASA [38]); the discrepancy between the “true” and prior fluxes is modeled
as a multivariate Gaussian field, whose covariance is calculated beforehand/offline. The inverse problem
thereafter reduces to finding a CO2 flux distribution that is a compromise between reproducing CO2 obser-
vations and deviation from the prior fluxes. The multivariate Gaussian field, along with the prior fluxes,
provide the regularization. Since the inverse problem is linear, the posterior distribution of the fluxes is also
a multivariate Gaussian field. A review of inversion methods can be found in [20]. This approach has been
successfully used with satellite retrievals [15] and ground-based measurements [39]. A scalable variational
approach has successfully obtained global estimates of CO2 fluxes at high resolution using satellite mea-
surements [18, 40], and jointly with ground data [19]. Inversion methods based on ensemble Kalman filters
and its derivatives have also been successfully used [17, 41, 21].

Given the paucity of observations, the prior fluxes influence the inferred CO2 fluxes strongly [15]. This is
especially true when inversions are required at a fine spatial resolution. The geostatistical inverse method
was constructed to lessen its effect [22]. In [42, 43, 16], the prior fluxes were constructed as a linear model
which included some easily observed proxies of biospheric and fossil-fuel fluxes (e.g., leaf-area index,
population density, per capita GDP etc) with the sensitivities treated as unknowns to be estimated from data.
The inversions inferred spatial patterns in CO2 emissions which reflected both biospheric and anthropogenic
contributions.

To summarize, biospheric CO2 fluxes are routinely estimated from ground and satellite measurements using
a variety of methods. Spatial resolutions finer than 1◦×1◦ and temporal ones that resolve the diurnal cycle,
can be achieved. This capability is due, in large part, to the smooth spatial variation of biospheric fluxes,
which allows them to be modeled as multivariate Gaussian fields, and serves as a regularization in the inverse
problem. In contrast, no such spatial parameterization exists for ffCO2 emissions, limiting current work to
estimating single parameters. In this paper, we will construct a MsRF model for ffCO2 emissions, as a
first step towards enabling their inference via atmospheric inversion. The spatial patterns in nightlights (and
other proxies of human activity) will serve as the source of regularization. The approach will be tested in
a synthetic data problem, where Vulcan [3, 4], which does not use these proxies, will supply the “ground
truth” emissions.

2.2 Wavelet modeling

Wavelets are a family of orthogonal bases with compact support. They are generated using a scaling function
φ′ which obeys the recursive relationship

φ
′(x) = ∑

i
ciφ

′(2x− i).

A wavelet φ is generated from the scaling function by taking differences in the following manner:

φ(x) = ∑
i
(−1)ic1−iφ

′(2x− i).
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Note that the wavelet has compact support. The choice of the filter coefficients ci and φ′ determine the
type of the resulting wavelets. Wavelets with a large number of non-zero filter coefficients have larger
support and are smoother. The simplest are the Haars, which are symmetrical in shape, but not smooth and
not differentiable. They have only their first 2 moments equal to zero. Daubechies order 4 and order 6
(Daubechies 4 and 6) are smoother, with up to 4th− (respectively 6th)-order moments that are zero. They
have wider support and are asymmetrical in shape. Symlet wavelets are a modified form of Daubechies
wavelets, which are more symmetrical. Wavelets can be shrunk and translated to model functions

φs,i = 2
s
2 φ(2sx− i)

where s is the dilation scale and i refers to translation (location). For each increment in scale, the support of
the wavelet halves.

Wavelets are defined on dyadic (power-of-two) hierarchical or multi-resolution grids. Consider a domain of
size D, discretized by a hierarchy of meshes with resolutions ∆D/D = {1,1/2,1/22, . . .1/2M}. The coarsest
mesh, with ∆D = D is called the scale (or level) s = 0, whereas the finest mesh, with ∆D = D/2M is the
scale M mesh. Wavelets are defined on each of the levels of the hierarchical mesh. Their support spans the
same number of grid-points on each scale i.e., wavelets’ supports halve every level as we traverse down the
hierarchical mesh. Wavelets can be translated or positioned at any grid-cell i,0 ≤ i ≤ 2s−1, on any scale s
of the hierarchical mesh. Thus a wavelet φs,i(x) requires the specification of s and i to denote its position in
the hierarchical grid.

Consider a 1D function g(x) defined on the hierarchical grid. It can be represented as

g(x) = w′
φ
′(x)+

M

∑
s=1

2s−1

∑
i=0

ws,iφl,i(x).

The coefficients (or weights) ws,i and w′ are obtained by taking projections of f (x),

ws,i =
Z

∞

−∞

g(x)φ
(

x−b
a

)
dx

where b = iL/2s, a = 2s and φ(ξ) is the wavelet on the coarsest level. The compact support of φs,i(x) and
the large number of coefficients ws,i allow one to represent arbitrary f (x) accurately, though not necessarily
efficiently (i.e., with few non-zero ws,i). Fast methods to compute the projection, called wavelet transforms,
exist.

Wavelet transforms of a function are performed using Mallat’s pyramid [44]. Wavelet coefficients ci are
determined by calculating weighted averages and differences, as we proceed recursively from the finest
scale (grid resolution) to the coarsest (where the grid is reduced to 1 cell). The transform of a function g(x),
discretized on the mesh, can be represented by w = W g, though W is never actually formed. w are the
wavelet coefficients or weights. w contains 2M wavelet coefficients. Details on wavelet decompositions and
transforms are in [45, 23].

An arbitrary 2D field e.g., an image, can, in general, be expressed as a linear superposition of wavelets [45,
23]. A function f (x,y), defined on a D×D domain and discretized on a hierarchical 2M ×2M mesh, can be
wavelet transformed by applying 1D wavelet transforms repeatedly, e.g., first by rows and then by columns.
In 2D, wavelets of scale s have a support 2M−s×2M−s,0 ≤ s ≤ M. A wavelet of scale s can also be “trans-
lated” in space and positioned (in 2D space) at location (i, j),0≤ (i, j) < 2s. Compact support and the ability
to translate wavelets allow them to model complex, non-stationary fields. A 2D wavelet transform results
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in 2M ×2M wavelet coefficients. If the type of wavelets is chosen judiciously, many ws,i, j may be small and
can be approximated as zero. In such a case we obtain an approximate, but sparse representation of f (x,y)
on the mesh.

2.3 Sparse reconstruction

Compressive Sensing (CS) [46, 47] is an efficient means of encoding sparse images. Consider an image g
of size N. Assume, too, that it can be represented sparsely using L � N wavelets. CS asserts that a sparse
image may be sampled compactly by projecting on to a set of random vectors ψi, to obtain a measurement
g′, of size Nm, L < Nm � N,

g′ = ΨΨΨg = ΨΨΨΦΦΦw, (2)

where the rows of ΨΨΨ consist of the random vectors ψ j, and columns of ΦΦΦ consist of the orthonormal basis
vectors φi. ΦΦΦ is a N×N matrix while ΨΨΨ is Nm×N. The bulk of the theory was established in [48, 49, 50].
Sparsity expresses the idea that the “information rate” of a signal may be smaller than its bandwidth and this
“information sparsity” may find a reflection in its concise representation in a suitable set of bases ΦΦΦ (see
Eq. 2). ΨΨΨ and ΦΦΦ should be “incoherent”. Incoherence relates to the fact that a concise signal in ΦΦΦ must be
measured in a space ΨΨΨ where it is spread out, so that a few measurements may suffice to capture its behavior.
Further, while sparsity is assumed, the support – the identity of basis vectors with (appreciably) non-zero
weights – is not known a priori and is inferred along with the values of w. The incoherence between ΨΨΨ

and ΦΦΦ is ensured by choosing some well known wavelets bases (Haars, Daubechies 4 and 8) for ΦΦΦ and
random vectors like noiselets [51], random sign ensembles, uniform spherical ensembles, partial Fourier
and Hadamard ensembles [52] for ΨΨΨ. In [53] the authors establish the degree to which compression might
be performed

M ≥CL log(N/L). (3)

C is generally 3-5.

In CS, the reconstruction of g (alternatively, w) can be performed using a number of methods. It can be
posed as an optimization of the cost function

ŵ = argmin
w

[
1
2
||g′−Aw||2 +λ||w||1

]
which is a trade-off between the `1 norm of w (to enforce sparsity) and the `2 norm of the misfit between g′
and the signal reconstructed from w. A = ΨΨΨΦΦΦ. This can be solved using Basis Pursuit (BP) [54] or LASSO
(Least Absolute-Shrinkage and Selection Operator) [55]. A slightly different formulation,

minimize
w∈RN

||w||1

subject to ||g′−Aw||2 < ε2, (4)

which achieves the same effect, can be addressed using Matching Pursuit (MP) [56], Orthogonal Matching
Pursuit (OMP, [57]) and Stagewise OMP [58] (StOMP). StOMP is much faster and offers many of the
theoretical guarantees of BP. Bayesian equivalents also exist [59, 60], where Laplace priors are used to
enforce sparseness in the inferred w. All these algorithms are general and do not exploit any particular
structure in the signal (except sparsity).

One may also create a model of the wavelet distribution and use it along with sparsity-enforcement when
constraining w. In a typical wavelet transform, the coefficients of the wavelets at different scales and trans-
lations can be stored in a binary tree. The tree can be pruned, a priori, based on a learning set of images
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and thereafter employed with MP or OMP [61, 62, 63]. A Bayesian modification removed the need for
a learning set [64]. Comparison with “regular” methods that did not exploit the tree-structure of wavelet
coefficients showed a marked improvement in the quality and speed of reconstruction.

To summarize, CS has some striking parallels with the problem of atmospheric inversion. Fig. 1 (right)
reveals that ffCO2 emissions are clustered near the coasts and there are vast areas with little emissions. This
indicates that a sparse wavelet representation of ffCO2 emissions may be possible. Further, in Eq. 1 the
transport matrix H serves much the same function as the measurement matrix ΨΨΨ in Eq. 2 – it samples the
f and aggregates the contribution of each grid cell to the ffCO2 concentration yobs measured at the sensing
locations. While H is not random, wind flow patterns over the United States are unlikely to align along
wavelets and the incoherence requirement might be met. Given the limited number of measurement sites,
we may only be able to reconstruct a very sparse subset of the wavelet coefficients required to represent
ffCO2 emissions accurately. Sparse reconstruction methods that allow us to do so were reviewed above.
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3 Constructing a multiscale random field model

Here, we examine wavelet models of ffCO2 emissions. We seek an approximate representation, which is
low dimensional or sparse i.e., many of the ws,i,k may be set to zero. We subject fV to wavelet analysis.
The emissions are described on a 2M ×2M grid, M = 6 i.e., our hierarchical mesh has 6 levels. The spatial
resolution is 1◦×1◦ and the rectangular domain extents are given by the corners (24.5N,-63.5W) and (87.5N,
-126.5W). ffCO2 emissions are restricted to R the lower 48 states of the US.

We select a wavelet type e.g., Daubechies 4, and perform a wavelet transform of fV . At each scale s, we
identify the wavelet coefficient wmax,s with the largest magnitude and set all wavelets |ws,i, j|< wmax,s/1000
equal to zero. In Fig. 2 (left) we plot the fraction of non-zero wavelet coefficients, on each scale s, for each
of the wavelet types. We see a significant decrease in the number of wavelet coefficients when using Haar
wavelets, whereas the others show a decrease only at scale 4 and higher. Clearly Haars provide the sparsest
representation of ffCO2 emissions due to their non-smooth distribution in space. In Fig 2 (right), we plot the
average and standard deviation of the non-zero wavelet coefficients. Most of the wavelet coefficients at the
finer scales are set to zero, and the means are small, regardless of the wavelet type. We see that the means
and standard deviations shrink, especially after scale s = 3; further, the distributions of wavelet coefficients
arising from the different wavelet types begin to resemble each other. This arises from the fact that there
are sharp boundaries around the areas where ffCO2 emissions occur; when subjected to a wavelet transform,
the region in the vicinity of a sharp boundary gives rise to large wavelet coefficients down to the finest
scale. Thus the few non-zero wavelet coefficients at the finer scales assume similar values, irrespective of
the wavelet type.
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Figure 2: Left: The fraction of wavelet coefficients which are non-zero on each scale l, when subjected
to a wavelet transform using Haars, Daubechies 4 and 6 and Symlet 4 and 6 wavelets. We see that Haar
wavelets provide the sparsest representation. Right: We plot the average value of the non-zero coefficients
(solid lines) and their standard deviation (dashed line). We find that while Haars may provide the sparsest
representation, the non-zero values tend to be large and distinct.

Henceforth, we will proceed with Haar wavelets as the basis set of choice for representing ffCO2 emissions,
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since they provide the sparsest representation. We seek a spatial parametrization for ffCO2 emissions, of the
form

f = w′
φ
′+

M

∑
s=1

∑
i, j

ws,i, jφs,i, j, {s, i, j} ∈W (s) (5)

where W (s) is a set containing a small number of Haar bases. We will select the components of W (s)

using an easily observed proxy X of human activity (which correlates with ffCO2 emissions). We will
use radiance calibrated nightlights [65, 30, 66, 67] for the proxy. However, nightlight radiances are also
affected by economic factors [68], and we will explore maps of built-up area [69, 70] as an alternative. As
mentioned in [69], the map of built-up areas uses nightlight radiances in its computations, and so these are
not independent proxies; however the built-up area map also includes information from IGBP (International
Geosphere-Biosphere Programme [71]) land-cover map. The two choices for X will be compared with
respect to (1) sparsity, i.e., the size of W (s) compared to 4M, size of the full complement of wavelet bases on
a 2M ×2M grid, (2) the correlation between X and fV and (3) the ability of W (s) to capture fV .

In Fig. 3 (top row), we plot maps of the two proxies, coarsened to 1◦ resolution. Comparing with Fig. 1
(right), we see that they bear a strong resemblance to fV . We then subject X to a wavelet transform and
set all wavelet coefficients |ws,i, j| < δ to zero, where δ is a user-defined threshold. The bases with non-
zero coefficients are selected to constitute W (s). We reconstitute a “sparsified” proxy, X(s), using just the
bases in W (s), and compute the correlation between X(s) and fV . Finally, we project fV onto W (s), obtain its
“sparsified” form fV

(s)
, and compute the error ε f = ||fV

(s)− fV ||2/||fV ||2, where || ||2 denotes the `2 norm.
In Fig. 3 (middle row), we plot the sparsity, correlation and ε f for various values of δ, for both nightlights
and built-up areas. For nightlights, we achieve a sparsity of around 0.25 for δ < 10−2 i.e., we need retain
only a quarter of the Haar bases to represent nightlights. The nightlights so represented bear a correlation
of around 0.7 with fV , and achieve an error ε f of around 0.1. Note that this measure of error reflects the
inability of the MsRF to represent fine-scale details i.e., if we were interested only in spatially-aggregated
quantities, the error using the sparsified representation could be far less. In contrast, using built-up area as
a proxy, we see that while the sparsity achieved is similar, the correlation between X(s) and fV is slightly
higher. The behavior of ε f is similar, except the error increases faster with δ, as compared to nightlights.
However both nightlights and built-up area maps show significant correlation with fV and the sparsified set
of Haar bases that they (i.e., the proxies) provide (using δ = 10−2 in both the cases) allow us to construct a
a low dimensional parametrization of ffCO2 emissions.

Finally, we use X(s) to create a “prior model” fpr = cX(s) for ffCO2 emissions, f. c is computed such that

Z
R

fV dA =
Z

R
fprdA = c

Z
R

(
w′,(X)

φ
′+ ∑

l,i, j
w(X)

s,i, jφl,i, j

)
dA, {l, i, j} ∈W (s) (6)

where R denotes the Lower 48 states of USA and w(X)
l,i, j are coefficients from a wavelet transform of X. This

implies that c is calculated such that both fV and fpr provide the same value for the total emissions for the
US. In Fig. 3 (bottom row), we plot the error (fpr − fV ). We see that neither nightlights nor the built-up
area map provide a fpr that is an accurate representation of fV , though they share similar spatial patterns
i.e., fpr may be used to provide regularization for f in an inverse problem, but, by itself, is a poor predictor,
regardless of the proxy X used to create it.
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Figure 3: Top row: Maps of nightlight radiances (left) and built-up area percentage (right), for the US.
Middle row: The sparsity of representation, the correlation between X and fV and the normalized error ε f

between the Vulcan emissions fV and the sparsified form obtained by projecting it on X. These values are
plotted for nightlights (left) and the built-up area maps (right). Bottom row: Plots of (fpr − fV ) obtained
from nightlights (left) and built-up area maps (right).
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4 Formulation of the estimation problem

In this section, we pose the inverse problem to estimate ffCO2 emissions from limited measurements and
describe a method to solve it. Fig. 4 provides a flowchart of the estimation procedure. Sec. 3 addressed the
top half of the figure where we (1) selected Haar wavelets for modeling ffCO2 emissions and (2) derived
“prior” models for emissions based on nightlights and built-up area maps. The lower half of Fig. 4 illustrates
the issues addressed in this section. We will use MsRF constructed from Haars to create a model for the
(unknown) ffCO2 fluxes and concentrations (which will also involve an atmospheric transport model). The
fluxes will be constrained by observations of ffCO2 concentrations. We then use sparse reconstruction, along
with the “prior” model to estimate the ffCO2 emissions.

Below, we briefly describe the transport model used to link observations at a set of measurement towers
to emissions on a numerical grid. Thereafter, we pose the estimation problem, followed by a review of the
method used to solve it. Finally, we describe how we enforce non-negativity in the estimated ffCO2 emission
estimates.

4.1 Transport model

The transport of CO2 in the atmosphere is modeled using Eq. 1. The calculation of the sensitivities H is
described in detail in the supplement to [2], and we provide a summary below.

The elements of the H matrix are calculated using the Stochastic Time-Inverted Lagrangian Transport Model
(STILT) model [72]. STILT has already been used in a number of inversion studies for estimating biospheric
CO2 fluxes [73, 2]. It represents air arriving at the observation locations as an ensemble of particles, and
transports them in reverse using wind fields. These wind fields are generated by numerical weather pre-
diction models, in this particular case, the Weather Research & Forecasting (WRF) model [74] version 2.2.
WRF has been customized for STILT and other transport models [75]. The details of the submodels used
in the WRF-STILT calculations are in the supplementary material of [2]. The grid used for generating H
was three-level, with a 2 kilometer resolution level around the 3 tallest towers (LEF, AMT and WKT; see
Sec. B for details). The 2 km grid was embedded in a 10 km resolution grid over northern the Midwest and
Gulf Coast region and New England, extending to approximately 105◦ W. An outermost, 40 km resolution,
grid covered the rest of the domain (see Fig. 1 in [73] for a diagram). At each measurement location, 500
particles were released every hour and their 10-day back-trajectories calculated using meteorology from
2008.

Concentration footprints (or sensitivities) were calculated at 3-hour intervals by integrating the trajectories
over the North American 1◦× 1◦ grid as described in [72]. The sensitivity of the CO2 concentration at
each observation location due to the flux at each grid-cell (the “footprint”) is calculated in units of ppmv /
µmol m−2 s−1 (ppmv: parts per million by volume). The footprint, which is the adjoint of the transport field,
is calculated by counting the number of particles in a surface-influenced region (defined as a fraction of the
estimated planetary boundary layer height at that grid-cell) for a given time-period spent in the region (for
details, see [72]). When multiplied by a flux field, the sensitivities provide the contribution of fluxes to the
mixing ratios (ppmv) at the measurement location/receptor. These sensitivities, calculated for 2008, were
used in the estimation of biospheric fluxes [76, 21]. The sensitivities for CO2 fluxes with an 8-day resolution
(i.e., the ones used in this work) were obtained, from the 3-hour sensitivities described above by simply
adding the 8× 24/3 = 64 sensitivities that spanned the 8-day period. Thereafter, the grid-cells outside R
were removed to obtain the H matrix used in this study. The size of the H matrix is (KsNs)× (NR K), where
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Figure 4: Flowchart of the procedure for performing the inversion of ffCO2 emissions. The top half of the
figure was addressed in Sec. 3. We start with a collection of wavelet families that could be used for modeling
the emissions, and find that Haars provide the sparsest representation. Thereafter, we use the Haars to create
a “prior” model fpr = cΦ̃ΦΦ

′
R w for the emissions. In the lower half of the figure, we illustrate the posing and

solution of the inverse problem. Step A, the posing of the inverse problem is described in Sec. 4.2. Three
slightly different formulations (Step B), based on how the “prior” is incorporated into the inverse problem,
are also described in the same section. Step C, the StOMP algorithm, is described in Sec. 4.3. Sec. 4.4, the
description of non-negativity on the ffCO2 emissions, corresponds to Step D.

Ks is the number of tower measurements every year (24/3×45 = 2880), Ns is the number of sensors/towers,
NR = 816 is the number of grid-cells in R , the part of the domain covered by the lower 48 states of the US
and K = 45 is the number of 8-day periods in 360 days (approximately a year).

4.2 The inverse problem

We seek to estimate ffCO2 emissions over the region constituting the lower 48 states of the US, averaged
over 8-day periods. The spatial distribution of emissions during an arbitrary 8-day period k is denoted by fk.
We are interested in estimating emissions over an entire year i.e., we seek F = {fk},k = 1 . . .K.
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We will model emissions on the 2M ×2M,M = 6 mesh with wavelets:

fk = w′
kφ
′+

M

∑
s=1

∑
i, j

ws,i, j,kφs,i, j, {s, i, j} ∈W (s)

= ΦΦΦwk. (7)

Note that ΦΦΦ comprises of only those wavelets selected using X and contained in W (s), and not the 4M

wavelets that the grid can support. For the entire year, the expression for emissions becomes

F =


f1
f2
...

fK

= diag(ΦΦΦ, ΦΦΦ, . . . , ΦΦΦ)


w1
w2
...

wK

= Φ̃ΦΦw.

Since ΦΦΦwk models the emissions over all grid-cells, and not just R , F contains emissions over the lower
48 states, as well as the region outside it (where we have assumed that the emissions are non-existent). We
separate out the two fluxes by permuting the rows of Φ̃ΦΦ

F =
(

FR
FR ′

)
=

(
Φ̃ΦΦR
Φ̃ΦΦR ′

)
w,

where Φ̃ΦΦR and Φ̃ΦΦR ′ are (NR K)× (LK) and (NR ′K)× (LK) matrices respectively. Here L is the number of
wavelets in W (s) and NR ′ = 4096− 816 = 3280 is the number of grid-cells in R ′

. The modeled concen-
trations at the measurement towers, caused by FR , can be written as y = HFR . For arbitrary w, FR ′ , the
emissions in the region outside R , are not zero. Consequently, it will be necessary to specify FR ′ = 0 as a
constraint in the inverse problem.

Specifying the constraint FR ′ = 0 directly is not very efficient since it leads to NR ′K constraints. In a
global inversion, or at resolutions higher than 1◦× 1◦, this could get very large. Consequently, we adapt
an approach from compressive sensing to enforce this constraint approximately. Consider a Mcs× (NR ′K)
matrix R, whose rows are direction cosines of random points on the surface of NR ′K-dimensional unit
sphere. This is called a uniform spherical ensemble and is used in compressive sampling [52]. The projection
of the emission field FR ′ on R i.e., RFR ′ compressively samples FR ′ . Setting this projection to zero during
inversion allows us to enforce zero emissions outside R . However, to do so, we add only Mcs constraint
equations rather than NR ′K, which would be the case if we set the emission in each grid-cell in R ′

to zero. In
Sec. 5.5, we will investigate the degree of computational saving afforded by imposing the FR ′ = 0 constraint
in this manner.

The optimization problem can be written as

Y =
(

yobs

0

)
≈

(
H Φ̃ΦΦR
R Φ̃ΦΦR ′

)
w = Gw. (8)

In this equation, G is akin to A discussed in Sec. 2.3. It is a “sampling” of a basis set. The R Φ̃ΦΦR ′ component

of G is formally a random sampling. The H Φ̃ΦΦR component of G, on the other hand, “samples” the emission
field as guided by the transport processes encoded in H. The left hand side Y is approximately equal to G w
since the observations yobs contain measurement errors that cannot be modeled with H. This completes Step
A in Fig. 4.
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The wavelet coefficients w in Eq. 8 are not normalized and usually display a large range of magnitudes.
The wavelets in W (s) at finer scales i.e. those with a small support / “footprint” tend to have coefficients
with a large magnitude. Their small footprint cause the fine-scale wavelets to impact only neighboring
measurement towers. In contrast, wavelets at the coarser scales have large “footprints” that span multiple
measurement locations. Total emissions in R , as well as yobs, are very sensitive to their coefficients. Solving
Eq. 8, as-is, incorporates no information from X beyond the selection of wavelets to be included in Φ̃ΦΦ. We
explore the incorporation of X in the estimation of w using three different approaches:

Approach A : This is the baseline approach and solves Eq. 8 as-is. The lack of normalization of w, in
conjunction with the optimization procedure described below in Sec. 4.3, leads to artifacts which will be
described in Sec. 5.1.

Approach B : In this formulation, X is included in the optimization as a “prior”. We write the emissions
as F = fpr + ∆F. Substituting into Eq. 8, we get Y ≈ Hfpr + G∆w, where ∆w = w−w(X). Here, w(X) =

c{w′,(X),w(X)
s,i, j}, {s, i, j} ∈W (s), where c is obtained from Eq. 6. It provides a wavelet decomposition of fpr

using the bases in W (s). Simplifying, we get

∆Y = Y−Hfpr ≈G∆w, (9)

The term “prior” model is used somewhat loosely since this is not a Bayesian method. However, fpr serves
a similar function by providing regularization in the inverse problem.

Approach C : The incorporation of the spatial patterns in X into the estimation procedure can be performed
in an alternative manner. We note that w(X) can be used to normalize w. We rewrite Eq. 8 as

Y ≈G diag(w(X)) diag(w−1
(X))w = G′w′ =

(
H Φ̃ΦΦ

′
R

R Φ̃ΦΦ
′
R ′

)
w′, (10)

where w′ = {ws,i, j/w(X),s,i, j},{s, i, j}∈W (s), is the normalized set of wavelet coefficients, Φ̃ΦΦ
′
R = Φ̃ΦΦR diag(w(X))

and Φ̃ΦΦ
′
R ′ = Φ̃ΦΦR ′ diag(w(X)).

In all the three cases, we obtain an underdetermined set of linear equations of the form

ϒϒϒ ≈ ΓΓΓζζζ. (11)

This completes Step B in Fig. 4. We outline the solution procedure in Sec. 4.3 and compare the performance
of the three formulations in Sec. 5.1.

4.3 Solving the inverse problem

Eq. 11 is solved using an optimization procedure. Since we obtain our observations from a set of measure-
ment locations that were sited with an eye towards biospheric CO2 fluxes (see Appendix B), it is unlikely
that they will constrain all the elements of ζζζ. Here we fall back on our multiscale model of FR , which
explicitly parametrizes orthogonal spatial patterns (the wavelets) of different scales. Further, only those
patterns that were observed in the X field were retained in W (s). yobs is probably sufficient to estimate the
larger patterns, whereas it may not be possible to constrain the finer details. However, a priori, we do not
know the identity of these “un-constrainable” details.
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In our solution of Eq. 11, we will attempt to identify the wavelets coefficients that cannot be estimated from
ϒϒϒ and drive them to zero i.e, the solution method will impose sparsity on ζζζ. This will provide us with a
reconstruction of FR , containing only those features/patterns that are supported by data. The sparse solution
of Eq. 11 is performed using Stagewise Orthogonal Matching Pursuit (StOMP, [58]). Eq. 11 is recast similar
to Eq. 4

minimize
ζζζ∈RN

||ζζζ||1

subject to ||ϒϒϒ−ΓΓΓζζζ||22 < ε2. (12)

||ζζζ||1 is minimized by setting as many elements of ζζζ to zero as possible, thus enforcing sparsity. Meanwhile,
the constraint ||ϒϒϒ−ΓΓΓζζζ||2 ensures that the solutions being proposed by the optimization procedure provide a
good reproduction of the observations. While the details of StOMP are in [58], we summarize the algorithm
below.

StOMP operates iteratively via S stages, building up a sequence of approximations ζζζ0,ζζζ1, . . . by removing
detected structure from a sequence of residual vectors r1,r2, . . .. We start with an initial guess ζζζ0 = 0 and
initial residual r0 = ϒϒϒ. The stage counter is initialized s = 1. The algorithm maintains a sequence of
estimates I1, I2, . . . of the locations of non-zeros in ζζζ.

In the lth stage, we obtain a vector of residual correlation

cl = ΓΓΓ
T rl−1

which we consider to be a vector with a few significant non-zeros and the rest containing Gaussian noise
of small magnitude. Based on a threshold calculated from the assumption that cl is mostly i.i.d. Gaussian
noise, we identify a small set Jl of “large” coordinates:

Jl = { j : |cl( j)|> tlσl}

where σl = ||rl||2/
√
|rl|, 2 ≤ tl ≤ 3 and |rl| is the length of the vector rl . The newly detected locations of

non-zeros are added to the running list of the support of ζζζ

Il = Il−1∪ Jl.

We then project ϒϒϒ on the columns of ΓΓΓ contained in the enlarged support. Let ΓΓΓI denote the (KsNs +Mcs)×|I|
matrix constructed with the columns chosen using the index set I. The new approximation ζζζl , with support
Il is given by

(ζζζl)Il =
(
ΓΓΓ

T
Il

ΓΓΓIl

)−1
ΓΓΓ

T
Il

ϒϒϒ

and the updated residual is
rl = ϒϒϒ−ΓΓΓζζζl.

We check a stopping criterion, and proceed to the next iteration after setting := l +1.

This completes Step C in Fig. 4.

4.4 Enforcing non-negativity of FR

Estimates of w calculated by StOMP do not necessarily provide FR = H Φ̃ΦΦR w that are non-negative. In
practice the negative ffCO2 emissions occur in only a few grid-cells and are usually small in magnitude. A
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large fraction of elements of FR are set to zero by StOMP. Having identified the sparsity pattern, i.e., the
spatial scales that can and cannot be estimated from Y, we devise an iterative procedure for enforcing non-
negativity on FR . We discard FR ′ and manipulate the emissions in R directly, rather than via the wavelet
coefficients.

We seek non-negative ffCO2 emissions E = {Ei}, i = 1 . . .Q,Q = (NR K) such that

||yobs−HE||2
||yobs||2

≤ ε3. (13)

E is constructed iteratively through a sequence E1,E2, . . .. E0 is initialized by using the absolute values of
FR calculated by solving Eq. 12.

At each iteration m, we seek a correction ξ = {ξi}, i = 1 . . .Q, where |ξi| ≤ 1, such that

E(m) = diag(exp(ξ1),exp(ξ2), . . . ,exp(ξQ))E(m−1)

≈ diag(1+ξ1,1+ξ2, . . . ,1+ξQ)E(m−1)

= E(m−1) +∆E(m−1), where ∆E(m−1) = ξT E(m−1).

Since the emissions must satisfy yobs ≈HE(m), we get

yobs−HE(m−1) = ∆y ≈H∆E(m−1) (14)

This is an underconstrained problem, and we seek the sparsest set of updates ∆E(m−1) using StOMP.

The corrections are calculated, and the emissions updated as

ξi = sgn

(
∆E(m−1)

i

E(m)
i

)
max

(
1,

∣∣∣∣∣∆E(m−1)
i

E(m)
i

∣∣∣∣∣
)

,

E(m)
i = E(m−1)

i exp(ξi), (15)

to obtain E(m).

The convergence requirement Eq. 13 is checked with E(m), and if not met, the iteration count is updated
m := m+1 and Eq. 14 is solved again. This completes Step D in Fig. 4.

To summarize, the solution of the inverse problem proceeds in two steps:

1. Step I – Sparse estimation of FR using the wavelet model: This is performed by StOMP, which
explicitly identifies small scales that cannot be constrained by yobs and drives them to zero. The
estimation of FR is performed by calculating the wavelet coefficients w. We obtain an approximation
to the emissions, FR , which may be negative in certain grid-cells.

2. Step II – Enforcement of non-negativity: Non-negative emissions E are calculated by iteratively
updating |FR | with a multiplicative correction. Updates are performed on fluxes in grid-cells, not the
wavelet coefficients. Each iteration includes an invocation of StOMP.
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5 Tests

In this section, we test the multiscale parameterization for ffCO2 emissions, developed in Sec. 3, using the
sparse estimation technique in Sec. 4.

Generating synthetic observations: The true ffCO2 emissions are obtained, for 2002, from the Vulcan
inventory [3, 4]. Vulcan provides emissions in R and we assume that there are no emissions elsewhere.
Hourly Vulcan fluxes are coarsened from 0.1◦ resolution to 1◦, and averaged to 8-day periods. These fluxes
are multiplied by H to obtain ffCO2 concentrations at Ks = 35 measurement towers (see Appendix B).
Observations are available every 3 hours and span a full year. A measurement error ε∼ N(0,σ2) is added to
the concentrations to obtain yobs, as used in Eq. 8. The same σ is used for all towers and is set to 0.01 ppm
(approximately, 1% of the average concentration observed at the 35 towers).

5.1 Comparison of optimization formulations

We solve Eq. 8 using the StOMP method (Sec. 4.3) and enforce non-negativity on FR to obtain E. The
coefficients w(X) used in Eq. 9 and Eq. 10 are obtained from a wavelet decomposition of fpr based on night-
lights (Sec. 3). The constant c in Eq. 6 is obtained by using fluxes from the EDGAR inventory [32] for 2005
i.e., instead of using emissions from Vulcan to calculate fV , we use EDGAR. We thus ensure that Vulcan is
not used in any capacity during the inverse modeling (except to generate the synthetic observations). The
inversion is performed for k = 1 . . .45, for the entire year. The following parameters are used in the inversion
process (Sec. 4.3 & 4.4): ε2 = 10−5,ε3 = 5.0× 10−4,Mcs = 13,500 i.e., 300 random projections for each
8-day period.

In Fig. 5 we plot the estimated emissions during the 31st 8-day period, as calculated using Approaches A, B
and C. The true emissions are also plotted for reference. Four quadrants are also plotted for easier compari-
son and reference. The distribution of towers is very uneven, with most of the towers being concentrated in
the Northeast quadrant. We see that Approach A (Fig. 5, top right) provides estimates that have large areas in
the Northwest (NW) and Southwest (SW) quadrants with low levels of ffCO2 emissions. In contrast, the true
emissions (Fig. 5, top left) are mostly empty, which is also borne out by nightlight and built-up area maps
in Fig. 3. Thus we see that the minimization of ||ζζζ||1 (alternatively ||w||1) drives the wavelet coefficients to
small values, but not identically to zero. In Fig. 5 (bottom left), Approach B provides estimates that show
much structure in the Eastern quadrants, and the patterns seen in nightlights (Fig. 3) are clearly reproduced.
The reason is as follows. While fpr captures the broad, coarse scale patterns of ffCO2 emissions, it incurs
significant errors at the finer scales. Eq. 9 essentially seeks to rectify these errors. However, as mentioned in
Sec. 4.2, fine-scale wavelets tend to have large wavelet coefficients and the minimization of ||ζζζ||1 (alterna-
tively ||∆w||1) removes them since the constraint ||ϒϒϒ−ΓΓΓζζζ||22 < ε2 is not very sensitive to individual wavelets
at the fine scale (they only affect neighboring towers significantly). The inability to rectify the fine-scale
discrepancies lead to a final ffCO2 estimate that resembles fpr in the finer details. Fig. 5 (bottom right) plots
the estimates obtained using Approach C, which uses normalized wavelet coefficients w′. The estimates
from Approach C show large areas of little or no emissions in the Western quadrants, similar to the true
emissions in the top left figure. In the Eastern quadrants, the emissions show less spatial structure than the
true emissions as well as those obtained using Approach A.

In Fig. 6 (left) we evaluate the accuracy of the reconstruction quantitatively. We total the emissions in R
to obtain the country-level ffCO2 emissions and compare that with the emissions from Vulcan. We plot a
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Figure 5: Plots of ffCO2 emissions during the 31st 8-day period. Top left, we plot true emissions from
the Vulcan inventory. Top right, the estimates from Approach A. Bottom left and right figures contain the
estimates obtained from Approaches B and C respectively. Each figure contains the measurement towers as
white diamonds. Each figure is also divided into quadrants. We see that Approach A, unconstrained by fpr

provides low levels of (erroneous) emissions in large swathes of the Western quadrants. Approach B reflects
fpr very strongly. Approach C provides a balance between the influence of fpr and the information in yobs.

time-series of errors defined as a percentage of total, country-level Vulcan emissions

Errork (%) =
100
K

K

∑
k=1

Ek−EV,k

EV,k
, where Ek =

Z
R

Ek dA and EV,k =
Z

R
fV,k dA. (16)

Here, fV,k are Vulcan emissions averaged over the kth 8-day period and Ek are the non-negativity enforced
emission estimates in the same time period. A positive error denotes an overestimation by the inverse
problem. In Fig. 6 (right) we plot the correlation between the true and reconstructed emissions over the
same duration. This was done by calculating the Pearson correlation coefficient between the vector of grid-
cells covering the United States. It is clear that Approach B provides the worst reconstructions, with the
largest errors and smallest correlations. Approach C tends to over-predict emissions, whereas Approach
B tends to under-predict them, often by approximately the same (small) amount. The correlations of the
reconstructed emissions from these two emissions are about the same.

In Fig 7 we see the essential difference between Approach A and C. We plot the reconstruction error (left

32



0 5 10 15 20 25 30 35 40 45

−2

0

2

4

6

8

10

12

14

16
Percent error in total emissions

8−day period #

%
 e

rr
or

 in
 to

ta
l e

m
is

si
on

s

 

 

Error; Approach A

Error; Approach B

Error; Approach C

0 5 10 15 20 25 30 35 40 45
0.7

0.75

0.8

0.85

0.9

Correlation between reconstructed and true emissions

8−day period #

C
or

re
la

tio
n

 

 

Correlation; Approach A

Correlation; Approach B

Correlation; Approach C

Figure 6: Comparison of estimation error (left) and the correlation between true and estimated emissions
(right) using Approaches A, B and C. It is clear that Approach B is inferior to the others.

figure) and correlation between true and reconstructed emissions (right figure) in the Northeast (NE) and
Northwest (NW) quadrants. Errors in the emissions are represented as a percentage of the total (true)
emissions in that quadrant. We see the Approach C has smaller errors in both the quadrants. It also provides
higher correlation in the NW quadrant which does not have many measurement towers (white diamonds
in Fig. 5). Thus normalization using w(X) and minimization of ||ζζζ||1 (alternatively ||w′||1) prevents large
departures from fpr and also rectifies the tendency to remove large wavelet coefficients belonging to the
finer wavelets. Approach C therefore provides a formulation that is more accurate and robust at the quadrant
scale. Note, however, that both Approach A and C have similar fidelity at the scale of R .

In the tests below, we will restrict ourselves to Approach C.

5.2 Evaluating formulation using compressive sensing metrics

In this section we compare Approach A versus C in terms of certain compressive sensing metrics to explain
the lower accuracy of the estimates developed using Approach A. Note that in Approach A, sparsity is the
sole source of regularization.

As specified in Eq. 2, the process of acquiring compressive measurements g′ involves project wavelet bases
ΦΦΦ on the rows of ΨΨΨ. Since the rows ψi,· of ΨΨΨ are random unit vectors, they are neither aligned with nor
orthogonal to the bases φ·, j and consequently the elements of AΨΨΨ = ΨΨΨΦΦΦ tend to assume a distribution of
magnitudes which are generally not very close to 0 or 1. This coherence µ(ΨΨΨ,ΦΦΦ) is defined as [77]

µ(ΨΨΨ,ΦΦΦ) =
√

N max
1≤i, j≤N

|< ψi,·,φ·, j > |, 1 ≤ µ(ΨΨΨ,ΦΦΦ)≤
√

N (17)

Values of µ near 1 (alternative max |< ψi,·,φ·, j > | near 1/
√

N) indicate incoherence between ΨΨΨ and ΦΦΦ and
more efficient sampling. Note that the lower bound assumes that ΨΨΨ is a random matrix.

In compressive sensing, random matrices such as Gaussians, Hadamard, Circulant/Toeplitz or functions
such as noiselets [52, 78, 79, 80] serve as ΨΨΨ. In Fig. 8, we plot the distribution of log10(|Ai, j|), the elements
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Figure 7: Reconstruction error (left) and correlation between the true and estimated emissions, using Ap-
proaches A and C, for the Northeast (NE) and Northwest (NW) quadrants. We see that Approach C, which
includes information from fpr, leads to lower errors in both the quadrants and better correlations in the less
instrumented NW quadrant.

of AΨΨΨ for some “standard” sampling matrices. ΦΦΦ contains the wavelets used in Sec. 5.1 i.e., those selected
using nightlights. We see that log10(|Ai, j|) may assume continuous (Gaussian and circulant sampling ma-
trices) or discrete (Hadamard, scrambled-block Hadamard and Noiselets) distributions, and generally lie
between -3 and -1. The samples collected by these projection schemes are sufficiently informative, due to
the incoherence between ΨΨΨ and ΦΦΦ, to allow reconstruction of the original image with sparsity as the sole
regularization.

In Eq. 8, H serves a similar sampling purpose. H is determined by atmospheric transport processes and
is not a random matrix. However, the efficiency of sampling depends on the incoherence between H and
ΦΦΦ. We construct a new H′ by picking the rows of H corresponding to 2 towers and for the 21st and 22nd

8-day periods. We compute AH′ = H′ΦΦΦ, and in Fig. 8, plot the log-transformed magnitudes of the elements
of AH′ . The distributions for the two towers are almost identical. We clearly see that, unlike AΨΨΨ, AH′

contains a significant number of elements that are close to 1, and a large number of elements which are
close to 0 (e.g. near 10−6). This is a consequence of the rows of H′ being approximately aligned to some
of the columns of ΦΦΦ and consequently, nearly orthogonal to others. The small values in AH′ indicate that
the CO2 concentration prediction y at the two selected towers are insensitive to many of the wavelets i.e., to
many scales and locations. In fact, the dominance of near-field CO2 fluxes on tower measurements is well
known [81] and is responsible for the particular structure of AH′ .

Further, the coherence µ(H ′,ΦΦΦ) is larger than µ(ΨΨΨ,ΦΦΦ), indicating that the sampling efficiency of H′ is
inferior to what is generally achieved in compressive sensing. Consequently a combination of sparsity and a
“prior” emission model fpr were required to regularize the problem and enhance the accuracy of the emission
estimates in Approach C.
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Figure 8: Comparison of the distribution of the elements of AΨΨΨ and AΦΦΦ. We see that Gaussian and cir-
culant random matrices lead to continuous distributions whereas Hadamard, scrambled-block Hadamard
(sbHadamard) and noiselets serving as sampling matrices lead to AΨΨΨ where the elements assume discrete
values. In contrast, the elements of AH′ assume values which are spread over a far larger range, some of
which are quite close to 1 while others are very close to zero.

5.3 Inversions with nightlights as proxy

In Fig. 9, we plot the true and reconstructed emissions for 3 8-day periods (k = 9,33,42). We see that due to
the abundance of measurement towers in the NE quadrant, the reconstruction there is accurate. On the other
hand, the tower density on the West coast is sparse and gives rise to significant inaccuracies. For example,
in 8-day periods 33 and 42, we see that the Los Angeles–San Diego region (Southwest quadrant) is under-
estimated, since the only tower is in La Jolla (32.87N, -117.26W). The estimated emissions in the center of
the country (Continental Divide and Great Plains, in the Western quadrants) show some underestimation,
and far less structure than the true ffCO2 emissions. This is due to the presence of just 3 towers, which are
also clustered in a relatively small region. The region around the Gulf of Mexico is not well estimated since
there are few towers there.

In Fig. 10 (left) we plot a time-series of errors defined as a percentage of total, country-level Vulcan emis-
sions. Percent errors in reconstructed emissions are calculated using Eq. 16. The “prior” errors are computed
as

Errorpr,k (%) =
100
K

K

∑
k=1

Epr−EV,k

EV,k
where Epr =

Z
R

fpr dA.

We see 25% errors in fpr. This is a consequence not only of the disagreement between EDGAR (in 2005) and
Vulcan (in 2002), but also the manner in which they account for emissions. Since we are only interested in
obtaining a rough guess of US emissions with fpr, we did not perform a careful analysis and comparison. As
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Figure 9: Reconstruction of the ffCO2 emissions from the 35 towers (plotted as diamonds) over one year.
The true emissions are on the left and the reconstructions on the right. We see that the large scale structure of
the emissions have been captured, as seen by the comparisons for 8-day periods number 9 (mid-March), 33
(end of August) and 42 (early November). The west coast of the US has few towers near heavily populated
regions and thus is not very well estimated. In the middle and bottom rows, we see that the emissions in the
Los Angeles-San Diego region (32.87N, -117.26W) is underestimated. On the other hand, due to the higher
density of towers in the Northeast, the true and estimated emissions are qualitatively similar. Emissions have
units of µmol m−2 s−1 of C (not CO2 ).
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Figure 10: Comparison of reconstruction error and correlations. Left: We plot the error between the re-
constructed and true (Vulcan) emissions in blue. In red, we plot the error between fpr using nightlights and
Vulcan emissions. We see that assimilation of yobs leads to significantly improved accuracy. Right: We plot
the accuracy of the spatial distribution of the reconstructed emissions. The Pearson correlations C(Ek, fV,k)
and C(fpr, fV,k) show that incorporating yobs improves the spatial agreement of estimated emissions versus
the true one from 0.7 to around 0.9. If the emissions are averaged over 32-day periods, rather than 8-day
periods, the correlation with true (Vulcan) emissions rises even higher.

can be seen, assimilation of yobs reduces the error to a maximum of 4%. The least accurate reconstructions
are during spring. In order to check the accuracy of the spatial distribution of Ek, we calculate the Pearson
correlations C(Ek, fV,k) and C(fpr, fV,k). We see that data assimilation increases the correlation from around
0.7 to 0.85-0.95, with a mean around 0.9. When the emissions are aggregated/averaged over 32-day periods,
the correlation increases to 0.9-0.95, with a mean around 0.93. Thus, the ffCO2 emissions obtained using a
nightlight proxy are substantially improved by the incorporation of yobs.

Next, we address the impact of tower density. As was clear in Fig. 9, the reconstruction in the Northeast
(NE) quadrant is more accurate compared to the reconstruction elsewhere. We compute the percent error
between reconstructed and true (Vulcan) emissions on a quadrant basis, and plot them in Fig. 11. The
correlation between the reconstructed and Vulcan emissions are plotted too. In Fig. 11 (left), we see that
the reconstruction error in the NE quadrant is far smaller than elsewhere. Further, the reconstruction error
in individual quadrants is far higher than in the country as a whole (Fig. 10), where the total reconstruction
error never exceeded 4%. Thus, while large scale structures (e.g., at the scale of the US) are being estimated
quite accurately, significant errors are seen when we address regions the size of the individual quadrants.
The consequences of not being able to constrain quadrant-scale structures is seen in Fig. 11, where the NE
quadrant displays better correlation with Vulcan than the rest. The most inaccurate spatial patterns are seen
in the Northwest (NW) quadrant that includes the Great Plains and the Continental Divide. Here, the lack
of strong emissions, nightlights and towers make the reconstruction particularly poor.

We now address some of the numerical aspects of the solution. In Fig. 12 (left) we plot y predicted by
the reconstructed emissions at 3 towers. We see that the ffCO2 concentrations are well reproduced by the
estimated emissions. Thus, the lack of fidelity at the smaller scales (seen in Fig. 11) do not substantially
impact the measurements. In Fig. 12 (right) we plot the wavelet coefficients obtained by projecting the
emissions (both the true and reconstructed) on the wavelet bases. The wavelet coefficient values have been
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Figure 11: Plot of the error in, and the correlation between reconstructed emissions and true (Vulcan) ones.
Left: We see that the reconstruction error in the NE quadrant is small compared to the others. However,
the error in each of the quadrants is much larger than the error at the country level (see Fig. 10). Right:
Correlation in each of the quadrants. The NE quadrant is substantially better than the others due to the
higher density of towers.

subjected to a hyperbolic tangent transformation for ease of plotting. The true wavelet coefficients with a
magnitude above 0.01 are plotted with red symbols. The true (Vulcan) emissions have a large number of
coefficients with small magnitude; these are usually for small-scale features i.e., have coefficient indices
in the right half of the range (Fig. 12, right; red symbols). During the sparse reconstruction from sparse
data, these coefficients are set to zero (blue line in Fig. 12, right). The coefficients corresponding to the
low-index coefficients, which represent large structures are estimated accurately. This explains the good
correlation between true and estimated emissions at the country scale and a far poorer one at the quadrant
scale (Fig. 11). The explicit separation of scales is thus leveraged into ignoring unimportant, fine-scale
details (which are difficult to constrain with data) and focusing model-fitting effort on the scales that can be
resolved by the data. Sparse reconstruction achieves this in an automatic, purely data-driven manner, rather
than via a pre-processing, scale-selection step.

Finally we see the impact of the enforcement of non-negativity. In Fig. 13 we plot the cumulative distribution
function (CDF) of the ffCO2 emissions in R before and after the imposition of non-negativity, as described
in Sec. 4.4. The emissions are from the 31st 8-day period (depicted in Fig. 12). We see from the CDF that
before the imposition of non-negativity, the number of grid-cells with negative emissions is small; further,
the negative emissions are small in magnitude. Thus the sparse reconstruction (Step I in Sec. 4.4) provides
a very good approximation to the final estimated fluxes, by detecting the spatial patterns/wavelets that could
be constrained by observations. Given a good approximation, the non-negativity enforcement converges
quickly.

5.4 Inversions with built-up area maps as proxy

We investigate the effect of built-up area (BUA) maps, instead of images of nightlights, as the proxy. Chang-
ing the proxy results in a different set of wavelets being chosen (nightlights resulted in a W (s) of 1031
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Figure 12: Left: Prediction of ffCO2 concentrations at 3 measurement locations, using the true (Vulcan) and
reconstructed emissions (blue lines) over an 8-day period (Period no. 31). Observations occur every 3 hours.
We see that the concentrations are accurately reproduced by the estimated emissions. Right: Projection of
the true and estimated emissions on the wavelet bases for the same period. Coarse wavelets have lower
indices, and they progressively get finer with the index number. We see that the true emissions have a large
number of wavelets with small, but not zero, coefficients. In the reconstruction (plotted in blue), a number
of wavelet coefficients are set to very small values (almost zero) by the sparse reconstruction. The larger
scales are estimated accurately.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Emissions, µ moles m−2 s−1 of C

C
D

F

Effect of non−negativity imposition

 

 

Before imposition of non−negativity

Final emissions

Figure 13: CDF of emissions in R , before and after the imposition of non-negativity, as described in Sec. 4.4.
We see that the CDF of the emissions without non-negativity imposed contains a few grid-cells with negative
fluxes; further, the magnitude of the negative emissions is small. Thus the spatial parameterization, with
sparse reconstruction provides a good approximation of the final, non-negative emissions.
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wavelets; the corresponding number for BUA was 1049); further one was not a strict subset of the other.
It also results in a different normalization in Eq. 10. The inversion was performed in a manner identical
to that in Sec. 5.3. In Fig. 14 (left) we see that emissions reconstructed from BUA as the proxy are more
variable; however, averaged over the entire 45 8-day periods, the reconstruction errors are not very differ-
ent. In Fig. 14 (right), we see that the correlation between estimated and true emissions is better in case
of nightlight-based reconstruction (when performed at a 8-day temporal resolution). However, when aver-
aged to a 32-day temporal resolution, the difference between the two reconstructions (nightlights- versus
BUA-based) is minimal. In Fig. 15 we investigate the differences between the nightlight- and BUA-based
reconstructions at the quadrant level. We see in Fig. 15 (left) that the difference between nightlight- and
BUA-based reconstruction errors in the NE quadrant are smaller than those for the NW quadrant. Thus,
while the prior emissions from nightlights and BUA are quite different (see the last row of Fig. 3), the es-
timated emissions are well constrained by yobs in the NE quadrant and the impact of the priors/proxies is
small. This is not the case for the NW quadrant, where not only are the errors high, the two fpr lead to
reconstruction errors of different signs. Thus the region is badly constrained, which is not surprising given
the paucity of towers (see Fig. 9). However, on the whole, BUA-based reconstruction is a less accurate one.
In Fig. 15 (right) we plot the correlation of the reconstructed and true emissions in the NE and NW quad-
rants. We see that the correlations for the nightlight- and BUA-based estimated emissions are somewhat
similar, though BUA-based estimation is more variable, and has lower correlation as a whole. Thus, while
Fig 3 (middle row) showed that BUA-had a slightly better correlation with true (Vulcan) emissions, its larger
errors, as seen in Fig. 3 (bottom row) lead to a less accurate reconstruction. This result is also a testament to
the inadequacy of yobs over the whole country; had there been sufficient data to constrain E, the impact of
fpr would have been minimal.

In Fig. 16 we compare the estimated emissions developed from the two competing prior models. In the top
row we plot the estimated emissions for the 34th 8-day period using the nightlight prior (left) and built-up
area maps (right). The difference between the two estimates, plotted in the bottom left subfigure, shows
differences spread over a large area, though their magnitudes are not very big. Thus the “prior” model has a
measurable impact on the spatial distribution of the emissions. Bottom right, we plot the degree to which the
measurements update/change the prior model. On the horizontal axis, we plot the emissions predicted by
the “prior” model, while the vertical axis represents the estimated emission in the corresponding grid-box.
We see some correlation between the “prior” and estimated emission when the emissions are large (more
than 0.25 µmol m−2 s−1 of C).

5.5 Impact of Mcs

In Sec. 4.2 we had used Mcs random projections of FR ′ to implement a FR ′ = 0 constraint efficiently.
Since Eq. 11 is solved approximately, and due to the small number of wavelets in W (s) that span R ′

, the
constraint FR ′ = 0 is not satisfied exactly and FR ′ is usually small. This error varies with Mcs; a larger
number of random projections result in a closer realization of the constraint. However, they are never driven
to zero, primarily because the wavelets used to model FR ′ and FR were chosen using X (and thus may not
form a complete basis set for ffCO2 emissions). Errors in the enforcement of the FR ′ constraint lead to
commensurate errors in FR . In practice, this affects only Step I of the emission estimation procedure, where
a sparse approximation of FR is calculated; thereafter it is used as a guess in Step II, the enforcement of
non-negativity of emissions. However, a good estimate of FR accelerates Step II.

In Fig. 17, we plot the impact of Mcs on the reconstruction. We perform Step I of the emission estimation
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Figure 14: Left: Plot of the error in the reconstruction, as performed with built-up area maps (blue line)
and nightlights (black line) as the proxies. Right: Correlation between the true and reconstructed emissions,
as performed with built-up area maps and nightlights as the proxies. The nightlights-based reconstruction
has slightly less reconstruction error and better correlation with the true emissions, when compared at 8-
day temporal resolution. When averaged to a 32-day temporal resolution, emissions obtained via the two
methods are very similar.
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Figure 15: Left: Emission reconstruction error in the NE (blue) and NW (black) quadrants, when performed
with BUA (line) and nightlights (symbols) as proxies. We see that the NW quadrant is very badly constrained
and a change in proxies changes the sign of the error. This is also seen in the NE quadrant; however, the
error magnitudes are far smaller. Right: The comparison of correlations between true and reconstructed
emissions shows similar trends; nightlights-based estimation produces better reconstructions.
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Figure 16: Comparison of emission estimates developed using fpr constructed from nightlight radiances and
built-up area maps. Top: Estimated ffCO2 emissions for the 34th 8-day period developed using nightlight
prior (left) and the prior from built-up areas maps (right). Bottom left: we plot the difference between the
two estimates. Bottom right: We plot a scatter plot between the estimated and prior emissions, for the two
prior models.
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Figure 17: The impact of the number of compressive samples Mcs on the reconstruction of FR (ηR ) and FR ′

(ηR ′ ). ηR and ηR ′ are plotted on the Y1 and Y2 axes respectively. Results are plotted for the 31st 8-day
period. We see that Mcs > 103 does not result in an appreciable increase in reconstruction quality. Also,
Mcs < 102 shows a marked degradation in ηR ′ .

procedure (see Sec. 4), for the 31st and 32nd 8-day periods and compute the ratios

ηR =
||fk,R ||2
||fV,k||2

and ηR ′ =
||fk,R ′ ||2
||fV,k||2

for k = 31.

Here fk,R and fk,R ′ are the emissions (from Step I) over R and R ′
. fV,k is the true (Vulcan) emission field

during the same period. These ratios are plotted as a function of the log-transformed number of compressive
samples Mcs per 8-day period. We see that 10 projections per 8-day period is too few, leading to around 20%
errors in fk,R ′ (ηR ′ ≈ 0.2). Beyond about 100 projections per 8-day period, ηR ′ oscillates around 0.1. The
corresponding errors in fk,R are about 5% (ηR ≈ 1.05). In our study we used 300 random projections for
each 8-day period. In contrast, had we imposed FR ′ = 0 in all grid cells in R ′

, we would have generated over
3000 constraints per 8-day period (our 64×64 mesh has 4096 grid cells, of which 816 are in R and the rest,
3184 are in R ′

). This economy of computational effort in the imposition of the constraint is only partially
due to the efficiency of random projections; a major simplification is achieved by the lower-dimensional
model of FR using the wavelets identified by X.

5.6 Impact of ε

In this section we study the impact of the measurement error ε. The nominal value used in this study is
ε = 10−2; we explore the impact of ε = {2.5,5.0,7.5,10}×10−2. The results, for the 31st 8-day period are
shown in Fig. 18. Top left, we plot the true emissions from the Vulcan inventory for reference. Top right,
we plot results using ε = 2.5× 10−2. We see enhanced “blockiness” as some of the finer wavelets cannot
be estimated; whereas the true emissions are represented using 363 wavelets coefficients with a magnitude
above 0.01, the reconstruction with ε = 2.5× 10−2 recovers only 325 such coefficients. Bottom left, at
a higher level of measurement errors (ε = 10−1), the solution seems qualitatively different; low emission
regions in the Western quadrants (Continental Divide and the deserts of the Southwest) show erroneous (and
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higher) levels of emissions. This leads to the recovery for 377 wavelet coefficients with a magnitude above
0.01. Bottom right: we summarize the quality of the reconstruction via the reconstruction error (%) and the
correlation between the true and estimated emissions. We see that the degradation of reconstruction quality
is roughly linear in the measurement error ε.

5.7 Impact of the number of observation towers

In this section, we investigate the impact of reducing the number of observation towers. In Fig. 19 we plot
the results from inversions performed with 35-, 25- and 15-tower configurations. In the left column, we plot
reconstructed emissions during the 33rd 8-day period, with the different tower configurations. The resolution
at which the emissions can be estimated decreases with the number of towers; the differences between the
35- and 15-tower reconstructions are easy to detect. In the right column, we quantify the differences. In
Fig. 19, top right, we plot the reconstruction error over 45 8-day periods. We see that while the difference
in the reconstruction error between 35- and 25-tower inversions is not much, the 15-tower inversion is
clearly inferior. This is also borne out in the plot of the correlation of the true and estimated emissions
(Fig. 19, right middle), where the estimation performed with 15 towers provides the lower bound. Finally, in
Fig. 19, bottom right, we plot the wavelet coefficients. The coefficients have been subjected to a hyperbolic
tangent transformation for plotting clarity. The true wavelet coefficients with a magnitude above 0.01 are
plotted with red crosses. The 35-tower reconstruction comes close to estimating the true coefficients; this
is especially true for the wavelets with larger spatial support (i.e., low index). As the number of towers
drop, the errors in the estimated wavelet values grow. Further, the number of wavelet coefficients with
large magnitudes (above 0.01) steadily decreases. Thus while the true emissions are represented by 363
wavelet coefficients with magnitudes above 0.01, the estimated emissions, using 35, 25 and 15 towers have,
respectively, 315, 292 and 287 coefficients. Therefore, in the absence of observations, the solution to Eq. 11
sets the wavelet coefficients to values near zero.

44



−120 −110 −100 −90 −80 −70

25

30

35

40

45

50

Longitude

La
tit

ud
e

True emissions in 31st 8−day period [micromoles m−2 s−1]

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−120 −110 −100 −90 −80 −70

25

30

35

40

45

50

Longitude

La
tit

ud
e

Estimated emissions; measurement error = 0.025000

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−120 −110 −100 −90 −80 −70

25

30

35

40

45

50

Longitude

La
tit

ud
e

Estimated emissions; measurement error = 0.100000

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.02 0.04 0.06 0.08 0.1
0

5

10

R
ec

on
st

ru
ct

io
n 

er
ro

r;
 %

Measurement Error, ε

Impact of measurement error ε

0.02 0.04 0.06 0.08 0.1
0.6

0.8

1

C
or

re
la

tio
n

Figure 18: Impact of measurement error ε. Top left: We plot the true ffCO2 emissions from the Vulcan
inventory. Top right: We plot the estimates calculated using ε = 2.5× 10−2. Bottom left, we plot the
reconstructed emissions using ε = 10−1; we see a clear degradation of the reconstruction. Bottom right: We
plot the reconstruction error (%) and the correlation between the reconstructed and true emissions for various
values of ε; a clear degradation is seen. Reconstruction errors and correlations are plotted on opposing Y-
axes. All results are for the 31st 8-day period.
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Figure 19: Left column: Estimated ffCO2 emissions for the 33rd 8-day period. Inversions were done with
35 (top), 25 (middle) and 15 (bottom) towers. As the number of towers decreases, we see that the resolution
of estimated emissions decreases. Right column: At the top, we plot the error in the reconstructed emissions
for the three tower sets. There is not much difference between reconstructions with 25 and 35 towers,
but the 15-tower reconstruction is poor. Right (middle): The correlation between reconstructed and true
emissions shows much the same trend as the reconstruction, with the 15-tower reconstruction having a
far lower correlation over the entire 360-day duration. Right column, bottom: We plot the sparsity of
the estimated wavelet coefficients. We see that as the number of towers decrease, the wavelet coefficient
estimates deviate further from the true values (red crosses).
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6 Conclusions

We have devised a multiresolution parametrization (also known as a multiscale random field or MsRF
model) for modeling ffCO2 emissions at 1◦ resolution. It is based on Haar wavelets, and is designed for
use in atmospheric inversions. It uses easily observable proxies of human activity e.g., images of lights at
night and maps of built-up areas to reduce its dimensionality as well as to build “prior” models of ffCO2
emissions.

The MsRF model was tested in a set of synthetic-data inversions. Time-dependent ffCO2 emission fields
were estimated over the lower 48 states of the US, conditioned on 360 days of observations of time-varying
ffCO2 concentrations at a set of observation towers. In conjunction with an atmospheric transport model, a
sparsity-enforcing optimization method, Stagewise Orthogonal Matching Pursuit (StOMP), was used to fit
MsRF models and reconstruct a time-series of emission fields. It was found that less than half the parameters
of the MsRF model could be estimated from the sparse data; the rest were identified by StOMP and set to
zero. We also identified an efficient way of incorporating a prior model of emissions into the inversion.

The MsRF, being based on wavelets, models emissions on a dyadic square grid, whereas ffCO2 emissions
were restricted to an irregular region R (the lower 48 states of the US). Instead of specifying zero emissions
in the grid-cells outside R , we used concepts from compressive sensing (random projections) to achieve the
same effect, but at a tenth of the computational effort and memory requirements (Sec. 5.5). The emission
fields reconstructed using the MsRF were found to contain some regions (grid-cells) with negative emissions.
Using these as a starting guess, we devised a simple method to iteratively impose non-negativity on the ffCO2
emissions.

Primarily, our work demonstrated that observations of ffCO2 concentrations could be used to update models
of ffCO2 emissions and improve their accuracy (see Fig. 10). Further, we assumed that these measurements
could be obtained from existing towers, which were sited with a view of reconstructing biospheric, rather
than ffCO2 , fluxes. This accounts for some of our inability to estimate fine-scale spatial structure in the
emissions. Note that currently the network has expanded beyond the 35 towers included in this work,
and could potentially furnish better estimates of ffCO2 than reported here. Future work will examine how
the inversion method described here could be used to design a monitoring network for ffCO2, rather than
biospheric CO2 fluxes.

The MsRF models constructed using images of nightlights and built-up area maps provided reconstructions
that differed in their fine-scale details (at the quadrant scale and below). This is a reflection of the paucity of
observations and their inability to constrain the fine-scale features of the emission fields. The formulation
also correctly showed that as the number of observation towers were decreased, larger numbers of MsRF
parameters were set to zero and the reconstructed emission fields progressively lost their spatial fidelity,
starting from the fine-scale details.

Our inversion formulation suffers from two drawbacks. It requires measurements of ffCO2 concentrations
at the measurement towers. While these concentrations can be back-calculated using ∆14CO2 or CO mea-
surements, they are less common and more expensive than CO2 concentration measurements. The second
drawback is the deterministic nature of the reconstruction - we do not provide error bounds on the estimates
of the MsRF parameters (the wavelet coefficients). This can be rectified by adopting a Bayesian approach
e.g., Kalman filters, but it is unclear how one would preserve the non-negative property of ffCO2 emissions.
This investigation is currently underway.
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A Glossary

Table A.1: Definitions of Greek symbols
ε Measurement error
ε2 Convergence tolerance for StOMP
ε3 Convergence tolerance for non-negativity imposition
φ Basis vector
ΦΦΦ Matrix of basis vectors, N×L
Φ̃ΦΦ Matrix of basis vectors for K periods, diag(ΦΦΦ)

Φ̃ΦΦR Basis matrix for modeling FR , (NR K)× (LK)
Φ̃ΦΦR ′ Basis matrix for modeling FR ′ , (NR ′K)× (LK)

Φ̃ΦΦ
′
R Φ̃ΦΦR with columns multiplied by weights from fpr

Φ̃ΦΦ
′
R ′ Φ̃ΦΦR ′ with columns multiplied by weights from fpr

Φ̃ΦΦ
′
R ′ Basis matrix for modeling FR ′ , (NR ′K)× (LK)

ψ Random measurement vector for CS
ΨΨΨ Random projection matrix / Measurement matrix for CS
ϒϒϒ “Observations”; Y or ∆Y
ΓΓΓ G or G′
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Table A.2: Definitions of symbols

CS Compressive Sensing
D Domain size, along one axis
E Non-negative ffCO2 emissions, over K 8-day periods, in R
f CO2 emission, over a spatial domain. This is not a time-series.
fk CO2 emission averaged over a 8-day period k

fk,R ffCO2 emissions averaged over a 8-day period k inside R
FR CO2 emissions time-series FR = {fk},k = 1 . . .K, in the grid-cells covering the Lower 48

states of US, R ; (NR K)×1
FR ′ CO2 emissions time-series in the grid-cells other than those covering the Lower 48 states of US;

the complement of FR ; (NR ′K)×1
fpr Prior flux or a guess of what the f might be
fV Vulcan emissions at 1 degree resolution, averaged over 2002

fV
(s)

Vulcan emissions at 1 degree resolution, averaged over 2002, as represented by a sparse basis set
fV,k Vulcan emissions at 1 degree resolution, but averaged over the kth 8-day period
g A 1D signal
g′ A measured 1D signal
G The gain matrix; (KsNs +Mcs)× (LK)
G′ The “normalized” gain’ matrix; (KsNs +Mcs)× (nzwK)
H Transport model
K Number of 8-day time-periods in a year, K = 45
Ks The number of times a tower sensor senses in a year. Towers measure once every 3 hours
L Number of non-zero weights in a wavelet decomposition; sparsity
M The number of wavelet levels the grid can be decomposed to

Mcs The number of random projections used to enforce zero flux outside R
N Number of grid cells; equal to 2M ×2M

NR The number of grid-cells in R
NR ′ The number of grid-cells in R ′

Ns Number of sensors
R Random projection matrix, used to enforce zero flux outside R ; Mcs× (NR ′K)
R Region of interest, lower 48 states of US
R ′

Region that is in the grid, but outside the ower 48 states of US
StOMP Stagewise Orthogonal Matching Pursuit, [58]

US United States
w Weights of a wavelet basis set
w′ Weights of a wavelet basis set, normalized by weights of a guessed flux from a proxy

W (s) Set of weights corresponding to the sparsified set of wavelet bases
X A proxy for CO2 emissions, e.g., nightlights

X(s) Proxy, sparsified
y Modeled CO2 concentrations

yobs Measured CO2 concentrations
Y LHS of optimization problem; Y = {yobs,0}; (KsNs +Mcs)×1
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B Measurement locations

This is a list of CO2 measurement towers that were used in this study. They are targeted at biospheric CO2
fluxes and their locations are not optimized for ffCO2 emissions.

Table B.3: List of observation towers and their locations

Tower symbol Full name Latitude & Longitude Height above ground (meters)

AMT Argyle 45.03 N, -68.68 W 107
ARM Southern Great Plains 36.80 N, -97.50 W 60
BAO Boulder Atmospheric Observatory 40.05 N, -105.01 W 300
BRW Barrow 71.32 N, -156.61 W 17
CDL Candle Lake 53.99 N, -105.12 W 30
CEN Centerville 40.79 N, -92.88 W 110
CHI Chibougamau 49.69 N, -74.34 W 30
CVA Canaan Valley 39.06 N, -79.42 W 7
EGB Egbert 44.23 N, -79.78 W 3
ETL East Trout Lake 54.35 N, -104.99 W 105
FIR Fir 44.65 N, -123.55 W 38
FRD Fraserdale 49.88 N, -81.57 W 40
GAL Galesville 44.09 N, -91.34 W 122
HDP Hidden Peak, Snowbird 40.56 N, -111.65 W 18
HFM Harvard Forest 42.54 N, -72.17 W 30
KEW Kewanee 41.28 N, -89.97 W 140
LEF Park Falls 45.95 N, -90.27 W 396
LJA La Jolla 32.87 N, -117.26 W 5
LLB Lac LaBiche 54.95 N, -112.45 W 10
MAP Mary’s Peak 44.50 N, -123.55 W 8
MEA Mead 41.14 N, -96.46 W 122
MET Metolius 44.45 N, -121.56 W 34
MOM Morgan Monroe 39.32 N, -86.41 W 48
NGB NGBER 43.47 N, -119.69 W 7
NWR Niwot Ridge 40.05 N, -105.58 W 5
OZA Ozark 38.74 N, -92.20 W 30
ROL Round Lake 43.53 N, -95.41 W 110
SBL Sable Island 43.93 N, -60.02 W 25
SCT South Carolina Tower 33.41 N, -81.83 W 305
SNP Shenandoah National Park 38.62 N, -78.35 W 17
SPL Storm Peak Lab 40.45 N, -106.73 W 9
WBI West Branch 41.73 N, -91.35 W 379
WGC Walnut Grove 38.27 N, -121.49 W 483
WKT Moody 31.32 N, -97.33 W 457
YAH Yaquina Head 44.67 N, -124.07 W 13
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