MCMC-Bayesian Calibration of the Community Land Model for the US-ARM site

OBJECTIVE

Perform a Bayesian calibration of three hydrological parameters in the Community Land Model (CLM)

- Use monthly-averaged observations of latent heat fluxes (LH) at the US-ARM site (Oklahoma) collected during 2003-2006 (48 months, total)
- Compute the uncertainty in the parameter estimates
- Model and compute the structural error in CLM; investigate sensitivity of the calibration to the choice of structural error model

- Investigate sensitivity of calibration to climatological averaging

TECHNICAL APPROACH

Inverse problem

- CLM comes with parameters set at certain default values: often not very predictive

– We seek to calibrate Θ = {F_{drai}, log(Q_{dm}), B}

> - F_{drai}: Decay factor for subsurface runoff with depth

- Qdm: max subsurface drainage
- B: Clapp and Hornberger exponent in the soil water retention curve

LH observation and CLM predictions with parameters set at default values

- Let y^{obs} be log(LH) observations and M(Θ) be the model
- $-y^{obs} = M(\Theta) + \varepsilon, \varepsilon \sim \mathcal{N}(0, \Gamma)$ is a model-data mismatch modeled as a multivariate Gaussian because of time-correlated errors
- Our prior beliefs regarding parameters
- − F_{drai} ~ U(0.1, 5.0); default: 2.5
- $-\log(Q_{dm}) \sim U(\log(10^{-6}), \log(10^{-2})); default : log(5.5 x 10^{-3})$
- $-B \sim U(0.1, 15)$

Bayesian formulation of the inverse problem

- Involves using Bayes' theorem to derive an expression for the probability density of Θ , conditioned on y^{obs}
- Using $\Pi(\Theta)$ to denote the prior distribution on Θ

 $P(\Theta \mid y^{obs}) \propto P(y^{obs} \mid \Theta) \Pi(\Theta)$

$$= \left|\Gamma\right|^{-1/2} \exp\left[-\left(y^{obs} - M(\Theta)\right)^T \Gamma^{-1}\left(y^{obs} - M(\Theta)\right)\right] \Pi(\Theta)$$

- This is a 3-parameter estimation; higher dimension if we estimate Γ
- Will use an adaptive Markov chain Monte Carlo (MCMC) method [1] to compute estimates as a multidimensional posterior distribution.
- Will require O(10⁵) evaluations of CLM
- We need to make a surrogate of CLM if we desire a converged posterior distribution

log(Latent Heat) at US-ARM site, 2003-2006

ENERGY

Z. Hou¹, J. Ray² and M. Huang¹,

¹Pacific Northwest National Laboratory, Richland, WA and ²Sandia National Laboratories, Livermore, CA,

THE ESTIMATION PROBLEM **CONSTRUCTING CLM SURROGATES** Surrogate models **5-parameter estimation for {\Theta, \sigma^2, R} [plotted in black]** - Surrogate model – an inexpensive "curve fit" which approximates the - Priors: $\sigma^2 \sim \text{Exp}$ (mean = 0.145); R ~ Exp (mean = 7.72) input-output mapping by CLM of LH and Θ - A competing model: Assume data-model mismatch is NOT correlated in time (errors are i.i.d. Gaussians); estimate a 4-dimension problem for $\{\Theta, \sigma^2\}$ [plotted in blue] - We propose a polynomial form - Prior: σ^2 modeled with conjugate prior (inverse Gamma distribution) $\log(LH) = \sum_{i=1}^{M} \sum_{i=1}^$ MCMC provides q=0 l=1 j=1distributions for Θ – $- \Theta = \{\theta_1, \theta_2, \theta_3\} = \{F_{drai}, \log(Q_{dm}), B\}; (p+q) < M$ - 5-parameter est. uncertainty quantified Prior - 4-parameter est. Default value Prior - Tested M = 1 ... 5 to explore linear to 5^{th} -order models Default value - Choice of structural error model has little impact on a $- w^{(p,q)}$ i are estimated by linear regression to a training set of CLM runs parameter estimates Calibrated parameters are Selecting and configuring (Log) Latent heat surrogate model errors very different from their surrogates default values (green) Order = 1 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Order = 2 - Sampled 256 points in the Θ -Order = 3 space (via space-filling quasi-Order = 4 — 5-parameter est. — 5-parameter est. Order = 5 5-parameter est Monte Carlo sampling) and ---- 4-parameter est. — 4-parameter est. 4-parameter est. ▽ Prior Default value generated 48-month time-Prior Prior Default value Default value series of log(LH) predictions Constructed polynomial models for each month 0 5 10 15 20 25 30 35 40 45 50 Segregated 85% of the runs into a learning set (LS); Learning set errors for surrogate estimated w^(p,q), using linear models of order 1 to 5 -12 -10 $\log(Q_{dm})$ regression log(Latent Heat) predictions, with IQR and observations - Used AIC to remove **Predictive skill of calibrated model** (Log) Latent heat surrogate model errors (TS/LS superfluous polynomial دی: – Observations terms and prevent overfitting — 5-parameter est., median 5-parameter est., IQR Both models (calibrated with and without 4-parameter est., median Used the remaining 15% of time-correlated structural errors) are 4-parameter est., IQR the runs as the testing set equally predictive (TS); computed the RMS And a big improvement over default prediction error for the fitted values of the parameters polynomial model when . And - Repeated for 100 (LS/TS) pairs The time-uncorrelated errors are preferable – much simpler ~ V – A good model should: 0.5 10 15 20 25 30 35 40 45 50 - Have similar accuracy for LS 20 and TS – else, we have Ratio of LS / TS RMS errors for overfitting Months since Jan. 2003 surrogate models of order 1 to 5 Have a small error (<10%) for We chose quadratic models. Errors are < 4% IMPACT OF CLIMATOLOGICAL AVERAGING **STRUCTURAL ERROR MODEL** - Compute monthly average of LH 5 parameter est. 4 parameter est for observations and CLM 4 parameter est. Spherical semi-variogram predictions Calibration with CLM surrogate: US-ARM site Default value Defaultwalue Observations – Best surrogate prediction – Remake surrogates for 12 months; re-calibrate - Figure (right) plots the PDFs for Θ -14 -12 <u>-10</u> -8 log(Q_{dm}) 0 1 2 3 4 5 Edmi Climatological averaging makes an enormous difference in F_{drai} and Q_{dm} calibrations — 5-parameter est. - 4 parameter est. Final [Fdra, pdm, B] = [4.724e+00, 1.000e-02, 1.000e-01] – Also B is still very different from rel err = 9,278e-02 Default value default value - Default value 10 20 30 Distance (months) – Finally, the calibration error (σ^2) is Deterministic fit of CLM surrogates Spherical semi-variogram modeling far smaller than when calibrating to a 48-month time-series A deterministic calibration of CLM surrogates revealed that the modeldata mismatch may be correlated in time We should expect this calibration 0.00 10 15 to be far more predictive - Correlation was modeled with a spherical semi-variogram; sill σ^2 = 0.145, range R = 7.72 months values are in green - Will henceforth use a spherical semi-variogram to model Γ

POSTERIOR PREDICTIVE TEST

8.4

Predictive skill of calibrated model after climatological averaging

- The calibration is far more predictive than before
- Reflected in the calibrated value of σ^2
- Not clear if this is due to a smaller σ^2 or better/sharper calibration of Θ
- But a huge improvement over the predictive skill of the uncalibrated model

CONCLUSIONS

- Surrogate models can allow efficient Bayesian calibration of CLM parameters
- The calibration is done with MCMC it provides parameters as a joint probability density distribution
 - Automatically quantifies uncertainty in the estimates
 - Allows inference of structural error, magnitude and form
- For the US-ARM site, we find
- 2 out of 3 hydrological parameters are very different from their default values
- Choice of structural error model has very little impact
- Climatological averaging has a huge impact on the calibration; it becomes more predictive as annual variations are averaged out
- But climatological averaging still doesn't get the calibrated parameter values closer to the default ones

Acknowledgements

The project was funded by the Department of Energy Office of Science, via the Office of Advanced Scientific Computing Research (OASCR) and Biological and **Environmental Research (BER) office.**

References

1. H. Haario, M. Laine and A. Mira, "DRAM: Efficient adaptive MCMC", Statistical Computing, 16:339-354, 2006.

For additional information, please contact:

J. Ray, Sandia National Laboratories, jairay@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RLO1830.