
 

‒   5-parameter estimation for {Θ, σ2, R} [plotted in black] 

‒  Priors: σ2 ~ Exp (mean = 0.145); R ~ Exp (mean = 7.72) 

‒  A competing model: Assume data-model mismatch is NOT correlated in time (errors are 
i.i.d. Gaussians); estimate a 4-dimension problem for {Θ, σ2} [plotted in blue] 

‒  Prior: σ2 modeled with conjugate prior (inverse Gamma distribution) 

MCMC-Bayesian Calibration of the Community Land Model for the US-ARM site 

OBJECTIVE 
Perform a Bayesian calibration of three hydrological 
parameters in the Community Land Model (CLM)  

‒ Use monthly-averaged observations of latent heat  fluxes (LH) at the 
US-ARM site (Oklahoma) collected during 2003-2006 (48 months, total) 

‒ Compute the uncertainty in the parameter estimates 

‒ Model and compute the structural error in CLM; investigate sensitivity 
of the calibration to the choice of structural error model 

‒  Investigate sensitivity of calibration to climatological averaging 
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CONCLUSIONS 

‒  Surrogate models can allow efficient Bayesian calibration of CLM 
parameters 

‒  The calibration is done with MCMC – it provides parameters as a joint 
probability density distribution 

‒  Automatically quantifies uncertainty in the estimates 

‒  Allows inference of structural error, magnitude and form 

‒  For the US-ARM site, we find 

‒  2 out of 3 hydrological parameters are very different from their default 
values 

‒  Choice of structural error model has very little impact 

‒  Climatological averaging has a huge impact on the calibration; it becomes 
more predictive as annual variations are averaged out 

‒  But climatological averaging still doesn’t get the calibrated parameter 
values closer to the default ones 
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IMPACT OF CLIMATOLOGICAL AVERAGING	



 

THE ESTIMATION PROBLEM 
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POSTERIOR PREDICTIVE TEST CONSTRUCTING CLM SURROGATES 
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STRUCTURAL ERROR MODEL 

 

 

‒   A deterministic calibration of CLM surrogates revealed that the model-
data mismatch may be correlated in time 

‒  Correlation was modeled with a spherical semi-variogram; sill σ2 = 0.145, 
range R = 7.72 months  

‒  Will henceforth use a spherical semi-variogram to model Γ	



 

 

‒ Compute monthly average of LH 
for observations and CLM 
predictions 

‒ Remake surrogates for 12 months; 
re-calibrate 

‒   Figure (right) plots the PDFs for Θ 

‒  Climatological averaging makes 
an enormous difference in Fdrai 
and Qdm calibrations 

‒ Also B is still very different from 
default value 

‒   Finally, the calibration error (σ2) is 
far smaller than when calibrating 
to a 48-month time-series 

‒  We should expect this calibration 
to be far more predictive  
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Predictive skill of calibrated 
model after climatological 
averaging 

‒  The calibration is far more 
predictive than before 

‒  Reflected in the calibrated 
value of σ2  

‒  Not clear if this is due to a 
smaller σ2 or better/sharper 
calibration of Θ	



‒  But a huge improvement over 
the predictive skill of the 
uncalibrated model 

Surrogate models  

‒  Surrogate model – an inexpensive “curve fit” which approximates the 
input-output mapping by CLM of LH and Θ	



‒  We propose a polynomial form 

 

‒  Θ = {θ1, θ2, θ3} = {Fdrai, log(Qdm), B}; (p+q) < M  

‒  Tested M = 1 … 5 to explore linear to 5th-order models 

‒  w(p,q)
 i,j are estimated by linear regression to a training set of CLM runs 

 
Selecting and configuring 
surrogates 

‒  Sampled 256 points in the Θ-
space (via space-filling quasi-
Monte Carlo sampling) and 
generated 48-month time-
series of log(LH) predictions 

‒  Constructed polynomial 
models for each month 

‒  Segregated 85% of the runs 
into a learning set (LS); 
estimated w(p,q)

 i,j using linear 
regression 

‒  Used AIC to remove 
superfluous polynomial 
terms and prevent overfitting 

‒  Used the remaining 15% of 
the runs as the testing set 
(TS); computed the RMS 
prediction error for the fitted 
polynomial model 

‒  Repeated for 100 (LS/TS) pairs 

‒  A good model should: 

‒  Have similar accuracy for LS 
and TS – else, we have 
overfitting 

‒  Have a small error (<10%) for 
LS 

Inverse problem 

‒ CLM comes with parameters 
set at certain default values; 
often not very predictive 

‒ We seek to calibrate Θ = 
{Fdrai, log(Qdm), B} 

‒  Fdrai: Decay factor for 
subsurface runoff with 
depth 

‒ Qdm: max subsurface 
drainage 

‒ B: Clapp and Hornberger 
exponent in the soil water 
retention curve 

‒ Let  yobs be log(LH) observations and M(Θ) be the model 

‒ yobs = M(Θ) + ε, ε ~ N(0, Γ) is a model-data mismatch modeled as a 
multivariate Gaussian because of time-correlated errors 

‒ Our prior beliefs regarding parameters 

‒  Fdrai ~ U(0.1, 5.0); default: 2.5 

‒  log(Qdm) ~ U( log(10-6), log(10-2)); default : log(5.5 x 10-3) 

‒ B ~ U(0.1, 15) 

 

Bayesian formulation of the inverse problem 

‒  Involves using Bayes’ theorem to derive an expression for the 
probability density of Θ, conditioned on yobs 

‒ Using Π(Θ) to denote the prior distribution on Θ	



 

 

 

‒ This is a 3-parameter estimation; higher dimension if we estimate Γ	



‒ Will use an adaptive Markov chain Monte Carlo (MCMC) method [1] to 
compute estimates as a multidimensional posterior distribution.  

‒ Will require O(105) evaluations of CLM 

‒ We need to make a surrogate of CLM if we desire a converged posterior 
distribution 

LH observation and CLM predictions with  
parameters set at default values 
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Learning set errors for surrogate  
models of order 1 to 5 

Ratio of LS / TS RMS errors for 
surrogate models of order 1 to 5 

We chose quadratic models. Errors are < 4% 

Deterministic fit of CLM surrogates Spherical semi-variogram modeling  

  

‒   MCMC provides 
distributions for Θ – 
uncertainty quantified 

‒  Choice of structural error 
model has little impact on 
parameter estimates 

‒  Calibrated parameters are 
very different from their 
default values (green) 

Predictive skill of calibrated model 

‒   Both models (calibrated with and without 
time-correlated structural errors) are 
equally predictive 

‒  And a big improvement over default 
values of the parameters  

‒  The time-uncorrelated errors are 
preferable – much simpler 

Comparison of PDFs of Q generated before (black) 
and after (blue) climatological averaging. The default 

values are in green 


