
Solution for non-negative ffCO2 emissions 

‒   Incorporate priors 

 

‒  Solve, using StOMP [1] 

‒  StOMP solution does not give non-negative ffCO2 emissions; a few grid cells end up 
with small, negative ffCO2 emissions 

‒  Designed an iterative post-processing method to enforce non-negativity on the 
StOMP solution [2] 

A multiresolution random field model for estimating fossil-fuel CO2 emissions 

OBJECTIVE 
To  develop an estimation method for fossil-fuel CO2 (ffCO2) 
emissions 

‒ Construct a random field model for non-stationary ffCO2 emission 
fields 

‒ Design a reconstruction method to infer ffCO2 emissions from limited 
concentration measurements of ffCO2  

Demonstration problem  

– Estimate weekly-averaged ffCO2 emissions in R, the lower 48 states of 
US, at 1o x 1o resolution, for a year 

–   Pseudo-data or synthetic observations generated using the Vulcan 
inventory of ffCO2 emissions (2002) 

– Examine accuracy and spatial fidelity of the inferred ffCO2 emissions 

J. Ray1, V. Yadav2, J. Lee1, A. M. Michalak2, S. Lefantzi1 and Bart van Bloemen Waanders3 

1Sandia National Laboratories, Livermore, CA, 2Carnegie Institution for Science, Stanford and 3Sandia National Laboratories, Albuquerque, NM  

CONCLUSIONS 

‒  Estimation of ffCO2 emissions required a multiresolution random field model 
to capture its non-stationary behavior in space.  

‒  Used Haar wavelets in the random field model 

‒  Reduced its dimensionality using images of lights at night 

‒  Designed a sparse reconstruction method that fits the random field model and 
preserves the non-negative nature of ffCO2 emssions 

‒  Could estimate only about 50% of the wavelets from limited observations 

‒  The method is an extension of StOMP 

‒  Devised a method based on compressive sampling to limit ffCO2 emissions 
inside an irregular region R while using a model for rectangular random fields  

  

0% 20% 40% 60% 80% 100%1st Qtr2nd Qtr3rd Qtr4th Qtr

0% 20% 40% 60% 80% 100%1st Qtr2nd Qtr3rd Qtr4th Qtr

0% 20% 40% 60% 80% 100%1st Qtr2nd Qtr3rd Qtr4th Qtr

RESULTS	


 

PRIOR MODELS AND NON-NEGATIVITY 
 

Acknowledgements 

The project was funded by Sandia National Laboratories LDRD (Laboratory 
Directed Research and Development program, administered by the 
Geosciences IA. 

SAND2013-10211C 
 
 

NUMERICAL PERFORMANCE RANDOM FIELD MODEL 
Model ffCO2 emissions using wavelets in the box [24.5N, -63.5W] [87.5N, 
-126.5W] 

 

BACKGROUND 

CO2 flux estimation on a grid 

‒ Currently only done for biogenic CO2 fluxes 

‒ Obtained by optimizing an objective function J 

‒  s : CO2 fluxes being estimated 

‒  yobs : observations of CO2 concentrations at a few sites 

‒  spr: prior belief re fluxes from a process-based model like CASA  

‒ H : atmospheric transport model 

‒ R: diagonal matrix of measurement error estimates (variances) 

‒ Q: covariance matrix for the multivariate Gaussian field model for (s – spr) 

‒  Inferred fluxes represent a balance between observations and prior 
beliefs 

For additional information, please contact: 

J. Ray, Sandia National Laboratories, jairay@sandia.gov 
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SPARSE RECONSTRUCTION   
 Inverse problem 

‒   Model: yobs = Hf + ε,  f = ΦR w, w = {wi}, wi ε Ws 

‒    yobs may not inform all wi 

‒  Use sparse reconstruction to remove wi that cannot be estimated 

 

Impose boundary conditions using compressive sampling 

‒  Wavelets in Ws model emissions in a rectangle 

‒  Non-zero ffCO2 emissions are restricted to R 

‒  Permute the wavelets of Φ to separate out emissions in R and outside 
– fR = ΦRw and f’R = Φ’Rw 

 

‒  U is a random matrix – uniform random ensemble 

‒  Randomly project ffCO2 emissions outside R and set them to zero 

‒  No. of rows in U << number of grid-cells outside R (about 1/10); a much 
more efficient way of enforcing zero ffCO2 emissions outside R 

 

Estimated ffCO2 emissions for a week in August 2002 

 

‒  White diamonds indicate measurement sites   

‒  Estimates in the Northeast (with many measurement sites) are accurate 

‒  Emission estimates in the West are not very accurate (not many measurement sites) 
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Enforcement of sparsity 

‒  StOMP finds that only about 
50% of the wavelet 
coefficients can be 
estimated from yobs 

‒  These are the large support 
wavelets and those near the 
measurement sites 

J = (yobs −Hs)T R−1(yobs −HS)+ (s− spr )
TQ−1(s− spr )

This method cannot be used 
for estimating ffCO2 
emission 

‒ spr, obtained from 
inventories, tends to be 
inaccurate at fine 
resolutions 

‒  Especially for developing 
countries 

‒ A multivariate Gaussian 
approximation for (s – spr) is 
unlikely to be accurate (Q is 
hard to model) 

‒ Biospheric fluxes are 
smoothly distributed in 
space (right, above) 

‒  ffCO2 emissions are a lot 
more complex. 

Need to construct a new random 
field model that can efficiently 
represent ffCO2 emission fields 

Global biospheric fluxes 

US ffCO2 emissions from the  
Vulcan inventory 

‒  Modeled Vulcan emissions  
using Daubechies, 
Symmlets, etc. on a 1o 
resolution mesh i.e. 64 x 64 

‒  Haar wavelets proved to 
provide the most 
compressible representation 

Reducing dimensionality from 642 

‒  ffCO2 emissions occur  near 
regions of human activity 

‒  Used radiance-calibrated 
images of lights at night to 
identify such regions 

‒  And removed Haars 
modeling dark/uninhabited 
areas 

‒  Retained 1031/642 wavelets 

We call this the Multiscale Random 
Field (MsRF) model for ffCO2 
emissions 

 

Sparsity of Vulcan emission 
wavelet coefficients at different 

scales 

Radiance-calibrated image of lights 
at night for the US 

Converted the MsRF into a prior ffCO2 emission fpr  model 

 

 

‒  Ws is the set of wavelets in the MsRF, w(X)
I are the Haar wavelet 

coefficients for the lights-at-night radiances 

‒  C is a scaling constant that renders R-integrated emissions equal to 
EDGAR emissions 
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True emissions Reconstructed emissions 

Accuracy of estimates, aggregated over R 

‒  Right: Relative error w.r.t. Vulcan emissions 
around 4%; becomes worst in spring 

‒  Bottom right: Very high spatial correlations 
between estimated and Vulcan emissions 

‒ Bottom: Estimated emissions can reproduce 
observations at various sites 

Generation of synthetic observations yobs 

‒  Generated using emissions from the Vulcan inventory, coarsened to 1o x 1o resolution 

‒  Added an uncorrelated noise ε ~ N(0, σ2), σ = 0.1 ppmv 

Limiting emissions in R via 
compressive sampling  

‒  About 300 compressive 
samples per week are need to 
limit emissions within R (300 
extra constraint equations to 
be solved by StOMP) 

‒  A naïve way to enforce zero 
emissions outside R (in every 
grid-cell) would need about 
3000 constraints 


