Wavelet-based reconstruction of fossil-fuel CO₂ emissions from sparse measurements

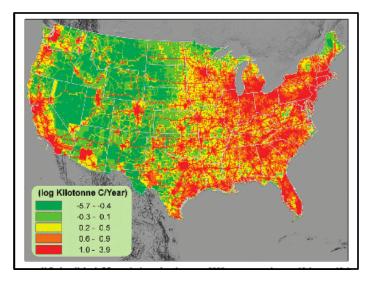
J. Ray¹, V. Yadav³, B. van Bloemen Waanders², A. Michalak³ and S. A. McKenna²

jairay [at] sandia [dot] gov

¹Sandia National Laboratories, Livermore, CA, ²Sandia National Laboratories, Albuquerque, NM ³Carnegie Institution for Science, Stanford, CA

Funded by the LDRD program in Sandia National Labs, Livermore, CA SAND2012-7811P

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

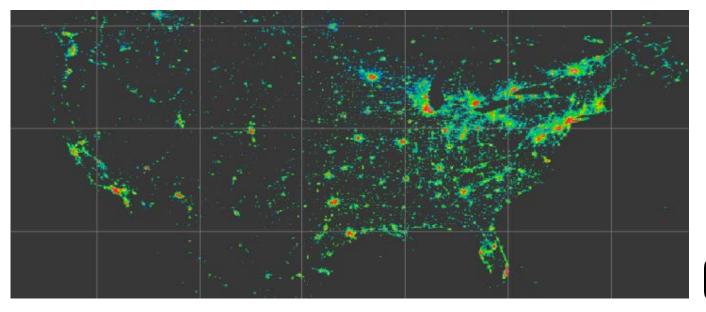

The ffCO2 estimation problem

- Aim: Develop a technique to estimate anthropogenic (fossilfuel) CO₂ emissions from sparse observations
- Motivations:
 - An alternative to estimating ffCO₂ emission using bottom-up (economic model) techniques
 - Databases: Vulcan (2002, US-only); EDGAR, CDIAC (ORNL) etc
 - Can provide independent verification in case of ffCO₂ abatement treaties
- How is it done?
 - Measure CO₂ concentrations in flasks at measurement sites; also column-averaged satellite measurements
 - Use an atmospheric transport model to invert for source locations

Background on ffCO₂ inversion

- Unlike biogenic CO2 emissions, anthropogenic emissions are very nonstationary and multiscale
 - The challenge is in devising a lowdimensional random field model, for use in the inverse problem
- NOAA runs a set of towers which measure CO₂ concentrations every 3 hours – main data source
 - Meant for biospheric fluxes (far from cities); about 100 today
 - We will assume that they can measure ¹⁴CO₂ and ¹²CO₂ separately

 Picture of 2002 ffCO₂ emissions from Vulcan database



Random field model for ffCO2

• An emission field on a dyadic grid, modeled with wavelets

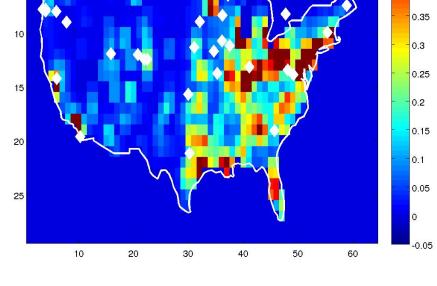
$$e(x) = \sum_{s=1}^{N} \sum_{i=1}^{2^{s}} \sum_{j=1}^{2^{s}} w_{s,i,j} \phi_{s,i,j}(x) = \mathbf{\Phi} \mathbf{w} \qquad \phi \text{ are orthogonal wavelets (bases)}$$

- Conjecture: $w_{s,i,j}$ are mostly zero (i.e., is sparse)
 - Can be hugely sparsified by pictures of lights at night
 - The remaining could be estimated using sparse data (perhaps)

Sparsity enforced reconstruction

• Time-dependent CO_2 concentration measurements, y^{obs} , at a sampling location, due to ff CO_2 emissions e(x) modeled as

$$y^{obs} = \mathbf{H}e = \mathbf{H}\Phi w, \quad e(\mathbf{x}) = \Phi w$$

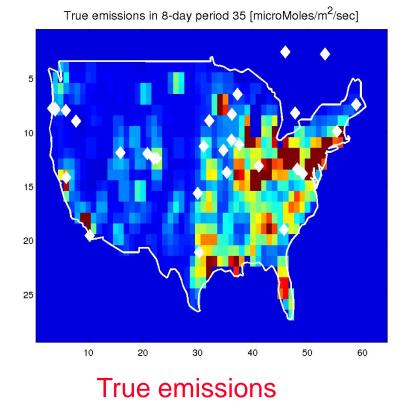

- H = transport matrix, obtained using WRF
- Φ , matrix; columns are wavelets; *w* are the wavelet weights
- Sparsity-enforced reconstruction:
 - Cannot estimate all elements of w, even after sparsifying with nightlights
 - minimize | $y^{(obs)}$ [H][Φ]w|₂ + |w|₁
- Many algorithms to solve this usually formulated as
 - Minimize $|\mathbf{w}|_1$ under the constraint $|\mathbf{y}^{(obs)} [\mathbf{A}][\Phi]\mathbf{w}|_2 < \varepsilon_s$
 - We use StOMP Stagewise Orth. Matching Pursuit

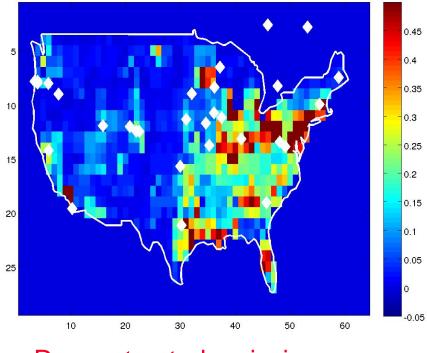
Setting up the synthetic data inversion

- True emissions Vulcan database for US, 2002
 - Used to generate CO₂
 concentrations at towers
 - 3 hr temporal resolution
- Nightlight images (for 1997)

 used to remove wavelets
 from "dark" areas
- Emissions discretized on a grid
 - 1 degree spatial resolution
 Fluxes assumed to be constant over 8-day periods ("a week")

True emissions in 8-day period 33 [microMoles/m²/sec]

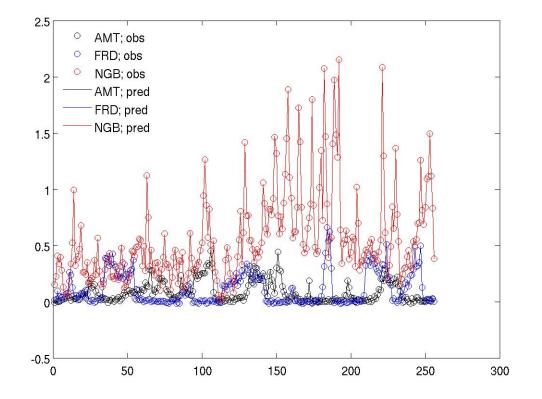

Emissions for a week in August 2002 (Vulcan database, 1 deg resolution)


0.45

0.4

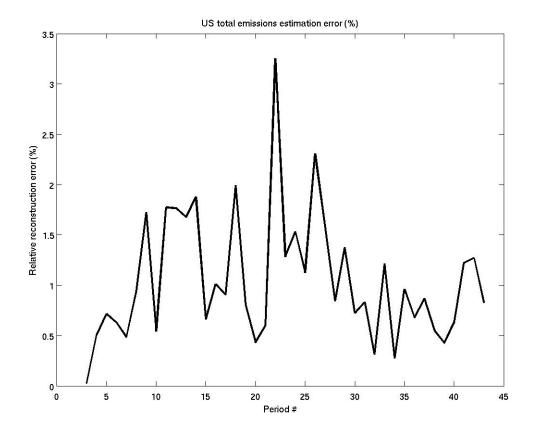
How good is the reconstruction?

Reconstructed emissions in 8-day period 35 [microMoles/m²/sec]

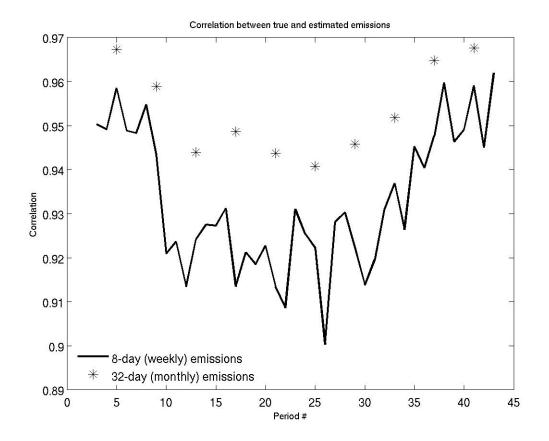

Reconstructed emissions

• A week in September 2002

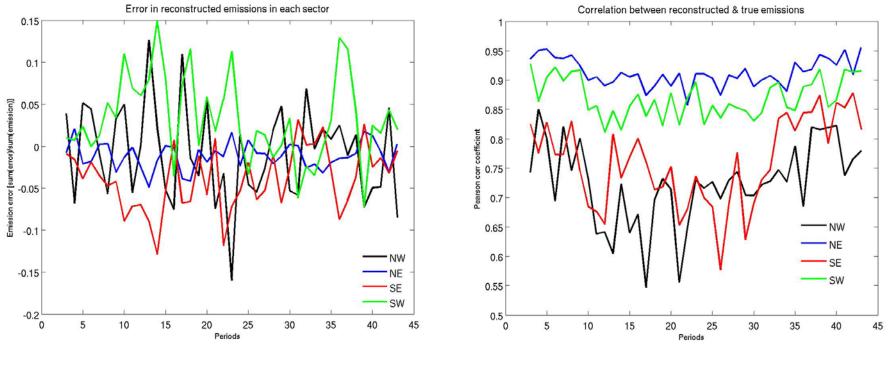
Can we reproduce tower observations?


Anthropogenic CO2 concentrations at 3 towers (ppm) Periods 31 - 34

- Tower concentration predictions with reconstructed fluxes (only 3 weeks)
 - Symbols : observations used in the inverse problem.


Reconstruction error in total US emission

• We get about 3.5% error, worst case


Is the spatial distribution correct?

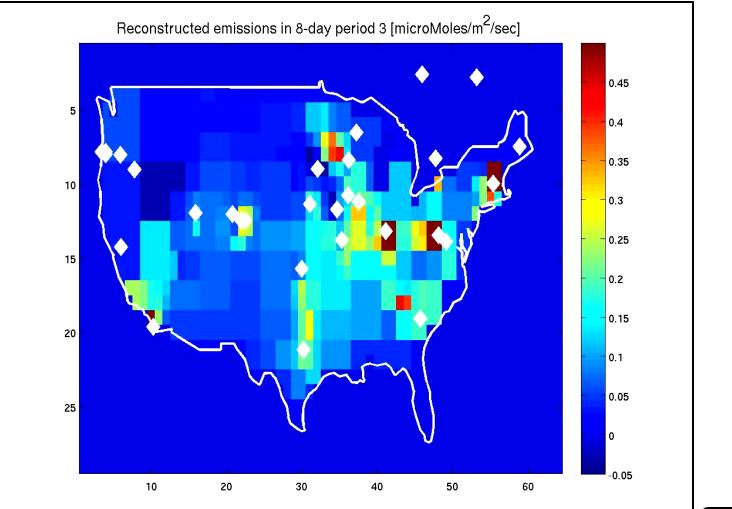
- The spatial distribution of emissions is very close to truth
- Especially, if considering monthly fluxes

Which parts of US are well estimated?

Errors

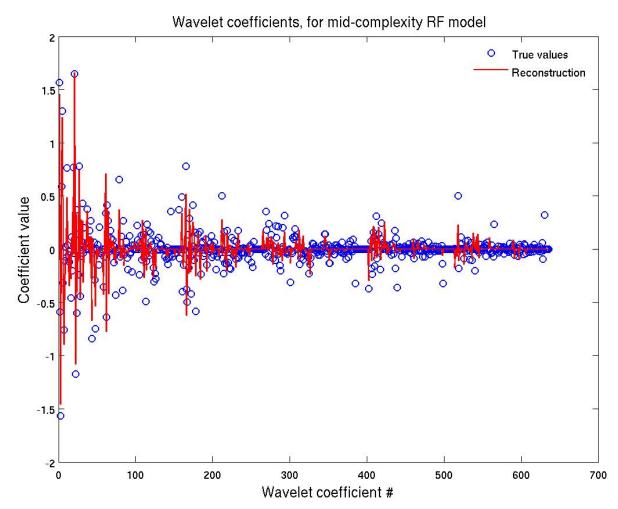
Spatial Correlation

- The NE has the lowest errors and best correlations
- The NW is generally the worst estimated



Conclusions

- A wavelet-based random field model can be used to represent ffCO₂ emissions
- Sparsifying using nightlights does not reduce dimensionality sufficiently
 - need sparsity-enforced estimation in light of sparse measurements
- Not discussed here non-negativity enforcement
 - The emissions estimated by sparsity enforcement can sometimes be negative
 - A post-processing step (non-sparsity enforcing) corrects it
 - Simple and works only because we start with a very good guess
- Under the simplifying assumption of being able to measure ffCO₂, high accuracies can be obtained



Questions?

Did sparsification work?

- Only about half the wavelets could be estimated
- We are probably not over-fitting the problem
 - Data-driven sparsification works

