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Abstract. Markov chains are convenient means of generating realiza-
tions of networks with a given (joint or otherwise) degree distribution,
since they simply require a procedure for rewiring edges. The major chal-
lenge is to find the right number of steps to run such a chain, so that
we generate truly independent samples. Theoretical bounds for mixing
times of these Markov chains are too large to be practically useful. Prac-
titioners have no useful guide for choosing the length, and tend to pick
numbers fairly arbitrarily. We give a principled mathematical argument
showing that it suffices for the length to be proportional to the number
of desired number of edges. We also prescribe a method for choosing
this proportionality constant. We run a series of experiments showing
that the distributions of common graph properties converge in this time,
providing empirical evidence for our claims.
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1 Introduction

Degree distributions (DD) and joint degree distributions (JDD) are some of the
most fundamental properties of real world networks. The degree distribution of
an undirected graph G is a vector f , where f(d) is the number of vertices of
degree d. The joint degree distribution is an n × n matrix J, where the entry
J(i, j) is the number of edges between vertices of degree i and degree j. The
landmark paper [1] observing heavy-tailed degree distributions in real networks
forms the basis of much research on these graphs. Notions like assortativity [2],
that are captured by the joint degree distribution, are an important metric used
to understand these networks. To gain deeper understanding of these graph
properties, we often perform experiments trying to understand how the degree
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distribution affects other graph properties. For example, is assortativity corre-
lated with the clustering coefficient [3]? A key ingredient to performing these
studies is generating uniform random graphs with a prescribed (joint) DD.

Markov chain Monte Carlo (MCMC) methods are a common means of doing
this [4,5,6,7,8]. We start with a given graph with a specified DD (or JDD [8]);
it is often a real graph whose properties we are studying. There is a simple and
standard procedure that performs a random edge swap preserving the DD [4,9,10]
(or JDD [8]). This gives a Markov chain on the space of graphs with the given
DD (JDD), and we take many steps to generate a sample. But how many steps
should we take to generate a uniform random sample?

If a bound on the mixing time of this chain is known, then that gives a
convenient bound on the number of steps to take. For the DD and JDD Markov
chains 1, theoretical bounds have been given [4]. These are of the form O(n6),
where n is number of vertices of the graph. Even for a moderate size of n ≈ 1000,
this is quite useless in practice. Empirically, the number of steps is usually chosen
quite arbitrarily. Since this sampling can often form the basis of experiments, this
is quite dangerous. If a Markov chain has not mixed properly, samples generated
may be highly correlated and conclusions drawn from them can be erroneous.

1.1 Results

The primary goal of this paper is to bridge this gap between theory and practice.
Our results hold for both DD and JDD Markov chains. The results for JDD are
more involved and interesting, so only they are presented in this paper. We
give a mathematically principled argument showing that to generate a graph
with |E| edges, it suffices to run the Markov chain O(|E|) steps. The constant
hidden in the big-Oh depends on a desired accuracy. Our experiments show that
10|E| − 30|E| steps are enough for the purpose of ascertaining various graph
properties.

1. Theoretical results: Mathematically, this range is achieved by approximat-
ing the behavior of the entire Markov chain by a set of coupled 2-state Markov
chains, one for each pair of vertices. This is a heuristic approximation in case
of JDD (but for DD, this is a provable equivalence.) The mixing time of these
2-state chains can be directly bounded by O(|E|) (where the constant is a stan-
dard dependence on the desired accuracy). This means that in O(|E|) steps,
while we may not be able to assert total mixing, each edge appears as if we are
in the uniform distribution. Observe that this is certainly a necessary condition
for total mixing.

2. Empirical results: This is in two parts. First, we give empirical evidence
that our predicted length works in practice. It is quite difficult to directly ascer-
tain that a given sample is truly uniform random [11]. So, for a given length `,
we generate a number of sample graphs, each with a separate `-length walk, and
plot the distribution of a common graph parameter (say, clustering coefficient).
We observe that for ` > 10|E|, these distributions converge and do not change

1 These bounds only hold when the graph generated is not necessarily simple.
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further. On the other hand, when ` is only |E|, the distribution is very far from
reaching convergence. Our predictions clearly match the experiments. Next, we
justify the approximation of the Markov chain on the space of graphs as a set of
coupled 2-state chains. We look at the behavior of an individual edge over a very
long walk in the overall Markov chain, i.e., a long binary time-series with 0/1
indicating the absence/presence of an edge at each step of the Markov chain. If
our approximations are correct, then thinning this series by a factor of O(|E|)
should lead to a sequence of practically independent samples. We run statistical
tests to show that this really does happen.

Our idea is similar to Sokal’s method [12] for deciding the “sufficiency” of
samples obtained from MCMC based on autocorrelation. The idea of Sokal, as
adopted by Stanton and Pinar [8], was to look at the individual edges as a binary
time-series. They then compute the autocorrelation, at different lags, which can
be thought of as a measure of how long it takes for the time-series to become
uncorrelated. It is suggested to keep walking (in the Markov chain) until all
auto-correlations are below a prescribed threshold. However, Sokal’s method has
two major practical drawbacks - (1) the autocorrelation analysis is performed
for all the edges (n2 in number for a graph with n vertices) that might appear
in the MCMC chain and (2) one has to choose a autocorrelation threshold, for
which there are no guidelines. In contrast, our method estimates the number of
Markov chain steps with a closed-form expression.

2 Theoretical analysis

We first describe the Stanton and Pinar Markov chain for preserving the joint
degree distribution [8]. This is analogous to the degree distribution preserving
chain [4,7]. These methods are quite standard and come with schemes to generate
a specific graph with a given DD or JDD.

Consider an undirected graph G = (V,E), where |V | = n and |E| = m. As
mentioned earlier, the joint degree distribution is an n×n matrix J, where J(i, j)
is the number of edges between vertices of degree i and degree j. We will also
use the degree distribution f , where the coordinate f(d) the number of vertices
of degree d.

The process of generating a new graph, from an older one, by swapping edges,
is called “rewiring”. The rewiring is done as follows. We use dv to denote the
degree of v. The process is depicted in Fig. 1. This may lead to self-loops and
parallel edges, and there are methods of dealing with this. We will not get into
those details, and refer the reader to [8]. Note that every vertex maintains its
degree, and the joint degree distribution is always preserved. We also maintain
lists of nodes and edges indexed by their degree, so that for a specified degree d,
a uniform random edge incident to a degree d vertex can be located. The steps
are:

– Pick a uniform random endpoint. This is done by choosing a uniform ran-
dom edge and choosing each endpoint with probability 1/2. Suppose we choose
endpoint u1 incident to edge (u1, v). dv is arbitrary. See Fig. 1.
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– Choose a uniform random edge with an endpoint of degree du1 . Let this
edge be (u2, w). dw is arbitrary.

– Swap edges (u1, v) and (u2, w). This adds edges (u1, w) and (u2, v) and
removes (u1, v) and (u2, w).
Details of the rewiring scheme and a Markov chain driving it to generate (cor-
related) graph samples e.g., discussions of ergodicity etc., can be found in [8].

Fig. 1. The swapping operation for the Markov chain algorithm.

2.1 Approximation by many 2-state Markov Chains

Consider a fixed pair of labeled vertices (u, v). Let us try to understand the prob-
ability that this edge appears or disappears. Based on this, we can approximate
the behavior of the pair (u, v) as a Markov chain. We start with a simple yet
important claim.

Claim. Suppose at some stage in the Markov chain, the edge (u, v) is present.
The probability that it is removed in the next step is

1
m

+
f(du)du + f(dv)dv − du − dv

2m2
. (1)

Proof. The swapping procedure picks two edges, which we shall refer to as e (the
first edge) and e′ (the second edge). If e is chosen to be (u, v), then (u, v) will
definitely be swapped out. The probability of this is 1/m. On the other hand, e
may not be (u, v) but e′ could be (u, v). If the random endpoint of e chosen has
degree du (and is not u), then we might choose e′ to be (u, v). The total number
of edges incident to degree du vertices (but not u) is (f(du)− 1)du. Any of these
edges is a potential candidate for e. Hence, the probability of choosing e with
this property, and then e′ = (u, v) is

(f(du)− 1)du

2m
× 1

m
=

(f(du)− 1)du

2m2
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We could also choose the random endpoint to have degree dv. So the total
probability of choosing e′ = (u, v) is

f(du)du + f(dv)dv − du − dv

2m2
.

The total probability that (u, v) is swapped out is

1
m

+
f(du)du + f(dv)dv − du − dv

2m2
.

ut

While this claim may look fairly innocuous, it makes a very strong observa-
tion. When edge (u, v) is present, the probability that it is swapped out only
depends on the values du, dv, f(du), f(dv). These values are the same regardless
of where we are in the Markov chain, because we always preserve the degree
distribution! Hence, this satisfies the Markov property, and the probability is
independent of the graph itself. But what about the probability that (u, v) be-
comes an edge?

This is unfortunately not truly Markovian, since it could depend on the re-
mainder of the graph. Nonetheless, this dependence appears to be fairly weak.
We can obtain a Markovian estimate for this probability with a simple heuristic.
We guess the number of edges incident to vertex v that are also incident to a
degree d vertex (for some d). Clearly, this number depends on the graph struc-
ture, but we can approximate it based on the JDD. The number of edges from
degree d to degree dv vertices is J(d, dv). Of these, the average number of edges
incident to a fixed vertex of degree dv is J(d, dv)/f(dv). We shall approximate
the number of edges incident to v with the other endpoint of degree d by this
quantity.

Claim. Assume the heuristic approximation above. If at any stage of the Markov
chain, the edge (u, v) is not present, the probability that edge (u, v) appears is
given by

J(du, dv)
2m2

(
du

f(dv)
+

dv

f(du)

)
(2)

We omit the proof for this claim due space limitations; however, it is available
in [13].

We now focus on the presence or absence of the edge (u, v) as we walk through
the Markov chain. Based on the claims above, this can be thought of as a 2-state
Markov chain (state 0 meaning no edge, and state 1 meaning presence of edge).
The transition matrix Tu,v for this chain is

Tu,v =
(

1− αu,v αu,v

βu,v 1− βu,v

)
, (3)

where αu,v (resp. βu,v) is the probability that (u, v) appears (resp. disappears).
These probabilities are given by Eq. 2 and Eq. 1 respectively. We will denote
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this Markov chain by Mu,v and the stationary distribution of it by πu,v. The
eigenvalues of this transition matrix are 1 and 1− (αu,v + βu,v). The important
observation is that the second eigenvalue is at most 1−1/m, by Eq. 1. The next
claim follows from standard Markov chain arguments.

Claim. Set N = m ln(1/ε). Let the final distribution after running Mu,v for N
steps be p. Then ‖p− πu,v‖ < ε.

Observe that πu,v represents the probability of presence/absence edge (u, v)
in the overall stationary distribution of the entire Markov chain. This claim im-
plies that in N = m ln(1/ε) steps, we are very close to the stationary distribution
for each edge. This bound is independent of the edge. So each edge behaves like
it should in the stationary distribution (as far as the overall graph is concerned,
we cannot make a stronger claim).

Proof. Denote the unit eigenvectors of T, corresponding to the eigenvalues 1 and
1− (αu,v + βu,v), as e1 and e2. Since these αu,v + βu,v > 0, these form a basis.
The initial state can be expressed as v = c1e1 + c2e2. After N applications of
the transition matrix we get

p = TNv = c1TNe1 + c2TNe2 = c1e1 + c2 (1− (αu,v + βu,v))N e2.

Since 1 − (αu,v + βu,v) < 1, the second term decays with N and c1e1 is the
stationary distribution πu,v. For convenience, set γ = αu,v + βu,v. The key
observation is that γ ≥ 1/m, by Eq. 1. Hence,

N = m ln(1/ε) ≥ ln(1/ε)/γ. (4)

We can bound the norm of the difference p− πu,v as

‖p−πu,v‖ = ‖(1−γ)Nc2e2‖2 ≤ (1−γ)ln(1/ε)/γc2‖e2‖2 ≤ exp(− ln(1/ε)) = ε (5)

ut

3 Verifying the edge-by-edge convergence

The expression for N , as derived in Section 2.1, is based on a heuristic and has
to be verified. In addition, the expression is derived strictly applicable to an
edge, and it is unlikely that after N steps, all edges will become decorrelated.
The residual number of partially correlated edges and their effect on graphical
metrics have to be quantified.

Below we construct a purely data-driven, non-parametric test for the inde-
pendence of a edge, in a Markov chain of graphs. Any specified edge in a Markov
chain of graphs traces a binary time-series {Zt}, indicating the presence/absence
of the edge at each step of the chain. Assume that the chain is very long, i.e.,
it takes K � N steps. The time-series so formed will be auto-correlated, as
observed by Stanton and Pinar [8]. However, if the time-series is thinned by a
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factor k (i.e., we retain every kth element to obtain {Zk
t }, the k−thinned chain),

the auto-correlation of {Zk
t } will decay and it will begin to resemble indepen-

dent draws from a distribution. If Eq. 4 is correct, then k = N should yield a
time-series that resembles independent draws more than a first-order Markov
process. Resemblance to either process is established by fitting an independent
and first-order Markov process models to the thinned data and computing the
log-likelihood. This forms the basis of our test. While this technique has been ap-
plied in other domains [14,15], this paper is the first application of this technique
to graphs.

Consider the chain {Zk
t }. We count the number, xij , of the (i, j), i, j ∈ (0, 1)

transitions in it. xij are used to populate X, a 2× 2 contingency table. Dividing
each entry by the length of thinned chain K/k−1 provides us with the empirical
probabilities pij of observing an (i, j) transition in {Zk

t }. Let p̂ij and x̂ij =
(K/k − 1)p̂ij be the predictions of the probabilities and expected values of the
table entries provided by a model. In such a case, the goodness-of-fit of the model
is provided by a likelihood ratio statistic (called the G2-statistic; Chapter 4.2
in [16]) and a Bayesian Information Criterion (BIC) score

G2 = −2
i=1∑
i=0

i=1∑
i=0

xij log
(

x̂ij

xij

)
, BIC = G2 + q log

(
K

k
− 1,

)
(6)

where q is the number of parameters in the model used to fit the table data.
Typically log-linear models are used for the purpose (Chapter 2.2.3 in [16]);
the log-linear models for table entries generated by independent sampling and a
first-order Markov process are

log(p(I)
ij ) = u(I) +u

(I)
1,(i) +u

(I)
2,(j) and log(p(M)

ij ) = u(M) +u
(M)
1,(i) +u

(M)
2,(j) +u

(M)
12,(ij),

(7)
where superscripts I, M indicate an independent and Markov process respec-
tively. The maximum likelihood estimates (MLE) of the model parameters (u(W )

b,(c))
are available in closed form (Chapters 2.2.3 and 3.1.2 in [16]; also [13]). We com-
pare the fits of the two models thus: ∆BIC = BIC(I) − BIC(M). Large BIC
values indicate a bad fit. A negative ∆BIC indicates that an independent model
fits better than a Markov model.

This test is applied as follows. We construct a thinned binary time-series
{Zk

t } for k = N for each of the edges. The ∆BIC is computed and edges with
negative ∆BIC are deemed to have become independent after N steps of the
Markov chain.

4 Tests with real graphs

In this section, we estimate an ε for Eq. 4 within the context of a set of graphical
metrics. We also verify that N steps of the Markov chain results in independent
edge instances. All tests are done with four real networks - the neural network
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Table 1. Characteristics of the graphs used in this paper. (|V |, |E|) are the numbers
of vertices and edges in the graph and G-R statistic is the Gelman-Rubin diagnostic.

Graph name (|V |, |E|) G-R diagnostic

C. Elegans (297, 4296) 1.05

Netscience (1461, 5484) 1.02

Power (4941, 13188) 1.006

soc-Epinions1 (75879, 405740) 1.06

of C. Elegans [17] (referred to as “C. Elegans”), the power grid of the West-
ern states of US [17] (called “Power”), co-authorship graph of network science
researchers [18] (referred to as “Netscience”) and a 75,000 vertex graph of the
social network at Epinions.com [19] (“soc-Epinions1”). Their details are in Ta-
ble 1. The first three were obtained from [20] while the fourth was downloaded
from [21]. All the graphs were converted to undirected graphs by symmetrizing
the edges.

In Fig. 2 we investigate the impact of ε in Eq. 4. We generate 1000 samples
by running the Markov chain for 1|E|, 5|E|, 10|E| and 15|E| steps, corresponding
to ε = 0.37, 6.7× 10−3, 4.5× 10−5 and 3.06× 10−7. The Markov chain is started
using the first three networks listed in Table 1. We calculate the global clustering
coefficient, the graph diameter and the maximum eigenvalue for each graph and
plot their distributions in Fig. 2. We find that for all three, ε < 5 × 10−3 leads
to distributions which are very close. We will proceed with ε = 4.5 × 10−5 i.e.,
we will mix the Markov chain 10|E| times before extracting a sample.

We next calculate the fraction of edges that are deemed independent by the
test described in Section 3. We run the Markov chain for K = 1000N steps
and construct the binary time-series {Zt} for all the edges. Thinned time-series
{Zk

t }, k = N are constructed for N = {1, 5, 10, . . . 30}|E| and each time-series
tested for independence. In Fig. 3, we plot the fraction of edges deemed indepen-
dent as a function of N/|E|, for “C. Elegans”, “Netscience” and “Power”. We
see that by N = 10|E|, more than 95% of the edges test independent, explaining
the convergence of the distributions observed in Fig. 2.

The test of independence described in Section 3 can also be used to construct
an ensemble of independent graphs, by running a very long Markov chain, and
thinning by k∗ > N , the thinning factor that renders all edges independent.
Comparisions with graphs generated using N = 10|E| are in [13], and the dis-
tributions are found to be very similar. Thus empirically, we find that a Markov
chain, run for 10|E| steps generates independent, uniformly distributed graphs.

We now address a large graph (soc-Epinions1), where potentially |V |2 distinct
edges might be realized during a Markov chain. While N = 10|E| might render a
large fraction of edges independent, there may still be a significant number (not
fraction) of edges that are still correlated with the starting graph. Since certain
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Fig. 2. Plots of the distributions of the global clustering coefficient, the graph diameter
and the max eigenvalue of the graph Laplacian for “C. Elegans” (left), “Netscience”
(middle) and “Power” (right), evaluated after 1|E|, 5|E|, 10|E| and 15|E| iterations of
the Markov chain (green, blue, black and red lines respectively). The corresponding
values of ε are in the legend. We see that the distributions converge at ε ∼ 1.0−5.

graphical metrics, like diameter, can be quite sensitive to edges, we check whether
a more stringent N is required for large graphs.

We generate an ensemble of 1000 graphs, starting from soc-Epinions1, using
N = 30|E|. We also run a long Markov chain (K = 210, 000|E|), and compute
the thinning factor k required to render each of the edges independent. Due to
the large number of edges realized during the Markov chain, this was calculated
for only 0.1|E| (40,574) edges, chosen randomly from all the distinct edges that
are realized by the Markov chain. In Fig. 4 (left) we plot the distribution of k
obtained from the 40,574 sampled edges. We see that most of the k lie between
10|E| and 100|E|; edges with thinning factors outside that range are about two
orders of magnitude less abundant. The largest thinning factor identified was k =
720|E|. In Fig. 4 (right) we plot the distribution of diameter obtained using N =
30|E|, and compare against the distributions obtained from the long run using
thinning factors k = 5N, 9N, and 13N . We see small differences in distributions;
for practical purposes, N = 30|E| results in a converged distribution.
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Fig. 3. Fraction of edges testing independent, for “C. Elegans”, “Netscience” and
“Power” for various values of N . We see that N = 10|E| ensures that at least 95%
of the edges become independent.

Finally, we address the question whether the results presented so far are
independent of the starting graph. We generate two starting points by march-
ing a Markov chain (initialized by a real network) for N = 10, 000|E| steps.
We initialize 3 concurrent Markov chains with these graphs, and calculate the
Gelman-Rubin (G-R) diagnostic [22] using the binary edge time-series. Values
of the diagnostic between 1 and 1.1 indicate that the states of the concurrent
Markov chain are not dependent on the starting location. We performed this test
for all 4 graphs; the corresponding G-R diagnostics are tabulated in Table 1.

5 Conclusions

We have developed a method that allows one to generate a set of independent
realizations of graphs with a prescribed joint degree distribution. The graphs are
generated using a MCMC approach, employing the algorithm described in [8] as
the “rewiring” mechanism. Our method involves running the Markov chain for N
steps before extracting a graph realization; the Markov chain is run repeatedly
to generate samples. We developed a model (and a closed-form expression) to
estimate N that allows the 2-state Markov chain of an edge to converge to its
stationary distribution. This is a necessary condition for how long a Markov chain
on the space of graphs has to be run before an independent graph realization can
be extracted from it. We find that 10|E| − 30|E| steps are sufficient to generate
samples of graphs that provide converged distributions of graphical metrics like
clustering coefficients, diameter and maximum eigenvalue of the graph Laplacian.
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Fig. 4. Left: The normalized thinning factor k/|E| for the soc-Epinions1 graph, as
calculated for the 40,574 sampled edges. We see that the most thinning factors are lie
in (10|E|, 100|E|). Right: Plot of the graph diameter and distribution generated using
N = 30|E| as well as a long Markov chain with thinning factor k equal to various
multiples of N . We see that the distributions are very similar.

We verified our model (for N) by constructing a non-parametric test for the
independence of each edge. It is not dependent on any heuristics or graphical
properties. It uses the time-series of the occurrence/non-occurrence of edges,
thins them by N and fits a first-order Markov and an independent sampling
model to the thinned time-series. Their BICs are used to perform model selection
i.e., to decide whether the thinned chain resembles draws from an independent
more than a first-order Markov process. The method is not new, but does not
seem to have been used in the generation of independent graphs.

Finally, we repeated our tests with concurrent Markov chains, initialized with
dispersed starting graphs. We employed the Gelman-Rubin diagnostic to verify
that our tests were not being driven by the starting points of the Markov chain.

While this work enables the generation of independent graphs, including
large ones, it has only been demonstrated on graphs where the JDD is preserved.
Extending our method to the generation of independent graphs when some other
graph property is held constant is currently under investigation.
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