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Abstract

We present a Bayesian technique to estimate the fine-scale properties of a binary
medium from multiscale observations. The binary medium of interest consists of a
low-permeability matrix with embedded high-permeability inclusions. The inclusions
are far smaller than the domain sizes of interest, and thus are never explicitly resolved.
We consider the problem of estimating the spatial distribution of the inclusion propor-
tion, F(x), and a characteristic length-scale of the inclusions, δ, from sparse multiscale
measurements. The observations consist of coarse-scale (of the order of the domain
size) measurements of the effective permeability of the medium (i.e., static data) and
tracer breakthrough times (i.e., dynamic data) at a sparsely distributed set of locations.
This ill-posed problem is regularized by specifying a Gaussian process model for the
unknown field F(x) and expressing it as a superposition of Karhunen-Loève modes.
The effect of the fine-scale structures on the coarse-scale effective permeability i.e.,
upscaling, is performed using a subgrid-model which includes δ as one of its parame-
ters. A statistical inverse problem is posed to infer the weights of the Karhunen-Loève
modes and δ, which is then solved using an adaptive Markov Chain Monte Carlo
method. The solution yields distributions for the objects of interest, thus providing
most probable estimates and uncertainty bounds on latent fine-scale structures. The
technique is tested using synthetic data. The individual contribution of the static and
dynamic data to the inference are also analyzed.
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Figures
1 (a) The 2D rectangular domain D with associated dimensions. No-flow

boundary conditions are defined on ∂D . A grid-block showing the collo-
cation for pressure p and the velocities (u,v) in the x- and y-directions is
shown. (b) We show a schematic of a binary medium with the light, higher
permeability inclusions in a darker lower-permeability matrix. (c) The true
Ft

c(x) field for the proportion of inclusions. (d) The true upscaled log-
permeability field Kt

c. (e) The 30× 20 coarse-scale computational mesh
with the locations of 20 sensors (sensor-set A, SSA). (f) We show the loca-
tions of the 34 sensors in sensor-set B (SSB). . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Plots of Ke calculated using the link function L , as well as numerically
estimated from a random binary medium using MODFLOW-2005, as a
function of F(x). Left: The plots are for a medium where δ = 10 grid-cells.
Right: δ = 75 grid-cells. We see that the numerically estimated Ke form
a cloud around the value predicted by L . This is because {F(x),δ} is an
incomplete description of a random binary medium, and an infinite number
of realizations, each with its own permeability, can be conditioned on such
an incomplete specification. The break in L predictions at F ≈ 0.5 is due
to percolation effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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3 Plot of the joint and marginal probability densities of w1,w15,w30 and ln(δ)
from the posterior distribution. The joint distributions show very little cor-
relations between the Karhunen-Loève modes at the large, medium and
small scales, as well as their correlations with δ. Also, PDF of the individ-
ual parameters are roughly Gaussian, with the exception of δ. . . . . . . . . . . . 41

4 Results from the inference, computed using 9500 samples from the pos-
terior distribution. In the top row, we plot the means F = E[F(x)] and
Ke = E[Ke]; they bear a strong resemblance to the true values in Fig. 1
(middle row). In the middle row, we plot the grid-block-wise standard de-
viation of Fi(x) and Ke,i; they are smallest at the sensor locations. In the
bottom row, we plot the errors εF = Ft

c(x)−F and εK = Kt
c−Ke, which

show large values in regions of high gradient where the representation er-
rors due to the smooth Gaussian process model are the largest. . . . . . . . . . . 42

5 Results from the inference, computed using 9500 samples from the poste-
rior distribution. Only static data was used to draw the inferences. In the
top row, we plot the means F and Ke which are worse than those seen in
Fig. 4. Further, Ke has larger errors than F due to its finer structures. In the
middle row, we plot the grid-block-wise standard deviation of Fi(x) and
Ke,i; they are larger and more widely distributed than their counterparts in
Fig. 4. In the bottom row, we plot the errors εF and εK , which show larger
values in regions of high gradient. Further, the errors are higher and more
widely distributed compared to their counterparts in Fig. 4. . . . . . . . . . . . . . 43

6 Results from the inference, computed using 9500 samples from the poste-
rior distribution. Only dynamic data was used to draw the inferences. In
the top row, we plot the means F and Ke. The inferences are far worse
than those seen in Fig. 4 and show little resemblance to the true Ft

c(x) and
Kt

c plotted as contours over them. Given such a large lack of fidelity, the
standard deviations and errors plotted in the middle and last rows have lit-
tle significance, but are reproduced here for completeness. Note that while
Fig. 4 and Fig. 5 share the same color scales, the range had to be adjusted
in this figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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7 Marginalized PDFs of w1,w15,w30 and ln(δ) as inferred from k(obs)-only
(dotted lines), t(obs)

b -only (dashed lines) and jointly from (k(obs), t(obs)
b ) (solid

lines). The priors are plotted with ∇ for comparison. Top left: we see that
the posterior for w1 is almost entirely accounted from by the k(obs)-only in-
version (“static data only”); the posterior for w1, when inferred from t(obs)

b
only (“dynamic data only”) is little different from the prior. Top right: We
see that both static and dynamic data contribute to the posterior of w15; the
joint (k(obs), t(obs)

b ) inversion is quite different from the other two. Bottom

left: Surprisingly, neither k(obs) nor t(obs)
b are individually informative of

the finer scales. However, when k(obs) can account from the coarse scales,
t(obs)
b can “fill in” the information on the finer scales. This is seen in the

posterior for w30 jointly conditioned on (k(obs), t(obs)
b ). Bottom right: Note

that the posterior density of ln(δ) obtained from (k(obs), t(obs)
b ) as well as

just {t(obs)
b ) are skewed somewhat to the right of the prior, while that of

the static-data-only inversion is skewed left. The prior and posteriors are
truncated at ln(δ) = 0,4.6 but the kernel density estimates used to create
plots smooth them near the truncation limits. . . . . . . . . . . . . . . . . . . . . . . . . 45

8 Top left: Q-Q plot of the posterior of w1 developed with both static and dy-
namic data (solid line) compared to that obtained from static data only (dot-
ted line) and dynamic data only (dashed line). We see that there is little dif-
ference; the length-scale of the first Karhunen-Loève mode is large enough
that the sensor grid provides a sufficiently complete sampling and break-
through times contribute little. Top right: the posteriors for w15, which
show the impact of dynamic data. The inference drawn from static data
only underpredicts the value of w15. However, the inference drawn from
just the dynamic data is not very informative. Bottom left: Inference of
w30 is determined entirely by the breakthrough times since the length-scale
of the Karhunen-Loève mode is too small to be sampled by the sensors in
SSA. Consequently, the posterior developed from the static data only is in-
distinguishable from the prior. Strangely, the posterior conditioned on just
the dynamic data is indistinguishable from the prior i.e., the dynamic data,
by itself, does not inform very efficiently on the finer structures. Bottom
right: The posterior density for ln(δ) obtained from {t(obs)

b } is indistin-

guishable from that obtained with (k(obs), t(obs)
b ). . . . . . . . . . . . . . . . . . . . . . 46
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9 Prior and marginalized posterior values of the Karhunen-Loève mode weights
w1,w15,w30 and ln(δ) as computed using the sensor-sets SSA (solid line)
and SSB (dashed line). We see that the posteriors for w1 are similar, indi-
cating that the higher sensor density of SSB collects little extra information
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ing that the uncertainty in their values may have been underestimated in
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shallower than that obtained from SSA, though the maximum a posteriori
estimate for ln(δ) remains approximately unchanged. . . . . . . . . . . . . . . . . . 47

10 Results from the posterior predictive check for breakthrough times con-
ducted by generating Ke,i and using M (K) to generate the breakthrough
times. Top: The filled, inverted triangles are the observations at the sen-
sors. The median breakthrough times from the posterior predictive checks
are plotted with open symbols and the error bars denote the 1st and 99th

percentiles of the breakthrough time distribution. Left: We plot the re-
sults and the observations for SSA. Right: We plot the results for SSB.
We see that the difference between the 1st and 99th percentiles is generally
smaller for the SSB results, indicating a reduction in predictive uncertainty.
Bottom: We plot the verification rank histogram for the ranks of the obser-
vations, given the predictive distribution of breakthrough times. Ideally,
the histograms should be uniform; however, the histogram for the SSB pre-
dictions is marginally better (see the deviation-from-uniformity score in
Table 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

11 Fine-scale realizations of the random binary field conditioned on the obser-
vations and showing a single flowpath from the injection wells to each SSA
sensor. These were developed from the posterior distribution of {w,δ} us-
ing the mG-based technique described in Sec. 3.3. The center image (e)
is the ground truth fine-scale realization. White indicates high permeabil-
ity and gray is low permeability. Variation in the binary patterns are due
to the stochastic nature of the process and the variation in the estimated δ

parameter between realizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
12 Comparison of the median travel times to the SSA sensors for three dif-

ferent data combinations. Left: Breakthrough time CDFs are shown for
an example location (sensor 14). Right: The circle plots summarize the
breakthrough time distributions and compare them to the true breakthrough
times for all sensor locations. Details are in the text. “Coarse & fine” refer
to realizations conditioned jointly on {k(obs), t(obs)

b }, “Coarse only” refer to
inferences using on {k(obs)} while “Fine only” indicates inferences condi-
tioned only on {t(obs)
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14 Stages in the construction of the conditional PDF P(∆K|F,δ). Top left: We
create multiple realizations of the fine-scale random binary media field and
plot their true upscaled log-permeability (as a cloud) and the model predic-
tion Ke = L(F,δ), for δ = 38 grid-cells. Top right: we show the samples
and the boxes from Level 4 of the KD-tree holding the boxed samples.
Bottom left: We plot the kernel density estimate of P(∆K,F) for δ = 38
grid-cells, constructed using Epanetchnikov kernels (after over-smoothing
the bandwidths to remove isolated modes). Bottom right: We plot the con-
ditional distribution P(∆K|F), for δ = 38 grid-cells, for various values of
F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

15 Q-Q plot for the posterior distribution of w1 (left) and w30 (right). The
solid line denote the Q-Q plot for inference developed with the KDE error
model described in this section; the dashed line denote those that used the
Gaussian model of Sec. 4. Only static data was used. The prior is plotted
with dots. We note that the KDE model results in a plot that is not a straight
line (for w1); also the plots are different when the KDE and Gaussian mod-
els are used. Right, we see that the static data made no difference to the
inference of w30; the posterior is indistinguishable from the prior. . . . . . . . . 62

16 Posterior PDFs for {w1,w15,w30, ln(δ)} using the KDE error model, ob-
tained with static data only (dotted lines), as well as static and dynamic
data (solid line). We see that dynamic data affects the posterior for the
higher Karhunen-Loève modes, as in Sec. 4. Also the impact of the static
data is limited to the lower Karhunen-Loève modes. We see that the impact
of dynamic data on ln(δ) is low. We also plot the posterior PDF obtained
using the Gaussian error model in Sec. 4. We see that at the finer (higher)
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sian data model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

17 Distributions of the tracer breakthrough times at the 20 SSA sensors, ob-
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Those plotted in black were developed using the KDE error model; the ones
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same irrespective of the error model (KDE/Gaussian) used; i.e. our choice
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Tables
1 CRPS, MAE, IS and VRHD for the predictive ensembles of breakthrough

times developed from the SSA and SSB sensor sets (see Fig. 10). CRPS,
MAE and IS have units of breakthrough times i.e., they are non-dimensional.
The VRHD was calculated as the mean of absolute deviations of the fre-
quencies from one (the dashed line in Fig. 10). We see that the ensemble
developed from the SSB set is somewhat better, reflecting the effect of a
larger set of observations. The interquartile range was used to calculate IS. 39

2 Tabulation of the discrepancy between the observed and predicted break-
through times at the 20 SSA sensors. All values are in dimensionless time.
The predicted breakthrough time, in this context, is the median of the break-
through times calculated over 1000 fine-scale realizations. This result cor-
responds to the offset of the circles from the center in Fig. 12. The “Nomi-
nal config.” is the configuration where the fluid is injected at the lower left
corner of the domain and extracted at the upper right; the “Flipped config.”
is the configuration where the injector is at the top left and the producer
at the bottom right. {k(obs), t(obs)

b } indicates fine-scale realizations devel-
oped from the inversion using both static and dynamic data; “{k(obs)}” and
“{t(obs)

b }” indicate inferences drawn from just the static (“coarse-scale”)
and dynamic (“fine-scale”) observations. Note that the observations were
drawn only in the nominal configuration. We see that the posterior predic-
tions are closer to observations in the {k(obs), t(obs)

b } case, which use both
the static and dynamic data, compared to the cases when only one type
of data is used. Fine-scale realizations obtained from {k(obs), t(obs)

b } data
are also surprisingly accurate when predicting breakthrough times in the
“flipped” configuration. This predictive robustness is missing in the real-
izations drawn from only one type of data – static (coarse-scale) or dynamic
(fine-scale); the errors in the predictions for the “flipped” configuration are
quite large. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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3 Tabulation of the variation predicted breakthrough times at the 20 SSA
sensors. Variation is defined as the width of the central 95% of the break-
through times predicted by the 1,000 fine-scale realizations and corresponds
to the radius of the circles in Fig. 12. The “Nominal config.” is the con-
figuration where the fluid is injected at the lower left corner of the domain
and extracted at the upper right; the “Flipped config.” is the configura-
tion where the injector is at the top left and the producer at the bottom
right. {k(obs), t(obs)

b } indicates fine-scale realizations developed from the

inversion using both static and dynamic data; “{k(obs)}” and “{t(obs)
b }” in-

dicate inferences drawn from just the static (“coarse-scale”) and dynamic
(“fine-scale”) observations. Note that the observations were drawn only in
the nominal configuration. We see that the posterior predictions are closer
to observations in the {k(obs), t(obs)

b } case, which use both the static and
dynamic data, compared to the cases when only one type of data is used.
Fine-scale realizations obtained from {k(obs), t(obs)

b } data are also surpris-
ingly accurate when predicting breakthrough times in the “flipped” con-
figuration. This predictive robustness is missing in the realizations drawn
from only one type of data – static (coarse-scale) or dynamic (fine-scale);
the errors in the predictions for the “flipped” configuration are quite large. . 56
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Bayesian estimation of unresolved fine-scale
properties of binary media from multiscale

observations

1 Introduction

A binary medium is one that can be adequately described in terms of inclusions embedded
in a matrix. The inclusions and the matrix can have vastly different properties, and the
effective behavior of the binary medium arises as a nonlinear interaction of the dynamics
of the binary medium’s two constituents. Further, the inclusions need not be distributed in
the matrix evenly; also, their own properties, e.g., inclusion size, might vary in some struc-
tured manner over the entire domain. Thus, binary media can exhibit complex behaviors
and rich dynamics. Examples of binary media are fractured rock (with the fractures acting
as high permeability inclusions), sandstone layers with embedded shale, and engineered
composite materials. The human skin, specifically, the stratum corneum, is another exam-
ple; it consists of low permeability corneocytes separated by a lipid membrane (sometimes
considered to be the “matrix”) which conducts organic compounds easily.

In many practical cases, e.g., fractured rock, the domain size of the binary medium (hence-
forth, the coarse-scale) may be a few orders of magnitude larger than the size of the inclu-
sions. In such cases, it is impractical to measure the inclusions individually. However, the
length-scale contrast between the inclusion and domain size is not large enough that the
inclusions can simply be homogenized i.e., the domain cannot simply be represented by a
mean value for the effect of the inclusions, but rather requires a more detailed characteri-
zation of the fine-scale. We call such behavior “multiscale”.

This multiscale behavior raises the possibility that it may be possible to infer the character-
istics of the latent fine-scale from a judicious set of measurements conducted at the coarse
and fine scales. In order to do so, one requires a link function L , a model that locally
captures the effect of fine-scale processes and structure at the coarse-scale. If this model
is parameterized by structural/dynamical properties of the fine-scale, it becomes possible
to construct statistical summaries for the fine-scale too. Once done, one may create re-
alizations of the fine-scale that are equally consistent with observations at both scales; in
the limit of an infinite number of error-free observations and with an error-free model, one
should recover the true fine-scale.

We demonstrate inversion with a binary medium consisting of high-permeability inclu-
sions in a low-permeability matrix. The permeabilities of the two materials, Kl and Kh,
are known. We assume that we have noisy measurements of the effective log-permeability
of the medium, k(obs), at a few locations; they provide highly localized insights into the
fine-scale structure and are referred to as static data. We also assume that we have noisy
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measurements of breakthrough times, t(obs)
b , of a tracer at the same locations, from a pump

test1; they capture the integrated effect of fine-scale variations and are referred to as dy-
namic data. The proportion of inclusions F(x) are assumed to vary in space in an unknown
but smooth manner with a known covariance structure. The inclusion sizes are assumed
to vary randomly in space in an uncorrelated manner, and are represented by an unknown
average size, δ. Together, F(x) and δ constitute a characterization of the fine-scale binary
medium and their estimation from data d = {k(obs), t(obs)

b } constitutes a statistical summary
of the fine-scale. Further, in conjunction with a model for generating fine scale structures
given F(x) and δ, one can also develop realizations of the latent, unresolved fine-scale
consistent with the observations.

The estimation of F(x) and δ is posed as a Bayesian inverse problem, predicated on a for-
ward problem M (K) that predicts the breakthrough times tb at the observation locations.
Ke, the effective log-permeability field, is obtained from F(x) and δ via a link function
i.e. Ke = L(F(x),δ). The link function L is based on the upscaling of a random binary
field created using excursion sets of multiGaussian fields convolved with a (Gaussian) ker-
nel of size δ and truncated using F(x). To reduce the dimensionality of the inversion, we
develop a reduced-order model (ROM) of F(x), based on a Karhunen-Loève (KL) decom-
position of a 2D field. This allows us to generate F(x), and consequently Ke = L(F(x),δ),
in a parametric manner by varying δ and w = {wi}, i = 1 . . .M where M is the number of
Karhunen-Loève modes retained in the ROM and wi are their weights. Associated pre-
dictions of tb are obtained using M (K). The discrepancy between the observations (both
static and dynamic) are attributed to errors, which are modeled either simply as i.i.d. Gaus-
sian random variables (Sec. 4) or in a more sophisticated manner in case the errors are
heteroscedastic (Sec. 6). The inverse problem is solved by sampling over the (w,δ) space
using an adaptive Markov Chain Monte Carlo (MCMC) technique and constructing a joint
posterior probability density distribution P(w,δ|d) from the samples. P(w,δ|d) is there-
after used in posterior predictive checks, to construct fine-scale realizations of the binary
medium, gather statistics on Ke and tb at the observation locations and gauge the quality of
the fit of the model to data.

The paper is structured as follows. In Sec. 2 we review literature on the key elements of the
research presented here. In Sec. 3 we describe the forward model M (K), the link function
L , and models used for reducing the dimensionality of the inverse problem. In Sec. 4, we
pose the inverse problem and test the inversion technique on a problem where homoscedas-
tic errors are modeled as i.i.d Gaussian variables. In Sec. 6 we address heteroscedastic
errors, caused by the approximate model for Ke whose accuracy varies with F(x) and δ.
We draw our conclusions in Sec. 7.

1We define a pump test as follows: Water is transported through a porous medium by pumping under a
steady pressure gradient. Once a velocity field has been established in the porous medium, a non-reactive
tracer is injected in; the time it takes to arrive at various measurement points is called the breakthrough time.
The exact configuration for the test that we will use in this paper is described in Sec. 4

14



2 Literature review

The estimation of field variables (permeabilities, hydraulic conductivities etc), per se, have
long been topics of active research in hydrology; see [1, 2] for recent reviews. In this
section we restrict ourselves to reviewing existing literature on the multiscale (or multi-
level) inference of log-permeability fields modeled as random fields, methods for generat-
ing topologies for random binary fields, upscaling models for binary media and adaptive
MCMC samplers.

2.1 Estimation of random fields

The use of random fields to regularize a spatial variable has been explored within the con-
text of inferring log-permeability fields. Lee et al. [3] considered the estimation of spa-
tially dependent permeability by modeling it as a random field. They discretized a rect-
angular domain with a Cartesian mesh, and estimated the permeability in each grid-block
from dynamic data obtained from an “inverted 9 spot test”. Two separate prior models
were adopted for the random field to regularize the problem – a Markov random field
(MRF) model with an unknown precision parameter (i.e., the precision parameter was also
inferred which estimating the permeability) and a model based on Gaussian processes (GP)
with a known variogram and mean permeability in the rectangular domain. Neither of the
two models reduced the dimensionality of the problem i.e., the number of parameters being
estimated was equal to the size of the Cartesian mesh, which ranged between 322 and 642 .
This required specialized updating schemes to improve mixing in the Metropolis-Hastings
sampler used to construct the posterior distribution of the permeability field. About 50,000
samples were required. MRF priors were also used by Wang et al. [4] when estimating the
initial (spatial) distribution of a contaminant embedded in a porous medium. The contam-
inant was transported by groundwater flows and time-variant concentration measurements
were available at a few locations. They employed a hierarchical Bayesian formulation to
estimate the concentration distribution as well as the precision of the MRF model and the
variance of the measurement error. As in [3], no attempt was made to reduce the dimen-
sionality of the inference problem. Fu and Gómez-Hernández [5, 6] present a more re-
cent example of the use of MCMC with blocked-updating when inferring log-permeability
fields. Unlike Lee et al. [3] where a red-black decomposition of grid-blocks was used to
update the log-permeability field (modeled as a MRF) in the MCMC, they used a multi-
Gaussian representation for the object of inference and devised a specialized technique for
constructing the proposal within the MCMC. In particular, they divided the grid-blocks in
the Cartesian mesh into concentric “strips”, which were updated together as a block in the
MCMC; the proposals for the blocks were obtained by kriging the log-permeabilities in the
strips surrounding the block in question. An independent sampler was used for the strips
near the domain’s perimeter.

In field inversions, one often employs a parsimonious expansion of the object of infer-
ence in terms of a suitable set of bases. In [7], Li et al. address this problem by using a
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Karhunen-Loève expansion of the covariance matrix of a random field. The authors con-
sider the problem of estimating the log-conductivity of a reservoir from measurements of
the steady-state hydraulic heads. The spatially variable log-conductivity field was mod-
eled using a Gaussian Process (GP). The authors preserved 400 Karhunen-Loève terms
in their expansion of the log-conductivity field and approximated the posterior distribu-
tion (i.e., conditional on head measurements) as a multivariate Gaussian. The posterior
mean was estimated by posing a quadratic optimization problem and a lower bound on
the posterior covariance was derived. They also performed a modified posterior predictive
test due to Kitanidis [8] to gauge the quality of their inference. As part of their inference
problem, the authors also estimate structural parameters – the variance and correlation
lengths – but find that the posterior variance on the inferred parameters is large, in keeping
with the observations of [8] and [3]. The use of Karhunen-Loève expansion to provide a
reduced-order model for a random field was used by Marzouk et al. in [9] to estimate a
log-diffusivity field. They considered a problem in 1D heat conduction in a domain with
distributed (known) intermittent heat sources. They assumed that while the correlation
length of the log-diffusivity field was known, the scale was not. The log-diffusivity field
was modeled using 8 Karhunen-Loève bases, whose weights, along with covariance scale,
were the objects of inference. The noisy measurements were that of temperature at a few
“sensor” points; however, they were also functions of time. A model of nonlinear heat
conduction was fitted to the measurements using a random-walk MCMC sampler. O(105)
MCMC sample were required to reconstruct the posterior distribution of the log-diffusivity
field. The authors compared their method with a random-field representation that was not
approximated i.e., the full covariance matrix was assumed known and used in the infer-
ence, resulting in an inverse problem of far higher dimensionality. As might be expected,
the lower-dimensional inverse problem based on Karhunen-Loève expansions was easier
and faster to solve; what was unexpected was that the Karhunen-Loève expansion, which
was based on the prior covariance, proved to be such an efficient means of representing the
posterior distribution of the log-diffusivity field.

The use of a basis set other than Karhunen-Loève modes has also been investigated. In [10],
Jafarpur and Mclaughlin compare the use of a Karhunen-Loève transform versus the dis-
crete cosine transform (DCT) and find the latter to be more advantageous. In [11] they
couple the reduced order DCT model to an ensemble Kalman filter to infer permeability
fields as well as reservoir states via history matching. In [12], they use the discrete cosine
bases as a sparse representation for the log-permeability field and infer their value as well
as the sparsity pattern via history matching. A deterministic algorithm was used for fitting,
while sparsity of the bases was ensured using a L1 norm. To the authors’ knowledge, this
is the first use of compressive sensing ideas in a nonlinear, inverse problem outside image
and video processing.

Multiscale/multilevel inversion techniques seek to infer fine-scale structure of a field by
assimilating data at multiple scales. This is because many types of measurements e.g.,
breakthrough times, often contain significant information regarding fine-scale structures
of the medium being interrogated. However, performing such an inference, even after di-
mensionality reduction, using conventional techniques can be extremely challenging since
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the forward problem has to be solved at a higher resolution to capture subtle fine-scale ef-
fects. Within the context of multilevel inference, the coarse-scale assimilation can be per-
formed efficiently with low-resolution/low-fidelity models, and thereafter condition fine-
scale models on inferences drawn at a coarser level. In [13] Ferreira et al. present a multi-
level scheme for the inference of 1-D log-permeability fields. The log-permeability field
was modeled as a multivariate Gaussian on each level. The primary novelty lay in the
scheme for determining log-permeabilities at a level conditional on the log-permeabilities
at an adjoining level. A somewhat simpler approach, though still based on a multilevel
mesh, has been studied in [14]. The simplifications lie in the interlevel transfers – up-
scaling is performed via a geometric average of permeabilities while downscaling involves
kriging. Further, unlike in [13], only a single iteration between levels was performed.
Three levels were used. A similar approach, but with two levels, was demonstrated in [15]
where two separate Metropolis-coupled MCMC chains were run for the coarse and fine
levels. This allowed the faster running (and better mixing) coarse model to scan and sam-
ple the log-permeability space efficiently; occasional swapping allowed the slower-running
fine-scale MCMC chain to benefit from the coarse-scale chain’s properties. A similar ap-
proach with Metropolis-coupled chains was also investigated (with encouraging results)
in [5] (“Scheme no. 5”).

Multiscale inference may also be performed by simply using a coarse/approximate model
as a filter/preconditioner for MCMC proposals. Such an idea was investigated by Efendiev
et al. [16] where they inferred the log-permeability field of a reservoir from production
data. They used a Karhunen-Loève expansion of the log-permeability field (with 20 terms)
to reduce the dimensionality of the inverse problem. They used a very coarse (low-resolution)
model of flow through porous media to scan through the parameter space. Any proposed
log-permeability field that was provisionally accepted by the coarse-scale model was re-
run using the fine-scale model. The interpolation of the coarse log-permeability field to
the finer one was simplified by their use of multiscale finite element bases in their forward
problem. However, the authors mention that the acceptance rate was rather small, primarily
due to the quality of the proposals in the MCMC chain. In [17] Efendiev et al. ameliorated
the simulation by adopting a Langevin diffusion model so that their proposals would be
tailored to the local topology of the posterior distribution. An added efficiency gain was
identified by them due to the smooth nature of the pressure field that drove transport in the
reservoir simulation. Velocities on the fine-scale were calculated using the “interpolated”
coarse-mesh pressure, saving the expense of a large elliptic solve for pressure on the fine-
scale mesh. The strategy of using a coarsened model to perform a preliminary scan of a
proposal within the context of a MCMC scheme was also used in [5] (“Scheme no. 4”).

A combination of dimensionality reduction and multiscale inference has also been investi-
gated by the use of “zonation” [18, 19, 20]. The procedure starts with dividing a domain
into a small number of zones, identified using level sets and estimating hydraulic parame-
ters by optimization, conditioned on observations. The parameters are assumed to be con-
stant inside a zone. The level sets are further subdivided (in a manner similar to recursive
mesh refinement) to improve the model fit; subdivisions that improve the fit are retained.
The algorithm proceeds in an adaptive manner, with the model fit as the refinement met-
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ric. Since zones can be of any size, small scale structures can, in principle, be inferred, as
long as they improve the fit of the model to observations. However, the use of piecewise
constant parameter values lead to non-physical jumps at zone boundaries. A version of the
same, using smooth bases, has also been developed [21].

In our work, we borrow the approach adopted in [9, 16, 17] and use Karhunen-Loève ex-
pansions for the log-permeability field to reduce the dimension of the inverse problem.
However, unlike [13, 15, 16, 17], we do not adopt a multilevel inversion scheme in an ef-
fort to resolve the fine-scales. Instead, we assume that a sufficient contrast exists between
the resolution at which we perform the inference and the size of individual fine-scale struc-
tures (inclusions in our case) that a complete description of the fine-scale is not very useful.
Consequently, we aim to infer statistical summaries of the fine-scale, conditional on the ob-
servations, and generate fine-scale realizations that could plausibly reproduce them. We do
so by constructing a subgrid model to predict the effective log-permeability of a grid-block
given the average inclusion proportion F(x) and size δ in a grid-block, as well as a model
to generate realizations of the fine-scale random binary media given the same parameters.
Models to develop fine-scale configurations are reviewed in Sec 2.2 and a particular model
(which we will use in this work) is described in detail in Sec. 3.3. The problem of low ac-
ceptance rates of proposals in the MCMC sampler, which was solved by devising novel up-
dating schemes in [3] or by Langevin random-walk inspired proposal distributions in [17],
is addressed using a general, adaptive MCMC technique; this is described in Sec. 2.3.

2.2 Topological and upscaling models for random binary media

Models of flow through random binary media can be categorized approximately into (a)
models that seek to estimate an effective permeability/conductivity of the media and (b)
models that seek to generate geometries/realizations of such media. We discuss both below.
Note that we will not address models for fractured media. Fractures are often modeled
as discrete, thin but long high-conductivity entities (lines or plates) embedded in a low
conductivity matrix or as fractured zones in continuum models. However, since fractures
may span distances of the same size as the domain, they are at odds with our definition of
inclusions being too small to resolve and will not be considered in this study.

Models for estimating permeability: There has been substantial work in estimating the
effective permeability of a random, porous binary medium. Called effective medium theo-
ries (EMT) for binary assemblages [22, 23, 24, 25], these models seek to calculate a repre-
sentative permeability as a function of the permeabilities of the two components and their
relative abundances. Initial theories assumed spherical inclusions, though more recent stud-
ies have included more information on inclusion shapes [26, 27, 28, 29, 30, 31]. Reviews
and comparisons to other methods can be found in [32, 33]. EMT-like approaches assume
non-interaction between inclusions i.e., inclusions may not form long, interconnected flow-
paths of high permeability, nor do they consider interaction between two components of the
medium. Consequently, such models work best when the inclusion proportion is small e.g.,
less than 50% [34, 32].
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Knudby et al. [33] have developed a model for estimating the effective permeability of a
binary medium which does take the interaction of inclusions into consideration. It does so
by using an average inter-inclusion distance as a proxy for the average length of a flowpath
through the low conductivity component. Like the models described above, it also requires
the relative proportions of the two components as input, along with aspect ratio and size
of the inclusion. However, Knudby et al.’s model, taken as-is, requires creation of a real-
ization of the binary medium so that the geometrical parameters (viz., the inclusion size
and the inter-inclusion distance) may be calculated. Within the context of an MCMC sam-
pler, this can get prohibitively expensive and a significant adaptation is required before the
concepts in [33] can be used to create a lightweight subgrid model for the permeability of
binary media. These adaptions revolve around ways of estimating geometrical properties
of inclusions and consequently, below, we review existing models for generating topolo-
gies/realizations of binary media.

Models for the geometry of random binary media: A very common means of gener-
ating representations of random media with multiple components is via indicator variables
which choose between the components. Indicator geostatistical techniques [35] do so via
a variogram to define spatial variations and can lead to very efficient simulation of binary
media [36, 37, 38]. Alternatively, indicator simulation approaches may also be based on
transition probabilities between indicator classes [39, 40]. Less common means of gener-
ating spatial binary media are object-based and Boolean models [41] and random media
models based on pluriGaussian and truncated multiGaussian fields [41, 42].

The development of excursion set theory, as applied to multiGaussian fields, has mostly
occurred in medical imaging and astrophysics [43, 44, 45]. In particular, given a defini-
tion of a multiGaussian field (note, not a realization), it is possible to analytically calculate
expected values of the total area, the number of distinct excursions and the average ex-
cursion size above a given threshold [46, 47]. If multiple thresholds are specified, one
may obtain a medium with inclusions of multiple components [48]. These ideas have also
been employed in porous media flows - Phillips and Watson [49] proposed mean threshold
crossing distances to estimate correlation lengths of permeability. However, the use of ex-
cursion sets of multiGaussian fields for characterizing and modeling heterogeneous media
in groundwater flows is rare.

The review above raises the possibility of modeling a random binary medium as a truncated
multiGaussian field and using excursion set theory to estimate expected values for inclusion
size and number. Such a model has been proposed by the authors [50]. It predicts the
effective permeability of a binary medium given the proportions of the two components,
their individual permeabilities and a length-scale which is a proxy for its size. Being based
on the expected values predicted by excursion set theory, the predictions are necessarily
approximate since the inputs to the model can support an infinite number of random binary
media configurations, each with its own permeability (though the scatter about the mean
may not be much). Since the model is analytical, it is sufficiently lightweight for use in
an inference scheme based on MCMC sampling. This model is described in more detail in
Sec. 3.3
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2.3 Adaptive Markov chain Monte Carlo techniques

In recent years, MCMC techniques have been increasingly used to fit models to observa-
tions [51], since they allow estimation of parameters while simultaneously quantifying the
uncertainty in the estimate. Metropolis-Hastings (MH) samplers [51] are commonly used
since they place no restrictions on the kind of models, the type of likelihood expressions
and priors used in posing the inverse problem. Given starting values for model parameters,
MH samplers “drift” the model parameters toward more likely values. Most simply, this is
done by proposing parameter values, one at a time (called single-component update), from
a Gaussian distribution centered at the current position in the parameter space and with a
pre-specified proposal distribution. Blockwise updates, when a number of (or all) param-
eters are proposed all at once, by sampling from a multivariate Gaussian, are also widely
used [3, 5, 51, 52, 53, 54].

As mentioned in [3] single-component updates lead to subpar mixing (exploration of the pa-
rameter space) of the MCMC chain; this is because variation of a single parameter scarcely
makes any difference to the model predictions of a high-dimensional model. Blockwise
updates often result in the other extreme, resulting in parameter combinations which are
unacceptable. The most efficient proposal distributions are those that resemble the poste-
rior [51], but this is generally the object of inference. In [3] separate blockwise updating
schemes were devised for GP and MRF models of the log-permeability field. Specialized
proposals (e.g., inspired by Langevin random walk) were devised in [17]. While our for-
mulation uses the Karhunen-Loève coefficients w and δ, rather than log-permeabilities, as
the objects of inference, the same mixing and acceptance issues are expected to persist.

Adaptive Metropolis [55, 52] (AM) is a variation of the MH sampler which uses a global
adaptive strategy to perform online tuning of the proposal to increase mixing and accep-
tance rates. The proposal is chosen from a multivariate Gaussian. AM starts with a pre-
specified proposal density but periodically recalculates an empirical posterior covariance
based on the samples collected up to that point. Typically, the pre-specified starting co-
variance is small so that samples are easily collected; as more samples are collected, the
covariance asymptotically resembles that of the posterior. The technique is neither Marko-
vian nor reversible and in [52] the authors identify the conditions under which AM will
recover the desired stationary distribution. Delayed rejection [56, 57, 58] is a local MH
variation that combines different proposals. One starts a MH sampler with a rather large
proposal covariance. When a proposal is rejected, one simply scales down the initial covari-
ance by a uniform factor, and tries again rather than simply advancing in the sample path
(hence delayed rejection). The scale-down-and-retry can be performed as many times as
needed, though generally a cut-off is enforced. DR has been shown to outperform MH [55].
Delayed Rejection Adaptive Metropolis (DRAM), the MCMC technique that we will use in
this work, is an amalgamation of the AM and DR [53]. Sampling using DRAM progresses
using DR, except the chain is periodically interrupted to recalculate an empirical covari-
ance using the sample path. This allows a more accurate multivariate Gaussian to serve as
the proposal distribution. Since DR is generally started with a rather large proposal covari-
ance, the initial empirical covariance estimates (in AM) are expected to be “ambitious”,
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where the scale-down-and-retry characteristic of DR can be profitably used to arrive at a
reasonable estimate of the posterior covariance for use in the proposal distribution. DRAM
is non-Markovian and proof of ergodicity i.e., it yields asymptotically unbiased estimators,
can be found in [53].
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3 Models used in the inverse problem

In this section we describe the models used in our inverse problem. We first review
Karhunen-Loève expansions of random fields which are used to reduced the dimension-
ality of the inverse problem described in Sec. 4.1. Thereafter, we describe the models
M (K) and L which serve as the forward problem in the inversion.

3.1 Karhunen-Loève expansions of random fields

Let R(x,ω) be a real-valued random field with zero mean, finite second moments and co-
variance function that is continuous in D ×D . ω ∈ Ω, where Ω is a sample space and
R(x,ω) can be considered to be a collection of real-valued random variables, indexed by
x∈D , D being a bounded spatial domain. Then, the Karhunen-Loève expansion of R(x,ω)
can be written as

R(x,ω) =
∞

∑
i=1

wi(ω)
√

λiφi(x)

This equality holds in the pointwise and mean-square sense; convergence is in L2(Ω) for
all x ∈ D . Further, if R(·) is Gaussian and almost surely continuous, then the convergence
is uniform in D with probability 1 [59]. λi and φi(x) are the eigenvalues and eigenfunctions
of the covariance kernel C(x,y)Z

D
C(x1,x2)φi(x2)dx2 = λiφi(x1). (1)

Since R(·) is assumed Gaussian, the covariance kernel C(x,y) is symmetric and positive
semi-definite and so, by [60],

C(x1,x2) =
∞

∑
i=1

λiφi(x1)φi(x2)

where φi(x) are continuous functions and form an orthonormal system in L2(D). Also,
wi ∼ N(0,1) and independent of each other.

Karhunen-Loève expansions are optimal in the sense that for all the possible orthonormal
bases for L2(D), the {φi(x)} that satisfy Eq. 1 minimize the mean-squared error in a finite
linear representation of R(·) [61] i.e. they minimize

Z
Ω×D

[
R(x,ω)−

M

∑
i=1

wi(ω)
√

λiφi(x)

]2

dP(ω)dx (2)

for any M > 1.
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In order to reduce the dimensionality of our inverse problem, we will model fields with
a truncated Karhunen-Loève series. In such a case, the approximate field RM(·) and its
covariance function can be represented as

RM(x,ω) =
M

∑
i=1

wi(ω)
√

λiφi(x), CM(x1,x2) =
M

∑
i=1

λiφi(x1)φi(x2)

The total variance or “energy” of RM(·) is given by

Z
D

E(RM(x,ω)2)dx =
Z

D
CM(x,x)dx =

M

∑
i=1

λ
2
i (3)

3.2 The transport model M (K)

M (K) is a 2D Darcy-flow model for the transport of an inert tracer through an unsaturated
porous medium by an incompressible, single-phase fluid. Given a log-permeability field
K, appropriate initial and boundary conditions (including a steady-state pressure gradient
and a fluid source and sink inside D), the model calculates a steady state velocity field and
advects a tracer (treated as a passive scalar) through it to obtain breakthrough times tb at a
set of Ns “sensor” locations inside D .

As shown in Fig. 1(a), we consider a 2D domain D with no-flow boundary conditions
imposed on ∂D . We consider a log-permeability field K defined on D . A fluid, with
viscosity µ is pumped in at the lower left corner and pumped out at an equal rate at the
upper right. In this problem, we will ignore the effect of gravity. Therefore, by Darcy’s
law, the velocity v is given by

v =
K
µ

∇p,

where p is the pressure field defined on D . The equation governing p (and therefore v) is

∇ ·v = ∇ · K
µ

∇p =
q
ρ

(4)

where q is the strength of the source/sink and ρ is the density of the fluid. The equation
is solved using the second-order finite-volume scheme described in [62], on a uniform
mesh. Two-point flux approximations are used, and the permeability at the interface of
adjacent grid-blocks are estimated by a harmonic average. The solution yields p at grid-
block centers and v at the centers of grid-block edges i.e., the velocities are obtained on
a staggered mesh. A solution of these equations, for a injection-production well pair in a
binary medium, is shown in Fig. 1(b). The light areas denote scattered high-permeability
inclusions in a dark, low-permeability matrix. A fluid is pumped in at the lower left corner
and extracted at the upper right. The steady-state velocity field so achieved is used to plot
a few streamlines that show the paths taken by the fluid in the binary medium to reach the
exit. The medium is considered isotropic, and the permeability K is modeled as a 2D field
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rather than a full tensor. The proportion of high-permeability material F(x) and the true
effective (upscaled) log-permeability are shown in Fig. 1 (c) and (d). Note that while F(x)
shows a rather smooth variation in space, the Ke field shows a rougher distribution and
significantly more structure, indicating the significantly nonlinear nature of the mapping of
F(x) to Ke.

Solving Eq. 4 for p yields the velocity v. This is used to advect an inert tracer using the
model in Eq. 5.

∂c
∂t

+v ·∇c = qc (5)

where c(x) is the concentration field of a tracer and qc, defined only at the lower left and
upper right corners of D , is the source and sink for the tracer. The concentration of the
tracer at the source, csource, is set to 1 and qc,source is set equal to the flux of the fluid.
The tracer flux at the sink, qc,sink, is obtained by multiplying the fluid outflow with the
local tracer concentration, csink(t), which increases in time till it saturates at 1. Eq. 5 was
solved on the same Cartesian mesh as Eq. 4, using an upwind second-order, finite-volume
scheme [63]. Tracer concentrations were monitored at two sets of sensor locations (set A
with 20 sensors and B with 34) as shown in Fig. 1(e) and (f); the time tb at which c = 0.5
was achieved at any given sensor was denoted its breakthrough time. Note that Eq. 5 does
not model pore-scale dispersion or molecular diffusion of the tracer.

3.3 The link function L

In this section we summarize a recently developed statistical model (the link function
L(F(x),δ)) to estimate the effect of unresolved inclusions on the log-permeability of a grid-
block. Full details of this model can be found in [50]. Note that (F(x),δ) is an incomplete
specification of the fine-scale structures that may reside in a grid-block and consequently
an infinite number of realizations of the fine-scale may be conditioned to it. Each coarse-
scale grid block has its own log-permeability, and the ensemble of log-permeabilities of
the coarse blocks form a distribution. We hypothesize that one may analytically/semi-
analytically derive a representative value for this distribution, which can then serve as
a (deterministic) approximation for the ensemble; failing that, the model could be aug-
mented with a simple, stochastic model for the discrepancy between model predictions and
the “true” log-permeabilities of the realizations. Below, we develop a model for the repre-
sentative value. It combines the upscaling method for binary media in [33] with concepts
for representing random dispersed phases statistically.

Consider a binary medium composed of two components with permeabilities Kl and Kh.
Consider, too, a rectangular inclusion of size ∆x×∆y, surrounded by a “box” of the binary
medium (containing both the inclusion and the matrix) of size lx× ly. Let KA and KH be
the arithmetic and harmonic means of Kl and Kh. Then, per Knudby et al. [33],

K −1
B = ρK −1

A +(1−ρ)K −1
H (6)
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where
ρ =

R−F
1
F −F

and R =
∆x

∆y

ly
lx

Since inclusions are rarely rectangular, a more general means of calculating ρ has to be
devised. Knudby et al. [33] proposed

ρ =
2Dnorm−D2

norm
1−F2 where Dnorm =

lx−∆x

∆x
. (7)

Thus Dnorm denotes an average normalized distance traveled by the flow in the matrix
between inclusions. For a particular realization of a random binary medium, a mean Dnorm
can be calculated by estimating a mean ∆x and lx. The distances between inclusions in
the downstream direction of the flow can be measured and weighted by the sizes of the
two inclusions to yield the mean ∆x; similarly, a mean box length lx can be calculated.
However, the requirement of a particular realization of a random medium (i.e., resolving all
the inclusions) makes a direct application of this method infeasible for inverse estimation.

We now develop a model for Dnorm that does not require a random binary field, along with
the inclusions, to be instantiated. Consider a spatially correlated multiGaussian (mG) field
based on a Gaussian kernel

G(x) =
1

2π|Σ|1/2 exp
(
−1

2
dΣ

−1dT
)

(8)

where d is the position vector of any point in space measured from the kernel’s origin. Such
a field can be realized (e.g., on a mesh) by initializing an uncorrelated mG field (with values
sampled i.i.d. from a standard normal) and convolving it with the Gaussian kernel in Eq. 8.
We consider that the kernel is symmetric and aligned with the axes i.e., Σ = σ2I is diagonal
(I is the identity matrix). The symmetric Gaussian kernel used for the convolution is fully
characterized by its full-width-at-half-maximum (FWHM), δ = 2

√
2ln2σ. The FWHM

also characterizes the spatial correlation of mG field and is a representative length-scale for
the inclusions. If the correlated mG field is truncated at a threshold w,−∞ ≤ w ≤ ∞, we
define a w− level excursion set as

Xw = {x ∈ Rd : Y (x)≥ w}.

The expression for the corresponding variogram can be found in [50].

Following [46], one can develop analytical expressions for the expected values of the fol-
lowing quantities - N, the number of cells above the truncation threshold w, the number
m of distinct regions (inclusions) above the threshold and the number n of pixels in each
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region. These are given by

E[N]
S

=
1

2π

Z
∞

w
exp(−z2)dz

E[m] = |EC|= exp(w2/2)
(2π)3/2

(
δ√

4ln(2)

)−2

|w|

E[n] =
E[N]
|EC|

(9)

Here, EC, the Euler Characteristic in 2D, represents the number of connected objects in the
domain minus the number of holes in those objects. S is the area of the domain. The EC
tends to 0 as w tends to 0, which in turn denotes F = 0.5. For w < 0, EC < 0. A figure of
the variation of EC with w can be found in [50].

The mean distance between the centroids of the inclusions is given by
√

(S/(π|EC|)).
Since the inclusions have a non-zero area, the mean distance between inclusions is

D∗ =

√
S

π|EC|
−2

√
E[n]

π

At w = 0 i.e., F = 0.5, D∗ tends to δ, the expected size of the inclusions when they are
equally abundant as the matrix. The modeled inter-inclusion distance is recast as

D∗ = max

(√
S

π|EC|
−2

√
E[n]

π
,δ

)
(10)

which is referred to as the basic model. Figures 2–4 in [50] show effective permeability KB
modeled using the basic model for κ = log10(Kh/Kl) = 2,4, for a number of values of δ

and F. They are compared to the permeability estimated numerically, using permeameter
boundary conditions, for random binary media generated with those parameters. We see
that (1) the largest errors occur around F = 0.5, and the model overestimates the perme-
ability for F > 0.5. Larger δ also result in errors, especially as they become comparable to
the size of the domain. Large values of κ e.g., κ = 4 also lead to inaccuracies. The basic
model was adjusted for these parametric variations as:

D∗ =


max

(√
S

π|EC| −2
√

E[n]
π

, δ

κ−1

)
if F ≤ 0.5

max
(√

S
π|EC| −2

√
E[n]

π
,δ(1−F)κ−1

)
otherwise

(11)

This allows us to model the effect of subgrid (unresolved) fine-scale structures on the per-
meability, as a function of F and δ. Given F = E[N]/S, we evaluate w, |EC| and E[n] using
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Eq. 9. Thereafter, with knowledge of δ and κ, we estimate D∗ from Eq. 11, which is then
used to calculate Dnorm, ρ and permeability using Eq. 6. See [50] for comparison of the pre-
dicted permeability versus numerically upscaled ones obtained using the MODFLOW [64]
finite-difference simulator.

Note that this subgrid model is necessarily approximate. It predicts a log-permeability
Ke = L(F,δ,κ). The three parameters do not define a random binary medium uniquely
and an infinite number of realizations are compatible with this specification. Thus the
true permeability of random media (under)-specified in this manner will display a scatter
about Ke. In Fig. 2, we plot the effective log-permeabilities for Kl = 1,Kh = 100 and
FWHM of 10 and 75 grid-cells as predicted by our model, L . We also plot the numeri-
cally evaluated log-permeabilities corresponding to the same F(x),δ with points, forming
a cloud around Ke = L(F(x),δ). The break in the log-permeability predictions L(F(x),δ)
at F ≈ 0.5 is due to percolation effects i.e., the inclusions start overlapping, creating high-
permeability channels which are O(lx) in size. One may simply use Ke as a deterministic
approximation for the log-permeabilities of the various realizations of the binary field and
model the discrepancy between observations of log-permeability and model predictions as
simple i.i.d. Gaussians (homoscedastic errors). Alternatively, one may adopt a more so-
phisticated parameterization for the discrepancy/error (heteroscedastic errors). While the
choice of the error model (Gaussian versus a more involved one) does not detract from the
general characteristics of an inference procedure, it does impact the accuracy of the esti-
mates/inferences. In the following sections, we explore the use of both simple and compli-
cated error models to infer the permeability of a random binary medium, conditioned on
limited observations.
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Figure 1: (a) The 2D rectangular domain D with associated dimensions. No-flow boundary
conditions are defined on ∂D . A grid-block showing the collocation for pressure p and
the velocities (u,v) in the x- and y-directions is shown. (b) We show a schematic of a
binary medium with the light, higher permeability inclusions in a darker lower-permeability
matrix. (c) The true Ft

c(x) field for the proportion of inclusions. (d) The true upscaled log-
permeability field Kt

c. (e) The 30×20 coarse-scale computational mesh with the locations
of 20 sensors (sensor-set A, SSA). (f) We show the locations of the 34 sensors in sensor-set
B (SSB). 29



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F

 K

 K v/s F for δ = 10

 

 

 K
c
t

 K
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F

 K

 K v/s F for δ = 75

 

 

 K
c
t

 K
e

Figure 2: Plots of Ke calculated using the link function L , as well as numerically estimated
from a random binary medium using MODFLOW-2005, as a function of F(x). Left: The
plots are for a medium where δ = 10 grid-cells. Right: δ = 75 grid-cells. We see that the
numerically estimated Ke form a cloud around the value predicted by L . This is because
{F(x),δ} is an incomplete description of a random binary medium, and an infinite number
of realizations, each with its own permeability, can be conditioned on such an incomplete
specification. The break in L predictions at F ≈ 0.5 is due to percolation effects.
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4 Multiscale inference with homoscedastic errors

In this section, we pose and solve an inverse problem using the models described in Sec. 3.
The thrust of this section is to demonstrate some general properties and capabilities of our
approach. Specifically, we explore the ability of the observations to constrain the inference
of structures at various spatial scales, the relative contributions of the static and dynamic
data and the effect of increasing the observations. We will also demonstrate how the pos-
terior distribution can be used to generate fine-scale realizations which are consistent with
the observations.

We will model the discrepancy between true permeability and breakthrough times versus
model predictions as i.i.d. Gaussian. This is somewhat simplistic and may not necessarily
lead to accurate inferences. More sophisticated error modeling and accurate field recon-
structions will be explored in Sec. 6.

4.1 Posing the inverse problem

Consider that the domain D is 2D, rectangular, of size Lx×Ly, and discretized by a Carte-
sian mesh of resolution Nx×Ny. Consider a spatially variable field ζ(x), −∞ ≤ ζ(x) ≤ ∞

defined on D . We model ζ(x) as a random field using GP, i.e., the discrete form of ζ(x),
the vector ζ, is a random variable with multivariate Gaussian distribution and a known co-
variance matrix Γ. We further specify that the inclusion proportion F(x) is an analytical
function of ζ(x), and it, in turn, governs the predicted effective log-permeability Ke and
breakthrough time tb via models L(F(x),δ) and M (K). These are summarized below in
Eq. 12

ζ ∼ N(0,Γ),
Γi j = C(xi,x j) = aexp(−|xi−x j|2/b2),

F(x) =
1
2

(
1+ erf

(
ζ(x)√

2

))
,

Ke = L(F(x),δ),
tb = M (K), (12)

where Γi j, an element of the covariance matrix Γ, denotes the correlation between grid-
blocks i and j in the mesh. The scale a and range b of the covariance kernel are assumed
known. The model M (K) is described in Sec. 3.2 and the link function L in Sec. 3.3. Note
that the analytical transformation ζ 7→ F(x) is required to map F ∈ [0,1] to ζ ∈ [−∞,∞], so
that a Gaussian model may be used. The inference does not depend on the particular trans-
formation in Eq. 12; any transformation that allows the use of Gaussians (and consequently,
a Karhunen-Loève decomposition) may be used.

Given a set of noisy data d = {k(obs), t(obs)
b } at a set of Ns “sensor” points, we wish to infer
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the posterior distribution P(Ke,F(x),δ|d). Using Bayes’ formula, this can be written as

P(Ke,F(x),δ|d) ∝ P(d|Ke,F(x),δ)π(Ke,F(x),δ) (13)

where π(·) denotes our prior belief regarding the distribution of a variable. We model the
discrepancy between the data d and model predictions as Gaussians, i.e.,

k(obs)−Ke = k(obs)−L(F(x),δ) = ek ∼ N(µk,Γk),

t(obs)
b − tb = t(obs)

b −M (K) = et ∼ N(µt ,Γt), (14)

where µk,µt are the means of the discrepancy between observed and model (i.e., predicted)
log-permeabilities and breakthrough times and Γk,Γt the corresponding error covariances
respectively. Under these (error) modeling assumptions, Eq. 13 reduces to

P(Ke,F(x),δ|d) ∝ P(d|Ke,F(x),δ)π(Ke,F(x),δ)

∝ exp
(
−[ek−µk]

T
Γ
−1
k [ek−µk]

)
exp
(
−[et −µt ]

T
Γ
−1
t [et −µt ]

)
π(Ke,F(x),δ), (15)

We assume that the discrepancies ek and et are independent and model them as i.i.d. Gaus-
sians with constant standard deviations i.e.,

Γk = σ
2
kI; Γt = σ

2
t I.

where I is the identity matrix. This is equivalent to stating that there are no systematic
discrepancies between observations and model predictions as a function of F(x),δ and κ.
Given the relationship between Ke,F(x) and ζ (Eq. 12), and the modeling assumptions
regarding errors, Eq. 15 can be compactly written solely in terms of ζ as

P(ζ,δ|d) ∝ P(d|ζ,δ)π(ζ)π(δ)

∝ exp
(
− [ek(ζ)−µk]T [ek(ζ)−µk]

σ2
k

)
exp
(
− [et(ζ)−µt ]T [et(ζ)−µt ]

σ2
t

)
π(ζ)π(δ). (16)

Here, we have also assumed that the prior distributions of δ and ζ are independent.

Solving the inverse problem in Eq. 16 would require us to infer each of the elements of
ζ (though constrained by Γ); the dimensionality of the inverse problem is Nx×Ny, which
can be extremely large in case of fine meshes. In order to reduce the dimensionality of the
inverse problem, we appeal to the discussion in Sec. 3.1 and construct a low-dimensional
model of ζ(x) using a Karhunen-Loève expansion.

ζM =
M

∑
i

wi
√

λiφi, with wi ∼ N(0,1), (17)
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where λi are the eigenvalues of the covariance matrix Γ, φi the corresponding eigenvectors,
and wi the weights which are modeled as i.i.d standard normals due to the GP model for
ζ. In this expansion, we retain the M-largest eigenmodes. Note that by Eq. 3, the vari-
ance of the approximate field is less than the original one, and inferences will tend to be
smoother than the true field. The link between the Karhunen-Loève weights w and tb can
be succinctly written as

w KL modes−→ ζ
Eq. 12
−→ F(x)

L ,δ−→ Ke
M (K)
−→ tb (18)

Replacing ζ in Eq. 16 using its Karhunen-Loève expansion (Eq. 17), we get

P(w,δ|d) ∝ exp
(
− [ek(w)−µk]T [ek(w)−µk]

σ2
k

− [et(w)−µt ]T [et(w)−µt ]
σ2

t

)
π(δ)

M

∏
l=1

exp(−w2
l ). (19)

Here, the prior on w, π(w), has been expressed in terms of its independent elements, wi,
whose priors are standard normals. The objects of inference are the M elements of w and
δ. Note that the dimensionality of the inverse problem is no longer directly dependent on
the mesh used for the inversion.

We will assume that the porosity of the binary medium is a constant in space and time, and
is known. The basis for this assumption is the observation that variations in K for most
porous media are much larger than variations in porosity.

4.2 Solving the inverse problem

In this section, we solve Eq. 19 to develop realizations of both the fine- and coarse-scale
fields that are consistent with the data. We first describe how we develop the “ground-
truth” binary field (fine-scale), followed by the generation of the synthetic data that serve
as observations, the development of the posterior distribution P(w,δ|d) and finally, by an
analysis of the inversion methodology.

Development of the fine-scale binary field: The domain D is dimensioned as Lx =
1.5,Ly = 1.0. The covariance of the ζ field is initialized with a = 1.0,b = 0.1(L2

x +L2
y)

1/2

(see Eq. 12). ζ is modeled as a multiGaussian field and a realization is obtained on a coarse
30× 20 mesh of grid-blocks on D . The “true” inclusion proportions on the coarse mesh,
Ft

c(x), is calculated using the transformation in Eq. 12. Each grid-block is thereafter further
refined into 100×100 grid-cells, leading to a 3000×2000 grid-cell discretization of D .

We generate a random binary field on the 3000×2000 mesh per the procedure in Sec. 3.3
and [50]. We initialize the mesh with a multiGaussian white noise and convolve it with a
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Gaussian kernel with σ = 5.0 (δ = 11.774) grid-cells. F(x), the proportion of inclusions in
each grid-block (equivalent to E[N]/S in Eq. 9), is used to calculate the threshold w. The
w− level excursion set creates the random inclusions in each grid-block. Repeated over all
coarse-scale grid-blocks, we obtain the fine-scale binary medium on a 3000× 2000 grid.
The inclusions are assigned a log-permeability Kh of 2 (i.e. a permeability of 102) while
the matrix has a log-permeability Kl of 0 (i.e., permeability of 1).

Generation of synthetic data: The synthetic data consists of measurements k(obs) of ef-
fective log-permeability of the coarse grid-blocks containing the sensors in SSA and SSB.
The permeabilities are calculated empirically by solving a permeameter boundary condi-
tion problem for each of the grid-blocks. For each grid-block, a time-independent pressure
difference is imposed in one direction, and zero-outflow in the perpendicular one to cal-
culate a flow-rate. This is used to calculate the effective grid-block permeability in that
direction. The directions of pressure difference and zero-outflow are then exchanged to
obtain the permeability in the perpendicular direction. The two permeabilities so calcu-
lated are similar and the harmonic mean of the permeabilities is taken as the “upscaled”
permeability of the binary medium in that grid-block. Flow simulations for each of the
grid-blocks in the 30× 20 mesh are performed with MODFLOW-2005 [64]. We refer to
the resulting log-permeability field as the true, upscaled log-permeability field, Kt

c. Those
values that correspond to the sensor grid-blocks in the SSA and SSB sets form the static
data, k(obs). I.i.d. Gaussian observation errors (∼ N(0,0.1)) are added to them.

The original random binary field, on the 3000× 2000 mesh is then subjected to a tracer
transport simulation, as described in Sec. 3.2. MODPATH [65] is a Lagrangian particle
tracking method operating on flux fields calculated in MODFLOW and is used here to
simulate transport in the binary porous medium. A fluid is injected via a cross pattern
of five wells within the coarse-scale grid-block in the lower-left corner and extracted via
a similar configuration of pumping wells on the top-right grid-block to create a steady-
state flow field. To calculate the breakthrough times, we reverse the steady-state velocity
field. Then, for each coarse-scale sensor grid-block, we release 121 particles from a uni-
form 11× 11 configuration of wells and advect those particles back to the injection wells
using the reversed velocity field. The time it takes for half the particles (median of the
distribution) released in a particular grid-block to reach the grid-block at the lower-left (the
grid-block with the injection wells) is taken as the breakthrough time. Repeated for each of
the sensor grid-blocks, we obtain the dynamic data t(obs)

b . I.i.d. Gaussian observation errors
(∼ N(0,10−3)) are added to them after non-dimensionalization (non dimensional time =
(raw time)*(injection rate)/(domain pore volume)). Thus the breakthrough times contain
the effect of all inclusions, fully resolved, on the dynamics.

The error model: The discrepancies between observations and model predictions are
modeled as i.i.d. Gaussians. We assume that along with k(obs), both F∗ and δ∗ too can be
measured at the grid-blocks with sensors, allowing us to estimate K∗

e = L(F∗,δ∗) there. µk
and σk are calculated empirically as the mean and standard deviation of k(obs)−K∗

e evalu-
ated at the observation points. µt is set to zero. The standard deviation for the breakthrough
time, σt , is set to 5% of the maximum non-dimensional breakthrough time observed in the
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SSA set of sensors. These values are used in Eq. 16 and 19.

Generation of P(w,δ|d): We solve Eq. 19 using the log form of δ, i.e. ln(δ) which allows
us to model its prior using a truncated Gaussian

ln(δ)∼ N(ln(10),2) if 1 < δ < 100.

Outside these limits, the prior is set to zero, thus loosely modeling the inclusions to be larger
than a fine-scale grid-cell, but smaller than a (coarse) grid-block. 30 terms were retained
in the Karhunen-Loève expansion of spatial field i.e., M = 30 in Eq. 17. 106 samples were
taken using the adaptive MCMC sampler (DRAM, [53]) and the chain was checked for
mixing and burn-in using the autocorrelation-based metric in [66] (as implemented in the
mcgibbsit package [67] in R [68]) by monitoring the 5th and 95th percentiles as well as
the median. 10,000 samples were retained by thinning the chain and used for developing
posterior distributions of the objects of inference.

In Fig. 3 we plot the probability density functions (PDF) for w1,w15,w30 and ln(δ), by
marginalizing over the thinned samples. The three weights, w1,w15,w30, correspond to
3 Karhunen-Loève modes which are representative of large, medium and small-scale (but
resolved) structures. Their joint PDFs are also plotted. We see that the posterior distribution
for w1,w15, and w30 are roughly Gaussian, though that does not hold true for ln(δ). The
median value of δ is found to be 10.25 grid-cells (compared to the true value of 11.774)
with a 90% credibility interval of (1.4–72.24) grid-cells. The inter-quartile range is (3.76–
27.3) grid-cells. The approximately Gaussian (posterior) distributions for w15 and w30 are
centered around 1, unlike the priors which are standard normals. The scatter plots show that
the samples of these three parameters are not correlated with each other; the correlations
between the (posterior of the) weights of adjacent Karhunen-Loève modes weaken very
quickly and are insignificant for modes which are 5 modes apart.

4.3 Results and discussion

In this section, we analyze the solution of the inverse problem. We first perform the inver-
sion using both the static and dynamic data, and then repeat using the static and dynamic
data individually. This is done to explore the contribution of each type of data to the infer-
ence.

4.3.1 Assessment of F(x) and Ke inferences

We use the samples from P(w,δ|d) (Eq. 19) to generate realizations of Fi(x) and Ke,i, i =
1 . . .10,000. The first 500 samples are discarded as “burn-in”. In Fig. 4, in the top row,
we plot their expected values F = E[F(x)] and Ke = E[Ke] in color while the “true” values
(as plotted in Fig. 1, middle row) are plotted as dotted contours. For F, we see that the
shade plot and the contours are similar with respect to large scale structures, though there
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are differences at smaller scales. On the other hand, the Ke plot at the top right shows
significant differences between the shade and contour plots. This arises mostly because
of the sharp gradients in Ke and the approximations inherent in the L(F(x),δ) model for
the log-permeability. In the middle row of Fig. 4, we plot the grid-block-wise standard
deviation of the 9,500 samples of Fi(x) and Ke,i, along with the locations of the sensors in
SSA. We see that the standard deviations (the uncertainty in the inferences) are minimum at
the measurement points and increase in the poorly instrumented regions. The regions with
the largest uncertainties are concentrated in regions of high gradients where the smooth
Gaussian-process based representation forms a poor model for the spatial variation. In the
bottom row, we plot the difference between the true and average values i.e. εF = Ft

c(x)−F
and εK = Kt

c−Ke. We see that sensor locations are generally regions of low error. In the
plot for εK , we see the largest errors correspond strongly with the “wall” of high gradients
in Ke at x = 25, where the error approaches 50%.

In Fig. 5 we create a counterpart of Fig. 4 but using static data only. All results are drawn
from 9,500 samples, identical to Fig. 4. In the top row, we plot the expected values F =
E[F(x))] and Ke = E[Ke] in color while the “true” values (as plotted in Fig. 1, middle
row) are plotted as dotted contours. We see that the inferences drawn from static-data only
capture the large scale structures and miss the finer details. This results in smaller errors in
F which tends to be smoother than Ke. In the middle row, we plot the standard deviation
of the 9,500 samples of Fi(x) and Ke,i, along with the locations of the sensors in SSA. As
expected, they are smallest at the sensor locations. Further, compared to their counterparts
in Fig. 4, they are larger. In the last row, we plot the difference between the true and average
values i.e. εF = Ft

c(x)−F and εK = Kt
c−Ke. Compared to their counterparts in Fig. 5,

the errors are far larger. This arises from the inability of the inferences, drawn solely from
static data (which are informative only on the larger scales) to reconstruct finer details. This
is particularly true for the Ke field, which shows regions of high gradient.

In Fig. 6, we plot the counterparts to Fig. 4 and Fig. 5 but using estimates drawn only
from the dynamic data, i.e., the breakthrough times. We see that the inferences drawn are
extremely poor and bear little resemblance to the true F(x) or Ke fields which are plotted
as contours over them. The standard deviations (middle row) and errors (last row) are
correspondingly large, compared to their counterparts in Fig. 4 and Fig. 5.

4.3.2 Assessment of {w,δ} inferences

Next we analyze the individual weights of the Karhunen-Loève modes as drawn from
inferences conditioned only on static or dynamic data as well as the inferences that are
conditioned jointly on both types of data. In Fig. 7, we plot the marginalized PDFs for
w1,w15,w30 and ln(δ) conditioned jointly on both types of data (static & dynamic), as well
as those conditioned on just the static and dynamic data individually. We also plot the pri-
ors (using symbols) for comparison. The solid line refer to posteriors which were obtained
using both the static and dynamic data; the dotted lines refer to inferences from the static
data only and the dashed line is used to indicate estimates drawn from only the dynamic
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data. We see, in the top left figure, that the observations are most informative about w1
(i.e., the difference between the prior and posterior is the largest), the Karhunen-Loève
mode corresponding to the largest structures. In fact, the grid spacing of the sensors in
SSA is smaller than the length-scale of the first Karhunen-Loève mode and provides a very
good sampling of it. Consequently, the distribution of w1 obtained using just the static data
is almost identical to that obtained from using both the static and dynamic data. Relative to
the static data, the dynamic data contributes very little to the inference of the lower (larger)
Karhunen-Loève modes - the posterior for w1 in Fig 7 (top left) is barely different from
the prior. For intermediate Karhunen-Loève models e.g., w15, (top right in Fig. 7) both the
static and dynamic data contribute to the inference, though the contribution of the static is
much more; the posterior developed from just the static data is quite close that developed
using {k(obs), t(obs)

b }. At the small scales i.e., w30 (Fig. 7, bottom left), the dynamic data
does not contribute much directly - the posterior distributions obtained from the k(obs)-only
and t(obs)

b -only inversions are almost the same as the prior, whereas the inversion condi-

tioned jointly on (k(obs), t(obs)
b ) is informative. Thus dynamic data is informative, only after

the larger/coarser scales have been accounted for by the static data; by itself, t(obs)
b does

not have the information content to resolve both. Transport occurs preferentially through
high permeability regions, which can be affected by the smallest scales; since breakthrough
times are the integrated effect of the travel times of the tracer, one may naively expect that
the effect of small scale variations are easily captured there. However, breakthrough times
are also affected by the larger Karhunen-Loève modes and deconvolving the impact of the
fine and coarser scales cannot be done without k(obs), which uniquely captures the coarse-
scale structures. The inference with the SSA sensors collect some information about δ but
there is a clear trend away from values of ln(δ) < 2 in inversions done using {k(obs), t(obs)

b }
as well just {t(obs)

b } (Fig. 7, bottom right).

The marginalized posteriors plotted in Fig. 7 have a shape very similar to a Gaussian. Since
the prior for {w, ln(δ)} are Gaussians (and those for w, standard normals), quantile-quantile
(Q-Q) plots are a convenient means for identifying the degree by which the posteriors de-
viate from a Gaussian distribution. Fig. 8 contains the Q-Q plots corresponding to distri-
butions of Karhunen-Loève weights plotted in Fig. 7. The Q-Q plot for the prior are shown
with symbols (a straight line with a slope of 1). We note that the plots are approximately
straight lines, indicating that they do not deviate much from a Gaussian distribution. This
is a surprising finding, given that the transport model is a nonlinear one, as is the link
function.

4.3.3 Impact of the number of sensors

In Fig. 9 we compare the marginalized posteriors for w1,w15,w30 and ln(δ) as obtained
with sensor-sets SSA and SSB. Both coarse and fine-scale data are recorded for each sensor
set. The second set, which has more than half as many sensors, results in a PDF for w1
which is much sharper that that obtained with SSA, while the PDF for ln(δ) is shallower
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and wider than the one observed for SSA, with a maximum a posteriori estimate remaining
unchanged. However, the PDFs for w15 and w30 change significantly when recomputed
using SSB, indicating that the information content of t(obs)

b collected by SSA and SSB
could be different. There is also a possibility that the uncertainty in the inferences may have
been underestimated when computed using SSA. The reason for is can be found in Fig. 2.
We see that a given {F(x),δ} may support a distribution of Ke; expanded to a 2D field, a
{w,δ} characterization may support a range of Ke fields and consequently tb at the sensors.
In our inference scheme, the range of Ke corresponding to a {w,δ} characterization is
not explored; rather we impute a permeability field Ke = L(F(x),δ). This deterministic
mapping excludes regions in the {w,δ}-space, which under Ke-exploration in the MCMC
could have resulted in tb = M (K) similar to t(obs)

b and thus been accepted as valid samples
for a (rather wide) posterior distribution.

In order to analyze the model fits arising from SSA and SSB measurements, we conduct
a posterior predictive check (PPC) using t(obs)

b . Note that since inferences were drawn

using both k(obs) and t(obs)
b , good fits with k(obs) may compensate for bad fits with t(obs)

b .
In Fig. 10, we plot the results of PPC performed using inferences drawn from both SSA
and SSB. We use the realizations Fi(x), i = 500 . . .10,000, to generate the corresponding
Ke,i = L(Fi(x),δi); thereafter tb,i = M (Ke,i) at the SSA- and SSB-sets of sensors. We
plot the median, the 1st and the 99th percentile of the breakthrough times. We see that
the spread of the replicates of tb obtained with SSB (right figure) is generally smaller than
those obtained with SSA, indicating a reduction in predictive uncertainty.

We next evaluate the predictive ensemble of breakthrough times (plotted for SSA and SSB
in Fig. 10) quantitatively using the continuous rank probability score (CRPS), the mean
absolute error (MAE) and the interval score (IS) [69, 70]. 950 samples from the predictive
ensemble (rather than the full 9500 ensemble members) were used for the purpose; the
sensitivity of the metrics to the number of samples was checked by repeating the calcula-
tions with double and half the number of samples. The interquartile range was used for
calculating the IS. In Fig. 10 (bottom row) we plot the verification rank histogram (VRH)
for the observations, in the breakthrough time predictive ensembles developed from the
SSA and SSB sets of sensors. Each observation, along with the predicted breakthrough
times, is sorted and ranked; the ranks of the 20 (34, in case of SSB) observations are his-
togrammed into 20 (34) bins. Ideally, the VRH should indicate a uniform distribution, with
a frequency of one for each bin; deviations from uniformity (VRHD) are a measure of
lack of calibration. This can be due to lack of data as well as shortcomings of the model
itself. We see that the predictive ensembles developed from both SSA and SSB sets are
somewhat under-dispersive (the observations are ranked at the extremities). In Table 1, we
tabulate the CRPS, MAE, VRHD and IS for the two predictive ensembles in Fig. 10; the
SSB ensemble is slightly better. Thus the extra observations in the SSB set lead to a more
accurate estimate of {w,δ}, which, in turn, results in a more predictive ensemble, as plotted
in Fig. 10 (right). Note that a naive check of the posterior distribution would have led one
to believe that SSB provides a worse model fit — while the PPC results for SSA show that
3 observations fall outside the 98% credibility interval, in SSB the corresponding number
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is 6. This, however, is compensated for by the tighter distributions and the fact the SSB has
almost twice as many observations as SSA.

Table 1: CRPS, MAE, IS and VRHD for the predictive ensembles of breakthrough times
developed from the SSA and SSB sensor sets (see Fig. 10). CRPS, MAE and IS have units
of breakthrough times i.e., they are non-dimensional. The VRHD was calculated as the
mean of absolute deviations of the frequencies from one (the dashed line in Fig. 10). We
see that the ensemble developed from the SSB set is somewhat better, reflecting the effect
of a larger set of observations. The interquartile range was used to calculate IS.

Ensemble CRPS MAE IS VRHD
SSA 0.047 0.0625 0.239 1.1
SSB 0.046 0.0593 0.186 0.88

4.4 Summary

To summarize, we have developed an inference scheme, predicated on a multiscale link
function, to infer coarse-scale features and summaries of fine-scale structures of a random
binary field from a combination of static and dynamic observations. We can estimate a
spatially variable inclusion proportion F(x) as well as a representative value for the in-
clusion size δ from observations that are obtained on the coarse-scale but are nevertheless
informative about the fine-scale. We see that the static data can inform on the large-scale
features mainly because the distribution of sensors is sufficient to resolve such structures.
The dynamic data, which is an integrated measure of the effect of small variations in the
permeability field is key to estimating smaller (but nevertheless resolved) structures. In-
formation on subgrid variations is obtained by the link function L ; its parameters provide
summaries of the unresolved scales. Increasing the number of sensors leads to estimates
with lower predictive uncertainties. However, posterior predictive checks of our model
reveal that the fit to data could be improved; the quality of fit is mostly determined by
the quality of our multiscale link model L and the crude i.i.d. Gaussian error model for
the discrepancy between observations of log-permeability and model predictions, though
increasing the number of observations does improve the inferences.

We have also explored how the static (k(obs)) and dynamic (t(obs)
b ) data contribute to the

estimation of {w, ln(δ)}. By itself, t(obs)
b is not sufficiently informative to estimate both

the large-scale structures and the finer details. However, if the large-scale structures are
constrained/estimated using k(obs), the finer details can be inferred from t(obs)

b . Thus joint

inversions on {k(obs), t(obs)
b } result in more accurate estimations of {w, ln(δ)} not only be-

cause of the larger number of observations involved, but rather because of the type of infor-
mation. Since k(obs) is informative about the larger lengthscales in the domain while t(obs)

b
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is impacted most by the finer scales that contort the flowpaths in the porous medium, joint
inversion conditions the estimates to multiscale data.

In the next section (Sec. 5), we will explore the robustness of the inference. Since the aim
of reconstructing a permeability field is generally to use it to predict transport phenom-
ena, we will subject the reconstructions conditioned on multiscale data (as well as those
obtained individually from static and dynamic data) to posterior predictive tests. We will
show that multiscale inversions result in permeability fields that reproduce observations far
more accurately compared to the other two cases. Further, these permeability fields retain
their enhanced accuracy in flow conditions which are different from the injector/flow con-
figuration which were used to obtain t(obs)

b which were used to estimate the permeability
field. We also show that this does not hold true for the other two cases.
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Figure 3: Plot of the joint and marginal probability densities of w1,w15,w30 and ln(δ) from
the posterior distribution. The joint distributions show very little correlations between the
Karhunen-Loève modes at the large, medium and small scales, as well as their correlations
with δ. Also, PDF of the individual parameters are roughly Gaussian, with the exception
of δ.

41



x

y

5 10 15 20 25 30

5

10

15

20

25

0.88
0.77
0.66
0.55
0.44
0.33
0.22
0.11

F

x

y

5 10 15 20 25 30

5

10

15

20

25

1.76
1.53
1.30
1.07
0.84
0.61
0.38
0.15

E(K)

x

y

5 10 15 20 25 30

5

10

15

20

25

0.22
0.19
0.17
0.14
0.12
0.09
0.07
0.04

σF

x

y

5 10 15 20 25 30

5

10

15

20

25

x

y

5 10 15 20 25 30

5

10

15

20

25

0.53
0.47
0.40
0.33
0.27
0.20
0.13
0.07

σK

x

y

5 10 15 20 25 30

5

10

15

20

25

x

y

5 10 15 20 25 30

5

10

15

20

25

0.41
0.30
0.19
0.08

-0.02
-0.13
-0.24
-0.35

εF

x

y

5 10 15 20 25 30

5

10

15

20

25

x

y

5 10 15 20 25 30

5

10

15

20

25

1.04
0.73
0.42
0.11

-0.20
-0.51
-0.82
-1.13

εK

x

y

5 10 15 20 25 30

5

10

15

20

25

Figure 4: Results from the inference, computed using 9500 samples from the posterior
distribution. In the top row, we plot the means F = E[F(x)] and Ke = E[Ke]; they bear a
strong resemblance to the true values in Fig. 1 (middle row). In the middle row, we plot
the grid-block-wise standard deviation of Fi(x) and Ke,i; they are smallest at the sensor
locations. In the bottom row, we plot the errors εF = Ft

c(x)−F and εK = Kt
c−Ke, which

show large values in regions of high gradient where the representation errors due to the
smooth Gaussian process model are the largest.
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Figure 5: Results from the inference, computed using 9500 samples from the posterior
distribution. Only static data was used to draw the inferences. In the top row, we plot
the means F and Ke which are worse than those seen in Fig. 4. Further, Ke has larger
errors than F due to its finer structures. In the middle row, we plot the grid-block-wise
standard deviation of Fi(x) and Ke,i; they are larger and more widely distributed than their
counterparts in Fig. 4. In the bottom row, we plot the errors εF and εK , which show larger
values in regions of high gradient. Further, the errors are higher and more widely distributed
compared to their counterparts in Fig. 4.
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Figure 6: Results from the inference, computed using 9500 samples from the posterior
distribution. Only dynamic data was used to draw the inferences. In the top row, we plot
the means F and Ke. The inferences are far worse than those seen in Fig. 4 and show little
resemblance to the true Ft

c(x) and Kt
c plotted as contours over them. Given such a large

lack of fidelity, the standard deviations and errors plotted in the middle and last rows have
little significance, but are reproduced here for completeness. Note that while Fig. 4 and
Fig. 5 share the same color scales, the range had to be adjusted in this figure.
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Figure 7: Marginalized PDFs of w1,w15,w30 and ln(δ) as inferred from k(obs)-only (dotted
lines), t(obs)

b -only (dashed lines) and jointly from (k(obs), t(obs)
b ) (solid lines). The priors are

plotted with ∇ for comparison. Top left: we see that the posterior for w1 is almost en-
tirely accounted from by the k(obs)-only inversion (“static data only”); the posterior for w1,
when inferred from t(obs)

b only (“dynamic data only”) is little different from the prior. Top
right: We see that both static and dynamic data contribute to the posterior of w15; the joint
(k(obs), t(obs)

b ) inversion is quite different from the other two. Bottom left: Surprisingly, nei-

ther k(obs) nor t(obs)
b are individually informative of the finer scales. However, when k(obs)

can account from the coarse scales, t(obs)
b can “fill in” the information on the finer scales.

This is seen in the posterior for w30 jointly conditioned on (k(obs), t(obs)
b ). Bottom right:

Note that the posterior density of ln(δ) obtained from (k(obs), t(obs)
b ) as well as just {t(obs)

b )
are skewed somewhat to the right of the prior, while that of the static-data-only inversion is
skewed left. The prior and posteriors are truncated at ln(δ) = 0,4.6 but the kernel density
estimates used to create plots smooth them near the truncation limits.

45



−4 −2 0 2

−
0.

5
0.

0
0.

5

w1

Quantiles from prior, N(0, 1)

Q
ua

nt
ile

s 
fr

om
 p

os
te

rio
r

Static & dynamic data
Dynamic data
Static data
Q−Q slope of prior

−2 0 2 4

0
1

2
3

w15

Quantiles from prior, N(0, 1)

Q
ua

nt
ile

s 
fr

om
 p

os
te

rio
r

Static & dynamic data
Dynamic data
Static data
Q−Q slope of prior

−3 −2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

4

w30

Quantiles from prior, N(0, 1)

Q
ua

nt
ile

s 
fr

om
 p

os
te

rio
r

Static & dynamic data
Dynamic data
Static data
Q−Q slope of prior

0 1 2 3 4

0
1

2
3

4

ln(δ)
Quantiles from prior, N(ln(10), 2)

Q
ua

nt
ile

s 
fr

om
 p

os
te

rio
r

Static & dynamic data
Dynamic data
Static data
Q−Q slope of prior

Figure 8: Top left: Q-Q plot of the posterior of w1 developed with both static and dynamic
data (solid line) compared to that obtained from static data only (dotted line) and dynamic
data only (dashed line). We see that there is little difference; the length-scale of the first
Karhunen-Loève mode is large enough that the sensor grid provides a sufficiently complete
sampling and breakthrough times contribute little. Top right: the posteriors for w15, which
show the impact of dynamic data. The inference drawn from static data only underpredicts
the value of w15. However, the inference drawn from just the dynamic data is not very
informative. Bottom left: Inference of w30 is determined entirely by the breakthrough
times since the length-scale of the Karhunen-Loève mode is too small to be sampled by
the sensors in SSA. Consequently, the posterior developed from the static data only is
indistinguishable from the prior. Strangely, the posterior conditioned on just the dynamic
data is indistinguishable from the prior i.e., the dynamic data, by itself, does not inform very
efficiently on the finer structures. Bottom right: The posterior density for ln(δ) obtained
from {t(obs)

b } is indistinguishable from that obtained with (k(obs), t(obs)
b ).
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Figure 9: Prior and marginalized posterior values of the Karhunen-Loève mode weights
w1,w15,w30 and ln(δ) as computed using the sensor-sets SSA (solid line) and SSB (dashed
line). We see that the posteriors for w1 are similar, indicating that the higher sensor density
of SSB collects little extra information on w1. However, the PDFs for w15 and w30 are
quite different, indicating that the uncertainty in their values may have been underestimated
in both cases. The posterior density for ln(δ) obtained from SSB sensors is shallower
than that obtained from SSA, though the maximum a posteriori estimate for ln(δ) remains
approximately unchanged.
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Figure 10: Results from the posterior predictive check for breakthrough times conducted
by generating Ke,i and using M (K) to generate the breakthrough times. Top: The filled,
inverted triangles are the observations at the sensors. The median breakthrough times from
the posterior predictive checks are plotted with open symbols and the error bars denote the
1st and 99th percentiles of the breakthrough time distribution. Left: We plot the results and
the observations for SSA. Right: We plot the results for SSB. We see that the difference
between the 1st and 99th percentiles is generally smaller for the SSB results, indicating
a reduction in predictive uncertainty. Bottom: We plot the verification rank histogram
for the ranks of the observations, given the predictive distribution of breakthrough times.
Ideally, the histograms should be uniform; however, the histogram for the SSB predictions
is marginally better (see the deviation-from-uniformity score in Table 1).
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5 Posterior predictive modeling

In this section, we explore the difference between permeability fields developed by con-
ditioning P(w,δ|d) jointly on static and dynamic data (multiscale data) and those recon-
structed from only one type of data. We assess them based on their ability to reproduce the
observed breakthrough times at the SSA sensors. We consider two flow configurations –
(1) the “nominal” configuration, where the injector is in the lower left corner of the domain
and (2) the “flipped” configuration, where the injector is in the upper left. The producer is
always diagonally opposite to the injector. The flipped configuration is introduced to test
the predictive robustness of the inferences. P(w,δ|d) will be used to develop realizations
of the fine-scale binary medium (on a 3000× 2000 mesh) as outlined in Sec. 4.2, which
will then be used in flow simulations using MODPATH.

Fig. 11 shows example realizations of the binary medium which are consistent with the
multiscale observations i.e., they were developed from {w,δ} conditioned on {k(obs), t(obs)

b }.
The white and gray regions are the high and low permeability regions, respectively. A sin-
gle particle track from the injection wells to each of the SSA sensors is also shown. We
choose 8 {w,δ}i samples from the posterior and use them to develop the corresponding
Fi(x) using Eq. 18. Then, using the procedure (based on excursion sets of multiGaussian
[mG] fields) described in Sec. 3.3, we develop the corresponding fine-scale binary field on
a 3000×2000 mesh. The true binary field is plotted in the middle of the figure (image (e)).
The variation between realizations is due to both the stochastic nature of the construction
process, where white noise is convolved with a Gaussian kernel, and the sampled value of
δ, which is different for each realization. Of these eight examples, realization (g) has the
largest δ value and realization (i) has the smallest.

Three combinations of k(obs) and t(obs)
b conditioning data ({k(obs), t(obs)

b },{k(obs)},{t(obs)
b })

were used, and for each combination, 1000 fine-scale binary realizations were created.
For each of the SSA sensors and for each realization, the median travel time between
the injector and the sensor is determined. Recall that sensor locations are defined at the
grid-block scale and that for each location a total of 121 particles are tracked between the
injector and the sensor. The median time from these 121 particles is extracted at each sen-
sor location and designated as the breakthrough time for that location. A distribution of
breakthrough times across the 1000 realizations is then created. Fig. 12 (left) shows a com-
parison of the three breakthrough time CDFs (cumulative distribution function) against the
true breakthrough time for sensor location 14 (coordinates: 21,13). All three distributions
capture the true breakthrough time (accurate) with the “Fine and Coarse” (alternatively,
inferred jointly from {k(obs), t(obs)

b }) and “Fine Only” data (alternatively, inferred solely

from {t(obs)
b }) combinations being the narrowest (most precise) although somewhat biased

towards underestimation of the true travel time. The “Coarse Only” data combination (al-
ternatively, inferred solely from {k(obs)}) produces a breakthrough time distribution that is
less precise but also less biased.

Fig. 12 (right) shows the precision and bias for all 20 SSA sensors and provides perspec-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11: Fine-scale realizations of the random binary field conditioned on the observa-
tions and showing a single flowpath from the injection wells to each SSA sensor. These
were developed from the posterior distribution of {w,δ} using the mG-based technique
described in Sec. 3.3. The center image (e) is the ground truth fine-scale realization. White
indicates high permeability and gray is low permeability. Variation in the binary patterns
are due to the stochastic nature of the process and the variation in the estimated δ parameter
between realizations.
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tive on how these quantities change across the model domain. For each sensor location, the
black “+” indicates the location of the sensor and the relative location of the true break-
through time. The distribution of breakthrough times from each combination of k(obs) and
t(obs)
b is shown as a circle. The center of the circle is offset from the true breakthrough

time by the amount of bias, calculated here as the difference between the median of the
distribution and the true value. Underestimation shifts the center of the circle to the left
and over estimation to the right. The center 95% of the breakthrough time distribution de-
fines the radius of the circle. Both the radius and the bias offset are calculated in units of
dimensionless travel time. The axes scales in Fig. 12 (right) serve as both geographic and
travel time measures to define both the sensor locations and the relationship of the median
breakthrough time distributions to the true breakthrough time. At each location, the order
of the circles is set such that the smallest (tightest distribution) is at the front and the largest
is at the back.

Examination of Fig. 12 (right) shows that all three combinations of k(obs) and t(obs)
b create

accurate distributions of breakthrough times (all circles contain the true value denoted by
the “+”). Additionally, estimated fields that are conditioned jointly on {k(obs), t(obs)

b } create
the most precise distribution (black circle is smallest and therefore on the top) for the
majority of the SSA locations. Bias is relatively small at all locations as shown by all
three circles being approximately centered on the true value. The spatial pattern shown
Fig. 12 (right) is consistent with the flow patterns for this domain with a source and sink
in the lower left and upper right corners. The breakthrough time distributions are most
precise along the diagonal between the injector and producer where the majority of the
flow takes place and least precise along the upper and lower boundaries where the flow
fraction is quite low (see Fig. 1, b). The amount of bias is also smallest along the diagonal
and greatest along the top and bottom boundaries.

In Table 2 we tabulate the bias i.e., the difference between the true breakthrough time and
the median of predicted breakthrough times obtained by simulating transport through the
1000 fine-scale realizations. This is also the shift in the circles’ centers in Fig. 12. We
see that the bias tends to be smallest in the {k(obs), t(obs)

b } case where the fine-scale real-

izations were inferred jointly from static and dynamic observations, while the {t(obs)
b } case

(realizations conditioned solely on dynamic data) are the largest. This difference increases
for sensors which are further way from the diagonal connecting the injector and the pro-
ducer, which forms the main travel path for the fluid. Here, we introduce an additional test
of the robustness of the estimated fields by “flipping” the injector-producer configuration.
“Flipping” the injector-producer configuration increases the bias, most significantly for the
{t(obs)

b } case. In Table 3 we plot the variation in the predicted breakthrough times at each
of the SSA sensors. Variation is defined as the central interval containing 95% probability
mass in the CDF of breakthrough time predictions obtained from transport simulations with
the 1000 fine-scale realizations. It also corresponds to the radii of the circles in Fig. 12. The
table was included mainly to demonstrate the degradation of predicted breakthrough times
in the “Flipped” arrangement, when realizations inferred solely from {t(obs)

b } were used for
predicting breakthrough times. The circle radii for certain sensors an order of magnitude

51



0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Breakthrough Time (Dimensionless)

C
um

ul
at

iv
e 

F
re

qu
en

cy

Location 14,  (21,13) 

 

 

Coarse & Fine
Coarse
Fine
True Value 0 5 10 15 20 25 30

0

5

10

15

20
Coarse & Fine Coarse Only Fine OnlyCoarse & Fine Coarse Only Fine OnlyCoarse & Fine Coarse Only Fine OnlyCoarse & Fine Coarse Only Fine OnlyCoarse & Fine Coarse Only Fine OnlyCoarse & Fine Coarse Only Fine OnlyCoarse & Fine Coarse Only Fine OnlyCoarse & Fine Coarse Only Fine OnlyCoarse & Fine Coarse Only Fine OnlyCoarse & Fine Coarse Only Fine OnlyCoarse & Fine Coarse Only Fine OnlyCoarse & Fine Coarse Only Fine OnlyCoarse & Fine Coarse Only Fine OnlyCoarse & Fine Coarse Only Fine OnlyCoarse & Fine Coarse Only Fine OnlyCoarse & Fine Coarse Only Fine OnlyCoarse & Fine Coarse Only Fine OnlyCoarse & Fine Coarse Only Fine OnlyCoarse & Fine Coarse Only Fine OnlyCoarse & Fine Coarse Only Fine Only

Figure 12: Comparison of the median travel times to the SSA sensors for three different
data combinations. Left: Breakthrough time CDFs are shown for an example location
(sensor 14). Right: The circle plots summarize the breakthrough time distributions and
compare them to the true breakthrough times for all sensor locations. Details are in the text.
“Coarse & fine” refer to realizations conditioned jointly on {k(obs), t(obs)

b }, “Coarse only”
refer to inferences using on {k(obs)} while “Fine only” indicates inferences conditioned
only on {t(obs)

b }.
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larger than their {k(obs), t(obs)
b } counterparts and simply could not be plotted in Fig. 12.

Fig. 12 is focused on the breakthrough time at the SSA sensor locations. However, since
the ground truth in this study is known, it is possible to examine the quality of the travel
time estimates for every location in the model domain. Fig. 13 (left) shows distributions
of the average absolute error (AAE) between the estimated and true breakthrough time.
Each average is calculated over all 600 coarse-scale grid blocks for a single realization
and the distribution of the averages is then determined for all 1000 realizations. Lower
values in the distribution come from realizations that better fit the true breakthrough time
at all locations. Travel times are calculated for each estimated field under the nominal case
injector-producer arrangement and under a “flipped” arrangement.

The majority of the fields conditioned jointly to the {k(obs), t(obs)
b } or just the k(obs) data

have a median travel time AAE of less than 0.5 time units (Figure 13). Those fields con-
ditioned to only t(obs)

b data have considerably larger AAE values. The difference in re-
sults between the two different source-sink configurations is a secondary effect compared
to whether or not the estimates were conditioned to k(obs). The t(obs)

b data alone are not
enough to adequately constrain the estimations.

All comparisons shown above consider the breakthrough time values from the injector to
one or more coarse grid cells. These comparisons are consistent with the conditioning data,
t(obs)
b , used in the inverse estimates. However, additional information can be gained from

the full distribution of travel times to each coarse grid block. The two-sample Kolmogorov-
Smirnov (KS) test is used to compare the true travel time distribution to the distribution
calculated on each estimated field for each coarse-scale grid block. The KS test is a non-
parametric test of the difference between two distributions. The KS test statistic is the
maximum vertical distance, D between two CDFs:

Di, j =
sup
x |Fi,n(x)−Fj,n′(x)| (20)

Here the ith and jth distributions have the same number of travel times, 121, for all compar-
isons (n = n′). Values of the D statistic range from 0, when there is no difference between
the distributions, to 1.0 when the values of distributions do not overlap at all. The null
hypothesis of the KS test is that both samples come from the same underlying population.
Here, for each fine-scale realization, we compare the modeled and observed travel time dis-
tribution at every location within the model domain and calculate the test statistic, D. The
average value of D across all 600 locations is retained for each of the 1000 realizations.

Fig. 13 (right) shows the resulting distributions of the average D value for six sets of 1000
realizations. The smallest values of D occur when both k(obs) and t(obs)

b are used as condi-

tioning data. The distributions of D when only k(obs) or t(obs)
b are used have slightly larger

values and are very similar. All distributions resulting from the baseline injector-producer
produce lower D values than those created with the “Flipped” injector-producer configu-
ration. The largest D values by far occur when the fine-scale realizations are conditioned
solely on {t(obs)

b } (fine-scale data) and then subjected to the “Flipped” conditions.
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Figure 13: Average absolute errors (AAE) between median travel times from the estimated
and true travel time distributions for each field (left) and distribution of average KS statis-
tic values calculated by comparing the full distribution of estimated and true travel time
distributions (right).

To summarize, we sampled the distribution P(w,δ|d), developed in Sec. 4.3, to construct
1000 realizations of the fine-scale binary medium on a 3000×2000 mesh and predict break-
through times at the SSA sensors via simulation. This was performed for the three different
P(w,δ|d) developed (conditioned on {k(obs), t(obs)

b }, {k(obs)} and {t(obs)
b }) in Sec. 4.3 to

gauge the impact multiscale data in the estimation of Ke. Posterior predictive model evalu-
ations using 1000 realizations created from each of the three combinations of conditioning
data clearly showed that using data collected on both scales, as opposed to a single scale,
creates predictions that are closest to actual values from the ground truth. Evaluating the
fine-scale fields using a flipped source-sink configuration highlights the greater impact of
k(obs) (the coarse-scale data) on the accuracy of the inference relative to using only t(obs)

b
(fine-scale data).

We now address the finding (in Sec. 4.4) that quality of the inference was mostly determined
by the quality of our multiscale link model L and the crude i.i.d. Gaussian error model for
the discrepancy between observations of log-permeability and model predictions. In the
next section, Sec. 6, we construct a more sophisticated parameterization for the model
error and devise an inference scheme, predicated on the new error model and exploration
of the Ke space, to develop more accurate estimates of F(x),δ and their uncertainties.
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Table 2: Tabulation of the discrepancy between the observed and predicted breakthrough
times at the 20 SSA sensors. All values are in dimensionless time. The predicted break-
through time, in this context, is the median of the breakthrough times calculated over 1000
fine-scale realizations. This result corresponds to the offset of the circles from the cen-
ter in Fig. 12. The “Nominal config.” is the configuration where the fluid is injected at
the lower left corner of the domain and extracted at the upper right; the “Flipped config.”
is the configuration where the injector is at the top left and the producer at the bottom
right. {k(obs), t(obs)

b } indicates fine-scale realizations developed from the inversion using

both static and dynamic data; “{k(obs)}” and “{t(obs)
b }” indicate inferences drawn from just

the static (“coarse-scale”) and dynamic (“fine-scale”) observations. Note that the observa-
tions were drawn only in the nominal configuration. We see that the posterior predictions
are closer to observations in the {k(obs), t(obs)

b } case, which use both the static and dynamic
data, compared to the cases when only one type of data is used. Fine-scale realizations ob-
tained from {k(obs), t(obs)

b } data are also surprisingly accurate when predicting breakthrough
times in the “flipped” configuration. This predictive robustness is missing in the realiza-
tions drawn from only one type of data – static (coarse-scale) or dynamic (fine-scale); the
errors in the predictions for the “flipped” configuration are quite large.

Sensor Nominal config. “Flipped” config.
{k(obs), t(obs)

b } {k(obs)} {t(obs)
b } {k(obs), t(obs)

b } {k(obs)} {t(obs)
b }

(3, 3) 0.133 0.162 0.089 -0.003 -0.005 -0.006
(8, 3) -0.044 -0.047 -0.077 -0.043 -0.051 -0.056
(13, 3) 0.000 0.003 0.002 0.088 0.093 0.196
(17, 3) 0.003 0.004 0.006 0.070 0.088 0.577
(3, 9) 0.009 -0.249 0.007 -0.038 -0.029 0.002
(8, 9) 0.037 -0.043 -0.052 -0.092 -0.080 -0.184
(13, 9) -0.011 0.020 -0.013 0.094 0.122 0.031
(17, 9) 0.043 0.043 0.070 0.023 0.230 0.813
(3, 15) -0.348 -0.965 -0.282 -0.185 -0.232 0.260
(8, 15) -0.037 -0.121 -0.166 -0.117 -0.054 -0.246
(13, 15) 0.018 0.099 0.074 0.197 0.266 -0.057
(17, 15) 0.160 0.005 0.233 0.359 0.161 0.666
(3, 21) -0.105 -0.013 -0.049 -0.171 -0.251 0.980
(8, 21) -0.099 0.069 -0.103 -0.464 -0.322 -0.501
(13, 21) 0.058 0.105 0.068 0.312 0.356 -0.087
(17, 21) 0.061 -0.189 0.330 0.024 0.108 -0.043
(3, 27) -0.134 -0.010 -0.202 -0.246 -0.350 2.616
(8, 27) 0.048 0.164 0.089 -0.084 -0.162 1.250
(13, 27) 0.713 -0.030 0.454 0.334 0.316 0.108
(17, 27) 0.568 -0.044 0.748 0.034 -0.094 -0.548
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Table 3: Tabulation of the variation predicted breakthrough times at the 20 SSA sensors.
Variation is defined as the width of the central 95% of the breakthrough times predicted by
the 1,000 fine-scale realizations and corresponds to the radius of the circles in Fig. 12. The
“Nominal config.” is the configuration where the fluid is injected at the lower left corner of
the domain and extracted at the upper right; the “Flipped config.” is the configuration where
the injector is at the top left and the producer at the bottom right. {k(obs), t(obs)

b } indicates
fine-scale realizations developed from the inversion using both static and dynamic data;
“{k(obs)}” and “{t(obs)

b }” indicate inferences drawn from just the static (“coarse-scale”)
and dynamic (“fine-scale”) observations. Note that the observations were drawn only in the
nominal configuration. We see that the posterior predictions are closer to observations in
the {k(obs), t(obs)

b } case, which use both the static and dynamic data, compared to the cases

when only one type of data is used. Fine-scale realizations obtained from {k(obs), t(obs)
b }

data are also surprisingly accurate when predicting breakthrough times in the “flipped”
configuration. This predictive robustness is missing in the realizations drawn from only
one type of data – static (coarse-scale) or dynamic (fine-scale); the errors in the predictions
for the “flipped” configuration are quite large.

Sensor Nominal config. “Flipped” config.
location {k(obs), t(obs)

b } {k(obs)} {t(obs)
b } {k(obs), t(obs)

b } {k(obs)} {t(obs)
b }

(3, 3) 0.565 1.078 1.105 0.030 0.023 0.040
(8, 3) 0.241 0.353 0.369 0.126 0.129 0.407
(13, 3) 0.047 0.057 0.122 0.267 0.270 2.444
(17, 3) 0.013 0.015 0.044 0.418 0.424 5.763
(3, 9) 0.812 1.014 1.361 0.109 0.115 0.380
(8, 9) 0.387 0.484 0.525 0.258 0.311 0.343
(13, 9) 0.159 0.226 0.200 0.718 0.762 2.138
(17, 9) 0.146 0.157 0.273 0.681 0.660 8.046
(3, 15) 1.243 1.406 1.881 0.407 0.353 1.949
(8, 15) 0.728 0.743 0.617 0.606 0.674 0.760
(13, 15) 0.188 0.363 0.438 0.734 0.897 0.830
(17, 15) 0.518 0.408 0.795 1.331 1.068 5.131
(3, 21) 1.167 1.485 1.215 0.710 0.658 5.493
(8, 21) 0.443 0.880 0.405 0.991 1.335 2.461
(13, 21) 0.440 0.563 0.594 0.789 1.108 0.550
(17, 21) 0.688 0.601 1.262 0.710 0.854 1.842
(3, 27) 0.522 0.791 0.455 1.112 1.380 14.82
(8, 27) 0.423 0.777 0.558 0.803 0.724 13.05
(13, 27) 2.173 1.741 1.881 1.018 1.505 3.674
(17, 27) 2.169 3.200 3.243 1.033 1.207 0.953
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6 Multiscale inference with model errors

In Sec. 4 we demonstrated the solution of the inverse problem for inclusion distribution
and size under the assumption that the discrepancy between the predictions of our models
(tb = M (K) and Ke = L(F(x),δ)) and the observations d as Gaussians (Eq. 14). However,
in most real-life cases, the discrepancy is dominated by model errors i.e., the inability of
M (K) and L(F(x),δ) to capture reality. Fig. 2 compares the predictions of effective log-
permeability made by L versus those computed numerically using MODFLOW-2005, for
the same set of random binary media realizations. As is clear, the scatter of MODFLOW-
2005 estimates around the L predictions is neither symmetric nor Gaussians; imposing a
normal distribution on the discrepancy, while sufficient for demonstrating an algorithm,
cannot be justified when accuracy of inference is a concern. Thus, a new error model needs
to be devised and used to derive a counterpart to Eq. 15. It is clear from Fig. 2 that the
discrepancy in Ke will be dependent on F i.e., an expression for P(∆K|F) will have to
be developed, where ∆K = Kt

c−L(F,δ). Also, for ease of use with MCMC, a unimodal
distribution for P(∆K|F) would be desirable.

6.1 Construction of the error model for the link function

We develop a model to evaluate P(∆K|F) based on kernel density estimation [71]. In
Fig. 14, top left, we plot Kt

c and Ke as a function of F, for δ = 38 grid-cells. Since (F,δ)
is an incomplete description of the fine-scale, many fine-scale realizations, each with its
own Kt

c are consistent with such a specification, leading to a cloud of points (in black);
the crosses indicate Ke = L(F,δ). A joint distribution of (∆K,F), plotted as a scatter plot,
is shown in Fig. 14, top right; this serves as our starting point for developing a kernel-
smoothed model for the joint probability density function P(∆K,F).

We assume that the samples plotted in Fig. 14 (top right) are drawn from an unknown joint
distribution which we approximate with P(∆K,F) as

P(∆K,F) =
1
S

S

∑
k=1

K
(

∆K−∆Kk

hK

)
K
(

F−Fk

hF

)
=

1
S

1
hKhF

S

∑
k=1

K (∆K−∆Kk)K (F−Fk) (21)

where S is the number of (∆K,F) samples, K is an Epanetchnikov kernel and {hK,hF}
are the bandwidths in the two directions. The bandwidths are calculated using a plug-in
technique [72]. The evaluation of P(∆K,F), per Eq. 21, involves a sum over all samples,
which can be expensive; instead we employ an approximate summation method using KD-
trees [73]. The samples are collated in to boxes numbering O(log(S)) and stored in a
KD-tree. An approximate expression for the contribution of kernels in a given box to
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P(∆K,F) is computed and the summation is done over O(log(S)) boxes. The novelty of
the scheme lies in the hierarchical manner in which kernels are collated in boxes, which
are further refined/sub-divided to meet an accuracy criterion. Some boxes are shown in
Fig. 14, top right. The joint probability density distribution P(∆K,F) resulting from the
kernel-smoothed approximation is shown in Fig. 14, lower left.

The evaluation of P(∆K|F) is performed simply by

P(∆K|F) =
P(∆K,F)

P(F)
(22)

where P(F) is calculated by numerically integrating out ∆K in P(∆K,F). Computations
involving KDE were performed using the MATLABTM code in [74]. Fig. 14, lower right
shows P(∆K|F) for different values of F.

Note that the bandwidths {hK,hF} obtained using plug-in bandwidth estimation had to be
over-smoothed by a factor of 2 to ensure that P(∆K|F) did not have largely disconnected
modes (since they prevent MCMC chains from mixing).

In order to construct a model for P(∆K|F), valid for arbitrary F and δ, the exercise was
repeated for δ = 9,15,21,28,38,56 and 75 grid-cells. Models for P(∆K|F,δ) were devel-
oped for each. Thereafter, P(∆K|F,δ) for arbitrary values of δ were obtained by adopting
that of the nearest known δ.

Kernel density estimates of probability density distributions are generally applicable only
in the region where samples exist and can be misleading away from it. Our use of Epanetch-
nikov kernels (which have compact support) ensures that at large ∆K, P(∆K|F,δ) will eval-
uate to zero, in keeping with the absence of samples. This will be reflected when devising
an expression for P(d|Ke,F,δ) in Eq. 15 i.e., the expression will evaluate to zero in large
parts of the multi-dimensional (w,δ) space, as will the posterior distribution. This can pose
a problem when exploring the space of the posterior density using a MCMC sampler - large
regions of zero gradient in the posterior will not allow the chain to move to more promising
regions. We ameliorate this situation by adding an extra Gaussian kernel KG to Eq. 21, i.e.

P(∆K,F) =
1−α

S

S

∑
k=1

K
(

∆K−∆Kk

hK

)
K
(

F−Fk

hF

)
+αKG (∆K−µk,Γk) (23)

where α is chosen so that only 10% of the probability mass is contributed by the Gaussian
kernel. The infinite support of the Gaussian allows the posterior to be calculated anywhere
in the (w,δ) space and provides the gradient required by the MCMC chain to move into
the high probability regions of the posterior. In the regions in (w,δ) space where ∆K
is small, the kernel density estimate for the model errors’ probability density dominate,
allowing the inference to reflect their effect (uncertainty due to model errors), rather than
the measurement noise.
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Figure 14: Stages in the construction of the conditional PDF P(∆K|F,δ). Top left: We
create multiple realizations of the fine-scale random binary media field and plot their true
upscaled log-permeability (as a cloud) and the model prediction Ke = L(F,δ), for δ = 38
grid-cells. Top right: we show the samples and the boxes from Level 4 of the KD-tree
holding the boxed samples. Bottom left: We plot the kernel density estimate of P(∆K,F)
for δ = 38 grid-cells, constructed using Epanetchnikov kernels (after over-smoothing the
bandwidths to remove isolated modes). Bottom right: We plot the conditional distribution
P(∆K|F), for δ = 38 grid-cells, for various values of F.
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6.2 Adapting and solving the inverse problem for model errors

In this section, we incorporate the expression for P(∆K|F) (Eq. 22), but calculated from the
“ameliorated” joint density distribution in Eq. 23, into a formulation of an inverse problem
(similar to Eq. 15) and solve it to infer fine-scale properties.

We start with the assumption that the measurement errors are far smaller than the model
error / discrepancy ∆K as defined above. In such a case

k(obs) ≈ Kt
c = L(F(x),δ)+∆K.

Let k(obs)
j be the measured log-permeability in the grid-box containing sensor j and F(x j)

be the corresponding inclusion proportion. Assuming that the model errors, conditioned on
the local F(x j) are i.i.d,

P(k(obs)|F(x),δ) =
Ns

∏
j=1

P(k(obs)
j |F(x j),δ) =

Ns

∏
j=1

P(∆K j|w,δ) (24)

where ∆K j is the observation-prediction mismatch of log-permeabilities at sensor j (but
now attributed to model errors rather than measurement errors, as was done in Eq. 15). We
model the mismatch between observed and predicted breakthrough times as before, i.e., as
measurement errors modeled using i.i.d. Gaussians, implying that the model M (K) is an
accurate representation of tracer transport. Thus the counterpart to Eq. 16, incorporating
model errors, is

P(w,δ|d) ∝ exp
(
− [et(w)−µt ]T [et(w)−µt ]

σ2
t

) Ns

∏
j=1

P(∆K j|w,δ)

π(δ)
M

∏
l=1

exp(−w2
l ) (25)

Eq. 25 is solved using the same techniques and for the same problem as Sec. 4. However,
we restrict ourselves to the SSA set of sensors.

The new model for observation-prediction discrepancy in ∆K will allow the MCMC chain
to visit regions of the log-permeability (K) space that may not have been allowed by the
Gaussian model used in Sec. 4. However, this exploration will also be modified by the
Gaussian error model used for tb. We examine the effect of these error models on {w,δ}
individually.

In Fig. 15, we plot the posterior PDFs for w1 and w30, as inferred solely from static data, as
Q-Q plots. Posterior distributions, as obtained in Sec. 4, are also plotted. We see that the
KDE error model constructed in Sec. 6.1 makes a difference only for the low mode (w1)
whereas the high mode (w30) is unaffected. This is in keeping with the conclusions drawn
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in Sec. 4. Note, however, that the posterior PDF for w1, obtained with the KDE model is
different from the one obtained with the Gaussian model of Sec. 4; for instance, the Q-Q
plot is not a straight line and so the posterior is no longer a Gaussian.

We now investigate the effect of tb by incorporating dynamic data into our inference. In
Fig. 16 we plot the posterior PDFs for the Karhunen-Loève weights w1,w15,w30 and ln(δ)
as computed using model errors. The plots with solid lines were inferred using both static
and dynamic data, whereas the ones with dotted lines were inferred using static data only.
We see that like our results in Sec. 4 the static data determines the large-scale structures -
the posteriors for w1 obtained from the static observations only is very similar to the one
obtained from static and dynamic observations i.e. the inclusion of tb contributes very little
information. On the other hand, as described in the previous paragraph the posterior and
prior densities for w30 in the static-observations-only case are indistinguishable (Fig. 15)
and the posterior in the lower left sub-figure of Fig. 16 is due almost entirely to tb observa-
tions. ln(δ) seems very little affected by the inclusion of dynamic data as well as the model
errors. We also plot the posterior PDFs for the same variables as obtained in Sec. 4 (i.e.,
from Fig. 9, but only for the SSA set of sensors). We see a substantial difference in the
posterior PDF for the larger modes, but the higher/finer modes are very similar. Thus the
effect of KDE model for errors is most felt by inference variables that have global effect
e.g. w1, (and are impacted by static data) whereas those with local effect are dominated by
the information content of the breakthrough times (where the error model is the same as
in Sec. 4). By the same argument, if the inference were to be done with static data only,
the posterior density for w30 would be the same as the prior (and completely unaffected by
the change in the error model between Sec. 4 and this section), whereas the largest change
would be seen in w1. This is corroborated in Fig. 15. Also, comparing the width of the
PDFs for the objects of inference, we do not see much of decrease in width, i.e., while
the posterior distributions are different for all the objects of inference, there has not been a
reduction of uncertainty. However, whether or not there is an improvement in the goodness
of fit (i.e., in the accuracy of the inference) will be evaluated next.

We perform posterior predictive checks (PPC) using the posterior distribution of {w,δ}.
The distribution of breakthrough times obtained at the 20 sensors of the SSA set are plotted
in Fig. 17 (the “error bars” correspond to the 1st and 99th percentiles of the 9,500 break-
through times obtained using {w,δ} samples from the posterior distribution). The observed
breakthrough times are plotted as triangles whereas the circles are the median of the PPC.
The corresponding values from Sec. 4 are plotted in red. We see that the KDE error model
did not contribute to the reduction of uncertainty (as mentioned in the last paragraph) since
the widths of the error bars obtained with the KDE error model and Sec. 4’s Gaussian model
are about the same; however, the error bars are slightly shifted and only 2 sensor readings
(as opposed to 3 in Sec. 4.2) are outside the bounds. This indicates a slight improvement
in the goodness-of-fit.

To summarize, we developed a KDE-based representation for the model error and per-
formed the inference of {w,δ} based on the assumption that model errors dominated mea-
surement errors. We obtained inferences which were different from those obtained in
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Figure 15: Q-Q plot for the posterior distribution of w1 (left) and w30 (right). The solid line
denote the Q-Q plot for inference developed with the KDE error model described in this
section; the dashed line denote those that used the Gaussian model of Sec. 4. Only static
data was used. The prior is plotted with dots. We note that the KDE model results in a plot
that is not a straight line (for w1); also the plots are different when the KDE and Gaussian
models are used. Right, we see that the static data made no difference to the inference of
w30; the posterior is indistinguishable from the prior.

62



−1.5 −1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

w1

D
en

si
ty

static & dynamic data; KDE error model
static & dynamic data; Gaussian error model
static data only; KDE error model

−2 −1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

w15
D

en
si

ty

static & dynamic data; KDE error model
static & dynamic data; Gaussian error model
static data only; KDE error model

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

w30

D
en

si
ty

static & dynamic data; KDE error model
static & dynamic data; Gaussian error model
static data only; KDE error model

−1 0 1 2 3 4 5 6

0.
00

0.
10

0.
20

0.
30

ln((δδ))

D
en

si
ty

static & dynamic data; KDE error model
static & dynamic data; Gaussian error model
static data only; KDE error model

Figure 16: Posterior PDFs for {w1,w15,w30, ln(δ)} using the KDE error model, obtained
with static data only (dotted lines), as well as static and dynamic data (solid line). We see
that dynamic data affects the posterior for the higher Karhunen-Loève modes, as in Sec. 4.
Also the impact of the static data is limited to the lower Karhunen-Loève modes. We see
that the impact of dynamic data on ln(δ) is low. We also plot the posterior PDF obtained
using the Gaussian error model in Sec. 4. We see that at the finer (higher) Karhunen-Loève
modes, which are impacted mostly by dynamic data, have posteriors that are relatively
insensitive to the choice of KDE versus Gaussian data model.
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Figure 17: Distributions of the tracer breakthrough times at the 20 SSA sensors, obtained
via posterior predictive checks using the posterior density for {w,δ}. Those plotted in
black were developed using the KDE error model; the ones in red use the Gaussian model
described in Sec. 4. The observations are in black triangles; the circles are medians. The
error bars indicate the 1st and 99th percentiles. We see that the width of the error bars are
about the same irrespective of the error model (KDE/Gaussian) used; i.e. our choice of
models did not reduce the uncertainty in the inference. However, only 2 observations fall
outside the black error bars, whereas 3 do for the red ones, indicating a slight improvement
in the goodness-of-fit when using the KDE error model.
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Sec. 4, but these were restricted to variables which had global effect; the posterior for higher
Karhunen-Loève modes, which are controlled by the breakthrough times, were hardly af-
fected. A local variable like ln(δ) also was unaffected. The reason for the change was the
ability of the MCMC chain to explore parts of the K space which was not possible under
the Gaussian error model in Sec. 4. While we did obtain a better fit of the model to data, as
indicated by the PPC, it was marginal. The reason for this lies in our restrictive model for
Ke = L(F(x),δ); the KDE model for ∆K shows that the K-space is quite involved and may
not be easily captured by the Karhunen-Loève -mode based reduced model. This inability
to capture the spatial complexity of K also results in poor predictions for tb.

A solution to this problem of the rigidity/limited range of L lies in actually using the KDE
model for ∆K, along with L , to construct proposals for Kt

c. These Kt
c could be compared

with observations k(obs) (under a measurement error assumption) and also used to generate
tb and compared to t(obs)

b , again under a tight measurement error model. This would un-
doubtedly improve the fit of the model to data, but will also result in a far more difficult
inference problem - apart from inferring {w,δ}, we would also have to infer a Kt

c field un-
der a suitable smoothness model. This, much harder, inference problem will be addressed
in a subsequent publication.
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7 Conclusions

We have developed a multiscale, statistical technique to reconstruct characteristics of a
random, porous binary medium from partial observations. The binary medium consists of
high permeability inclusions distributed in a low-permeability matrix. The uneven spatial
distribution of the inclusions F(x) and its size δ are the objects of inference; effective per-
meability Ke = L(F(x),δ) is calculated from a known dependence on them. The inclusions
are too small to be resolved on a mesh. The observations consist of measurements of log-
permeability (k(obs)) and breakthrough times (t(obs)

b ) of a fluid from a pump test at a set
of sensor points. The log-permeability measurements inform on the large-scale variations
in the domain of interest; the breakthrough times are governed strongly by the contorted
flow paths through the medium and are informative on the fine-scale structures. Jointly
conditioning on these observations renders this a multiscale inverse problem.

The reconstruction is posed as a Bayesian inverse problem, predicated on fitting a multi-
scale transport model to the data. The transport model is formulated at the coarse-scale, but
with a statistical subgrid model that incorporates the impact of the fine, unresolved scales at
the coarse-scale. The subgrid model (alternatively, the link function between the scales) is
parameterized with the inclusion size, δ. The inverse problem is regularized by expressing
F(x) using Gaussian Processes; its dimensionality is reduced by expanding F(x) in terms
of a truncated Karhunen-Loève series. Fitting the model to data yields a joint distribution
of the Karhunen-Loève weights and δ, inferring characteristics of both the coarse-scale
(the variation of F(x) and Ke in the domain) and the fine, unresolved scale (the size δ of
the inclusions). This distribution is realized without any approximations, using an adaptive
MCMC sampler.

We find that F(x) and δ obtained by jointly conditioning on {k(obs), t(obs)
b } are far more

accurate than if they were obtained solely from k(obs) or t(obs)
b . Inversion based on k(obs)

capture the large-scale variation correctly; however, the permeability field distribution so
reconstructed predicts breakthrough times poorly since it lacks finer details/structures re-
sponsible for contorted flow paths. The inversions based solely on t(obs)

b are extremely poor,
due to its inability to constrain large structures. However, when the two are put together,
k(obs) constrains the larger structures while t(obs)

b is used to constrain the smaller ones. Thus

the improved inferences (when conditioned jointly on k(obs) and t(obs)
b ) are not just due to

more plentiful observations, but rather due to the different types of information in k(obs)

and t(obs)
b . Since the information is derived from different scales (coarse for k(obs) and fine

for t(obs)
b ), the inversion is fundamentally multiscale.

Plots of marginalized posteriors of the objects of inference show that they are approxi-
mately Gaussian. While the priors used for them are Gaussian, this is surprising, given that
both the fluid transport and the link function are strongly nonlinear. However, this (approx-
imate) Gaussian character of the posterior raises the possibility of performing the inference
accurately using scalable methods like ensemble Kalman filters which maintain accuracy
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only up to the second moment of the distribution that they infer.

We use the inferences of F(x) and δ to reconstruct fine-scale realizations of the binary
medium i.e., on a fine mesh where the inclusions can be resolved. We check the predictive
skill of the ensemble of realizations by performing transport simulations with them, in an
effort to recreate the observations from which they were inferred in the first place. We find
that fine-scale realization developed by conditioning jointly on coarse and fine-scale ob-
servations (i.e., “multiscale” realizations) have a greater predictive skill that those inferred
with one type of information. Further, the predictive skill of the multiscale realizations are
preserved when they are used in flow configurations different from the one used to obtain
t(obs)
b . This robustness is not observed in the realizations obtained from only one type of

data.

We find that the primary source of uncertainty and inaccuracy in multiscale inversions is
the approximation inherent in the link function, which in turn leads to a significant model
error when predicting permeability using L(F(x),δ). We characterize this model error (an
upscaling error) statistically, using a mixture of Epanetchnikov kernels (a kernel density
estimate between true and L predictions of permeability) and incorporate into the inversion.
Our results indicate that this sophisticated, heteroscedastic error model (as opposed to using
a homoscedastic model for upscaling error) improves the quality of the inference. This was
verified using a posterior predictive test.

This work open up a few new questions. While we find that multiscale inversion leads
to more robustness inferences of binary media, the Bayesian technique is computationally
expensive and will probably scale only to problems of modest size. Approximating the
posterior distribution as a Gaussian opens up the possibility of employing scalable Ensem-
ble Kalman Filtering techniques, which is currently being investigated. A second avenue of
research lies in whether the fine-scale realizations constructed from the data can be used in
an efficient manner for predictions; currently, ensemble predictions require many simula-
tions on a fine mesh. While an embarrassingly parallel problem, it nevertheless consumes
significant computing resources and often does not provide a timely solution. Finally, we
consider whether the incorporation of model errors into the inversion process can be per-
formed in a more accurate manner. We are currently exploring ways in which the model
errors can be used to jointly infer the Karhunen-Loève weights, δ and a permeability field
from the same observations.
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[5] Jianlin Fu and J. Jaime Gómez-Hernández. A blocking Markov chain Monte Carlo
method for inverse stochastic hydrogeological modeling. Mathematical Geosciences,
41:105–128, 2009.
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