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Abstract

Staggered bioterrorist attacks with aerosolized pathogens on population centers present a formidable
challenge to resource allocation and response planning. The response and planning will commence
immediately after the detection of the first attack and with no or little information of the second
attack. In this report, we outline a method by which resourceallocation may be performed. It
involves probabilistic reconstruction of the bioterrorist attack from partial observations of the out-
break, followed by an optimization-under-uncertainty approach to perform resource allocations.
We consider both single-site and time-staggered multi-site attacks (i.e., a reload scenario) under
conditions when resources (personnel and equipment which are difficult to gather and transport)
are insufficient. Both communicable (plague) and non-communicable diseases (anthrax) are ad-
dressed, and we also consider cases when the data, the time-series of people reporting with symp-
toms, are confounded with a reporting delay. We demonstratehow our approach develops alloca-
tions profiles that have the potential to reduce the probability of an extremely adverse outcome in
exchange for a more certain, but less adverse outcome. We explore the effect of placing limits on
daily allocations. Further, since our method is data-driven, the resource allocation progressively
improves as more data becomes available.
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Chapter 1

Introduction

This report describes a set of resource allocation techniques developed to address the problem of
a “reload” scenario, i.e., a series of time-staggered bioterrorist attacks conducted over population
centers with an aerosolized pathogen. Such a problem is extremely challenging since it requires
one to allocate resources early, after the detection of the first attack and in ignorance (or with little
knowledge) of the subsequent attacks. Resources here referto those which are difficult to gather
and transport and may thus be considered scarce, for example, medical equipment and personnel.
Current approaches leave much to be desired, since they makescant use of the only source of data
in the aftermath of a successful attack, i.e., the morbiditystream, which typically consists of the
number of people showing symptoms. Instead, they rely heavily on detection via aerosol sensors.
Such an approach has its merits; early detection, followed by heavy prophylaxis, has the potential
to prevent an outbreak [1]. However, if the aerosolized pathogen is not detected (for example, if
the attacked site is not instrumented with sensors), an outbreak may be expected, leading to a rapid
and large increase in demand for medical resources. A properresource allocation technique would
consist of drawing estimates of the resource demand from theavailable data, and performing the
resource allocation accordingly. Since the data stream mayreasonably be expected to become more
informative as one progresses into the outbreak, demand estimates and resource allocations should
be dynamically updated for accuracy. In this report, we demonstrate how the estimation may be
performed probabilistically, followed by a resource allocation using the uncertain resource demand
estimates. Our formulation allows the calculation of the risk associated with the allocation, and is a
function of a free parameter, representing the risk appetite of the resource allocator or alternatively,
the risk associated due to the constraints of the transportation infrastructure. The results here are
preliminary, but show promise for both non-communicable and communicable diseases. Further,
the techniques are not specific to bioattacks; they can be be used in other scenarios where the effects
of an attack are delayed (i.e., there is an “incubation” time) and an estimation has to be performed to
determine the cause. Thus the hazards posed by the percutaneous absorption of chemical agents (or
toxic industrial chemicals) which have an “incubation” period of about a day, as well as radiation
exposure (somewhat larger delays) are also problems where our resource allocation technique may
find use.

The problem of the “reload” scenario was first described by Danzig [2]. The report had a strong
policy focus, and did not delve into technical means of addressing the problems that could be
expected in a “reload” scenario. A detailed system-dynamical study was performed by Edwardset
al. [3] and certain technical and procedural changes/targets were suggested. However, the emphasis
was on detection rather than response. The problem of an undetected attack (or multiple small
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undetected attacks) was not considered.

The problem of resource allocation in case of an undetected bioattack presents some interest-
ing mathematical challenges. In such a context, the only source of data is the time-series of pa-
tients infected with the aerosolized pathogen in question.This information stream will be em-
bedded in the normal background morbidity stream that mightbe expected in any population
center. During the aftermath of the bioattack, the background morbidity will be augmented by
hypochondriacs/“worried-well” individuals. Further, time-series of infected people showing symp-
toms will be confounded with a random reporting delay – infected, symptomatic people cannot be
expected to report to medical institutions immediately after the exhibition of symptoms. Thus the
“signal” of the attack in the morbidity time-series may suffer from a low signal-to-noise ratio for
a significant duration, before the anomalously large morbidity level due to the attack triggers an
alarm.

In the absence of a background morbidity, the “signal” from abioattack will consist of the time-
series of infected patients turning symptomatic and reporting to medical institutions for care. The
delay between infection and exhibition of symptoms is the incubation period, and is characteristic
of a disease, i.e., if the etiological agent is known, a modelfor the incubation period is generally
available. The delay between the exhibition of symptoms andreporting for care is called the
“reporting delay” in this report. It has been modeled for particular populations (usually as a log-
normal distribution), but will probably differ from site tosite (i.e., it is best extracted from the data
at hand, with perhaps existing reporting delay models to guide us). The signal will also depend on
the number of people infected,N (and in case of communicable diseases, this number can be further
divided into the index casesNind, a stationary number, and secondary infectionsNsec, a time-
variable quantity), the time of infectionτ and in case of dose-dependent incubation periods (e.g., in
anthrax), the doseD. Thus the time-series could be used to back-calculate{N,τ, log10(D)} which
we will henceforth refer to as theattack parameters. Since the inference will need to be performed
early after the detection, the time-series will be short (and noisy), rendering any estimate of the
attack parameters uncertain; thus they are best inferred asprobability density functions (PDFs).
Samples of attack parameters, drawn from the PDFs conditioned on time-series data could be used
to perform posterior predictive runs (with a conventional epidemic model) to bound the possible
evolution of the outbreak. The ensemble of runs embodies a large fraction (but not all) of the
uncertainty regarding future demands on resources (e.g., it would not capture the uncertainty /
inaccuracies in the epidemic model), and allows one to consider a resource allocation procedure
that could reduce the chances of an extremely bad outcome. Defining what a desirable outcome
might be is case dependent, but will extend beyond minimizing the expected number of casualties
and will be addressed in this report.

The question of an “optimal” allocation of resources, givenan uncertain demand for them, is ad-
dressed using a multistage optimization technique. In caseof a “reload”, one will have uncertain
demands at multiple sites, with differing levels of uncertainty. However, both the epidemic and
the demand for resources will evolve over time, allowing oneto consider atime profileof resource
allocation, which can be updated as the morbidity time-series lengthens. The updating will be
constrained by the capacity of the transportation infrastructure as well as the risk-appetite of the
emergency manager, if subsequent attacks are expected and resources have to be husbanded. The
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resource allocation profile can be used to dispatch resources in the short term (timescale of a day)
and plan for transportation needs in the long term (O(τ) days). The constraints placed on the re-
source allocation profile can have a significant impact on therisk (henceforth defined as the PDF
of casualties, given an ensemble of outbreak realizations and a resource allocation profile). These
constraints can be parameterized and we investigate the sensitivity of the risk to these free param-
eters. The parameterized constraints are termed “free” since they are governed by transportation
and/or risk appetite, which are exogenous to the information content of the morbidity time-series
and thus cannot be informed by better data analysis.

Apart from a multistage optimization technique, resource allocation may also be performed using
a “market-based” technique, i.e., a system where individual entities (“agents”) negotiate/converge
to a resource allocation profile depending upon their need and supplies of resources. Such a system
requires the relevant information (on the need for resources at various sites) to permeate throughout
the system (the “market”) via interactions between “agents” (one of whom may be a “market-
maker”). This is a novel technique, but has not been exploredin this study. This has the potential
to arrive at better resource allocation in real life, but faces many modeling and computational
challenges. However, we include a review of literature on this area in this report.

The report is structured as follows. In Chapter 2, we review recent work on the inference of at-
tack/outbreak parameters from time-series of morbidity data. We also include a short discussion of
the reporting delay, as well as a review of robust techniquesin multi-stage stochastic optimization.
The chapter also contains a description of “market-based” and “agent-based” modeling approaches
to resource allocation. In Chp. 3 we address the question of how the reporting delay may be esti-
mated and used to correct the morbidity time-series (which consist of symptomatic patients who
have reported to medical institutions) to obtain an approximation the actual number of infected,
symptomatic people (some of whom may not have begun to seek medical attention). The impact
of the “corrected” time-series on the inference of attack parameters will be studied. In Chp. 4
we formulate the resource allocation problem (including the means to accommodate multi-site de-
mands with disparate levels of uncertainties in the demand estimates) and present examples using
a non-communicable disease, specifically anthrax. We studythe effect of the “free” constraint pa-
rameter, and also show how a “naive” allocation (an allocation based on the mean of the ensemble
of outbreak realizations) leads to a very risky allocation.In Chp. 5 we show how the inference
procedure can be extended to address a communicable disease, specifically, H1N1 flu modeled
on the 1918 pandemic; the process of conducting posterior predictive runs and performing the re-
source allocation is the same as in anthrax and is omitted. InChp. 6, we summarize our findings,
and identify topics which need further investigation. These may be needed to accurately gauge the
potential of our technique for responding to both bioattacks and epidemics/pandemics engendered
the increased contact between humans and wildlife, spurredby both economic, climate change and
spread by globalization.

13



This page intentionally left blank.



Chapter 2

Literature review

In this chapter, we review some existing literature on the inference of outbreak/attack parame-
ters, stochastic, multi-stage optimization and agent-based market simulations. The latter are two
different radically different approaches to computing resource allocations,

2.1 Inference of attack parameters

The approaches used to characterize (i.e., estimate attackparameters) partially observed outbreaks
are very different for non-communicable and communicable diseases. For non-communicable dis-
eases, current literature consists of a few studies involving releases of aerosolized anthrax. Walden
& Kaplan [4] introduced a Bayesian formulation for estimating the size and time of a bioterror
(BT) attack and tested it on a low-dose (less than ID25, the dose at which a person has a 25% prob-
ability of incurring the disease) anthrax release corresponding, approximately, to the Sverdlovsk
outbreak [5] of 1979. Their formulation incorporated an incubation period model developed by
Brookmeyeret al.[6] and demonstrated the use of prior distributions onN to reduce uncertainty in
the inferred characteristics. Brookmeyer & Blades [7] useda maximum likelihood approach, along
with the anthrax incubation model in [6], to infer the size ofthe 2001 anthrax attacks [8] before
estimating the reduction in casualties due to the timely administration of antibiotics. Both [4] and
[7] developed similar expressions for the likelihood function, i.e., the probability of observing a
patient time series given an attack at timeτ with N infected people. The incubation period model
in [6] was not dose-dependent, and hence no doses were inferred in these two studies.

The BARD [9] effort also seeks to characterize a BT attack from the presentation of symptoms.
It attempts to estimate the location, height, and time of an airborne anthrax release, as well as
the number of spores. The observables consist of respiratory visits to emergency departments,
as might be obtainable from syndromic surveillance systemssuch as RODS [10]. The model
that relates these observables to the characteristics of the outbreak includes a Gaussian dispersion
plume [11], Glassman’s infection relation [12], and a log-normal distribution of incubation peri-
ods, with dose-dependent mean and standard deviation. However, BARD’s use in an urban context
is only approximate since Gaussian plumes are suited mainlyfor open spaces [11]. Further, esti-
mation of the release parameters was an intermediate aim in [9]; its thrust is to detect anomalous
morbidity patterns using a spatiotemporal approach, whichis considerably assisted if the spatial
distribution of infected people (i.e., the “footprint” of the plume) can be estimated. A similar,
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spatiotemporal approach to attack parameter estimation can be found in Legrandet al. [13]. The
formulation is Bayesian, and the paper contains a thorough testing of their estimation technique
against competing ones. The study also dealt with how medical resources/care could be prioritized
spatially, based of the severity of infection in different locations in the attacked site.

In this report, the inference of attack parameter is performed using the Bayesian technique de-
scribed in [14]. The method is solely temporal and thus has simple data needs (it does not
need any spatial information, unlike [9] and [13]). It yields estimates of the attack parameters
{N,τ, log10(D)}. The data consists of a time-series of the number of new patients exhibiting
symptoms on a daily basis. The model validation performed in[14] demonstrated that about 5
days of data are sufficient to develop informative PDFs of theattack parameters and perform pos-
terior predictive runs. In certain cases, 5 days of data could lead to a wrong estimation, but they
were quickly corrected as more data became available. However, a shortcoming of the technique
is that it requires a time-series of theactualnumber of symptomatic individuals, including those
who had not reported for medical care. In this study we will investigate how such a time-series
may be approximated from a time-series of symptomatic individuals who seeking medical care.
The difference between the two arises from a reporting delaywhich has been modeled [15], and
which can be explicitly estimated from data. This is described in Chp. 3.

The spread of communicable diseases shows many dynamical features and gives rise to a different
parameter estimation problem. Traditionally, this has meant estimating the rate of spread of a
disease from data. There is a vast literature on fitting conventional SEIR models to data [16, 17,
18, 19, 20, 21], and of late, this has been extended to network-based epidemic models [22] as well
as inferring chains of transmission [23]. A simple approachto estimating outbreak parameters is
described in [24]. The authors assume that there exists a time-dependent infection intensity and
an unknown number of infected and infectious individuals. The (unknown) infection intensity,
convolved with the incubation period of the disease resultsin the time-series of people exhibiting
symptoms. This technique was used to back-calculate the number of individual infected with
HIV using the data collected in 1980–1988. In this work, we will use this simpler model of a
communicable disease to infer the number of secondary infection as well as estimate the shape of
the infection intensity curve.

2.2 Least-regret and multi-stage stochastic optimizationtechniques

Given that we can obtain a probability density function thatcaptures the uncertainty in the extent
of an anthrax attack, the problem becomes one of optimally allocating resources to minimize the
expected number of deaths. The idea is to sample the PDF to obtain scenarios of the number of
people who will arrive at the hospital each day over the extent of the attack. As we expected, these
scenarios can, and do, vary widely, especially early in the attack when little is known from which
to calculate the PDFs. The challenge is to create an optimization model, based on these scenarios,
that takes into account other relevant constraints, including logistics limitations, including the risk
appetite of the emergency manager, and social, or fairness,constraints that allocate resources pro-
portionally over several attack sites. We give two approaches, a so-called “least-regret” model and
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a more classic stochastic optimization with recourse model. We combine these to get an optimal
allocation for today from the stochastic optimization model along with a proposed allocation over
the entire period from the least-regret model.

The idea behind the least-regret approach is first to solve a resource allocation problem for each of
the scenarios. Since for each scenario we know exactly how many people arrive and we know the
expected effectiveness of our resources, the optimizationproblem is a classical resource allocation
problem that is easily solved. In fact, such problems are straightforward linear programming prob-
lems; many implementations of fast, reliable algorithms are available to solve them. After solving
these problems, we have a resource allocation schedule and the minimal number of deaths for each
scenario. At this point we could make a naive choice of simplyusing the average of all of the
allocations for today as our choice, but this has certain drawbacks, as we report in [25]. A better
strategy is to solve a final optimization problem that picks an allocation schedule such that we de-
viate as little as possible from the minimal number of deathsin each of the scenarios. Specifically,
let r be an allocation schedule, i.e.,r j is the allocation made on dayj. Let D∗

i be the minimum
number of deaths obtained in scenarioi and letDi(r) be the number of deaths that would occur if
allocationr is used in scenarioi. Then the least-regret problem is to minimize over all allocation
schedulesr the quantity

K

∑
i=1

(Di(r)−D∗
i )

2,

whereK is the number of scenarios. This allocation has the advantage of not allowing any scenario
to dominate the calculation. Of course, other criteria could be postulated, but this formulation is
appealing on both computational and practical grounds. From a computational point of view, this
will result in a quadratic programming problem for which there are many good algorithms.

In our experimentation and testing we included a number of constraints that are meant to show
the ability of the model to handle a variety of situations that may reasonably arise. For example,
we considered bounds on the number of units of resource that could be shipped on each day, we
included a “ramp-up” at the beginning to allow for a logistics resources to be put in place, we
included an assumption that allowed for the effectiveness of treatment to vary over the course of
the attack, and we allowed for the reuse of resources if patients receiving them died.

We also included in our model the possibility of an attack on another target (the “re-load” case)
within a few days of the first attack. In this case we had to explicitly constrain the solution to make
allocations to both cities. Without this, the optimizationmodel could achieve the same minimal
number of deaths by allocating all (or most) resources to only one city. Our assumption is that
such an allocation would be socially unacceptable, so we added a constraint that ensured that all
targets received proportional allocations.

We now describe the stochastic optimization model, which includes the above constraints.

Stochastic optimization with recourse provides another, more conventional way to choose resource
allocations under uncertainty. If we have some idea about the probabilities of events in subsequent
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days, perhaps (as in the present application) based on historical data and incoming observations,
we can formulate models that account for corrective actions— recourse — we can take once more
is known, and we can make today’s decisions in light of expected recourse costs.

With both least-regret and stochastic programming formulations, the goal is to make a reasonable
decision about what resources to allocate today. Tomorrow we will have gathered more data and
can rerun the calculations with updated data to help make tomorrow’s allocation decision. In our
recourse formulation, we used today’s allocation as the first stage and allocations for the subse-
quent days under each of the scenarios generated from today’s data as the second stage, and with
expected deaths as the cost of recourse. That is, our objective was to minimize expected deaths,
subject to the previously described constraints. This results in a single linear programming prob-
lem (a “deterministic equivalent”) that is larger than least-regret problem, but faster to solve. Both
formulations give similar decisions about today’s allocation. A detailed description of our recourse
formulation appears in [25] and in Chapter 4 below.

2.3 Agent-based market simulations

The previous sections have dealt with centrally planned allocation of resources (goods) in response
to a crisis. Allocation of goods can also be performed using market mechanisms, based on a price
of the good, attributes of the buyers and sellers or government policies. Over the last 15 years,
agent-based simulations have been used to model and understand how markets function, where a
market in the formal sense is “any context in which sale and purchase of goods and services takes
place” [26]. Each market tends to be for a single good (e.g., vaccines), sellers are those who are
willing and able to sell the paticular good and buyers are those willing and able to purchase it.
As compared with the centrally planned allocations of thesegoods and services, markets provide
mechanisms for allocating based on the price of the particular good or service. Given that in a real
market individual buyers and sellers have private encapsulated knowledge about themselves (as
well as about other buyers and sellers) and have private encapsulated procedures that they follow
and that the resulting market behavior based on the public actions of these buyers and sellers is
dynamic, nonlinear and complex, agent-based models are an ideal approach.

Agent-based market simulations have been used extensivelyto model a wide array of markets,
starting largely from the seminal work of Palmer et al [27], Axelrod [28], Arthur et al [29] and
Epstein and Axtell [30], the later of whom formalized the notions of agents as “people” in “en-
vironments” that follow “rules”, all of which results in emergent “social structures”. Their work
indicated that the traditional theories of market equilibrium were very sensitive to the set of mar-
ket conditions (buyer behavior, seller behavior, numbers of buyers and sellers, information and
market-clearing mechanisms).

Since then, there have been a vast expansion of research in many market domains that focus on
analyzing market design (auctioning and other market mechanisms for rationalizing resources from
sellers to buyers) and learning and adaptive seller/buyer behaviors. A prominent example is agent-
based simulation of spot markets for wholesale electric power, where wholesale electric power that
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has not already been sold through long-term contracts is sold in short-term markets. As described
in [31], many electric power market models have been developed primarily to analyze power buyer
and seller learning and resulting market dynamics, complexity and ultimately the reliability of
these spot markets to deliver power and efficient prices. A significant motivation for this body
of research was the failure of electric power spot markets inCalifornia, where poor spot market
designs resulted in market-induced supranormal prices andprofits and ultimately rolling “brown-
outs”.

Another prominent example is agent-based simulations of financial markets, where changes in
market design and buyer/seller behaviors can have complex,unforseen outcomes in market prices,
i.e., the value of assets traded and stability i.e, the liquidity and fluctuations in valuations that can
destabilize and even stop a market from functioning. As described in [32], NASDAQ has used
agent-based simulations to analyze impact of regulatory changes on their market under various
changes in buyer/seller strategies, price increments and so on; furthermore, eBay uses intelligent
agents to help its customers with their market bidding.

Ehlen et al [33] used Sandia N-ABLE model to analyze how real-time pricing of consumer power
would affect wholesale and transmission market pricing andstability; Sprigg and Ehlen [34] use
ASPEN [35] to simulate how agents can find their Nash equilibrium prices with little information
and simplistic decision rules. Agent-based simulations have also been used to investigate how spot,
future and option markets could be destabilized by terrorist events [36].
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Chapter 3

Modeling reporting delay

As discussed in Chp. 2, Sec. 2.1, the estimation of the demandfor resources requires one to charac-
terize the number of index cases, and if the disease is communicable, the secondary cases too. This
estimation is performed using the time-series of new peopleexhibiting symptoms. However, since
symptomatic people do not seek care immediately on exhibiting symptoms, this time-series is fre-
quently not available. What is available is a time-series ofsymptomatic patients who have sought
care. Given a daily time-series of lengthR, the reporting delay (which, in case of the Sverdlovsk
anthrax outbreak was characterized as a lognormal distribution with a median of 2.7 days [15])
leads to a severe under-reporting of the number of symptomatics over the time interval[R−5,R).
Any inferences drawn with such an erroneous time-series will be misleading; ignoring the last 5
days of data is not an option since that would increase the length of the observation period. In
a situation where a response has to be formulated quickly, such an approach would be useless.
Thus one has to consider either “correcting” the data for thereporting delay, or formulating an
estimation problem for the index cases which incorporates the delay.

The number of people seeking care on a given day can be always be asked about their time of
exhibition of symptoms. Thus for a given reporting dayr, one can construct a time-seriesNi,r

consisting of the number of people who exhibited symptoms onday i, i ≤ r. One can curate such
time-series overR days to obtain a table. An example of such a table is Table 3.1,which was
generated from a simulated anthrax attack (described in Sec. 3.2), with a reporting delay model
obtained from [15]. Here, each columnr contains information on the number of people showing
symptoms on each dayi, i < r. The rows of the table denote the dayi.

Compare the columnr = 6 with the last column,r = 9. N0,6, the number of people turning symp-
tomatic on day 0, as known on reporting day 6 (alternatively,an approximation ofM0, the number
of people who turned symptomatic on day 0) is not very different from the estimateN0,7. This is
because most ofM0 symptomatic patients have sought medical care (i.e., have been reported) by
Day 6. However, if one considers the case ofM6, N6,6 andN6,9 differ by an order of magnitude. In
fact, each row of the table traces out the cumulative distribution function of the reporting delay, and
asymptotes to the true number ofMi of the number of index cases who turn symptomatic on dayi.
If one assumes a model for the reporting delay distribution (e.g., a log-normal orΓ-distribution),
one can obtain the model parameters by regressing to the datain the table; obtaining the asymptotic
valueMi , given the first few days of observationsNi,r , r < R is then a trivial exercise.

An alternative approach to estimating the attack parameters is to incorporate the reporting delay in
the model used for estimation. The data consists of the new number of symptomatic cases seeking
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Table 3.1. Number of individuals,Ni,r , turning symptomatic on
day i as known by dayr.

r=0 1 2 3 4 5 6 7 8 9
i=0 0 16 45 70 89 100 108 115 116 117

1 - 14 161 328 457 548 605 649 678 700
2 - - 31 338 710 1006 1207 1340 1415 1481
3 - - - 44 509 1077 1484 1759 1932 2057
4 - - - - 65 570 1211 1669 2008 2219
5 - - - - - 48 453 1042 1540 1835
6 - - - - - - 62 497 1053 1501
7 - - - - - - - 51 428 880
8 - - - - - - - - 39 379

care, collated on a daily basis. This data can be obtained by performing column-wise sums in
Table 3.1 (which would provide a running sum of the total number of people who have sought
care by dayr) and subtracting the column-wise sums from their predecessor (which would provide
the new daily cases). Consider that there exists an unknown numberN of index cases, who were
infectedτ days before the reporting of first symptoms. Assume that an average doseD was the
infecting dose. LetfI (x;D) represent the dose-dependent incubation period of anthrax. Then the
number of peopleni seeking care on dayi, i.e., in the time interval[ti−1, ti) is given by

ni = N
Z ti

ti−1

fI (s;D)(C(ti −s;p)−C(ti−1−s;p))ds, (3.1)

whereC(t;p) is the cumulative distribution function (CDF) of the reporting delay. This formulation
was adapted from [24]. The parameters of the CDF,p, along withN,τ andD, can be estimated
from the time-seriesni .

In this work, we will investigate the first approach rather than the one based on Eq. 3.1. The efficacy
of Eq. 3.1 has been investigated in [24]; furthermore, it estimates more parameters (N,τ,D,p) from
less data (one time-series) than the tabulation approach that regresses a distribution model to a table
of data. Furthermore, it allows one to compare the efficacy and applicability of validated models
that exist in literature with a more realistic data-stream.

Below, we present a formulation that allows us to model the reporting delay asΓ-distribution.
The parameters of the distribution are estimated from the data in Table 3.1 using a least-squares
method, and thereafter used to correct the observation to obtain estimates ofMi . We then useMi to
infer the attack parameters, and compare them with inferences drawn fromM∗

i , the true time-series
of symptomatics. These tests are performed using syntheticdata from a simulated anthrax attack.
The reporting delay in the simulated attacks is modeled using the log-normal distribution in [15].
We also compare the posterior predictive runs obtained fromMi andM∗

i to gauge what the impact
of reporting delay correction might be on the allocation mechanism.
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3.1 Formulation for correcting the reporting delay

In correcting for the reporting delay, we assume that the PDFof the delay between when an individ-
ual turns symptomatic and seeks treatment will follow aΓ-distribution. The fractionfi,r = Ni,r/M∗

i
of people who turned symptomatic on dayi as known by dayr will then follow theΓ-distribution
CDF,

F(x;k,θ) ≡ γ(k,x/θ)

Γ(k)
=

R x/θ
0 qk−1e−qdq
R ∞

0 qk−1e−qdq
, (3.2)

with shape parameterk > 0 and scale parameterθ > 0 fixed over time. Here,Γ(k) is the Gamma
function andγ(k,x/θ) is the lower incomplete Gamma function. This implies that the CDF of the
reporting delay depends only on the delay between turning symptomatic and seeking treatment,
∆ = r − i. Due to the coarse binning of the data, we allow a shift between ∆ andx, usingx= ∆+δ,
whereδ is our third fitting parameter.

Because we do not knowM∗
i , however, we will instead fit the ratiofi,r/ fi,r+1 = Ni,r/Ni,r+1 (illus-

trated in Table 3.2 for the test case), in which the unknown term cancels, using the fitting function

η(∆;k,θ,δ) ≡ F(∆+δ;k,θ)

F(∆+δ+1;k,θ)
. (3.3)

The regression was performed using ITT Visual Information Solutions IDL with the routine MP-
FIT by Craig Markwardt. MPFIT is based on the MINPACK-1 Fortran package for least-squares
minimization. When performing the regressions described below, we omitted the dayi = 0 as well
as the delay∆ = 0 data. After the CDF model parameters (k, θ, δ) are determined from the regres-
sion, estimates ofM∗

i (given in Table 3.3) are computed usingMi = Ni,R/ fi,R, whereR is the most
recent reporting day.

3.2 Test cases

A simulated population of 80,000 people was exposed to Anthrax, resulting in 23,917 being in-
fected. The average dose of those infected was 2,754 spores.The elapsed time between developing
symptoms and seeking treatment for each individual was drawn from a log-normal distribution,

f (x;µ,σ) =
1√

2πσx
exp

[

− log(x/µ)

2σ2

]

, (3.4)

with µ= 2.73 andσ = 0.7, consistent with the Sverdlovsk incident, wherex, µ, andσ are given in
days. Individuals turning symptomatic on daysi = [0,8] who sought treatment by dayr = 9 were
included in the observations (see Table 3.1).
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Table 3.2. RatiosNi,r/Ni,r+1 computed for fitting the fraction
of individuals that turned symptomatic on dayi that have sought
treatment within∆ = r − i days.

∆=0 1 2 3 4 5 6 7 8
i=0 0.0000 0.3556 0.6429 0.7865 0.8900 0.9259 0.9391 0.9914 0.9915

1 0.0870 0.4909 0.7177 0.8339 0.9058 0.9322 0.9572 0.9686 -
2 0.0917 0.4761 0.7058 0.8335 0.9007 0.9470 0.9554 - -
3 0.0864 0.4726 0.7257 0.8437 0.9105 0.9392 - - -
4 0.1140 0.4707 0.7256 0.8312 0.9049 - - - -
5 0.1060 0.4347 0.6766 0.8392 - - - - -
6 0.1247 0.4720 0.7015 - - - - - -
7 0.1192 0.4864 - - - - - - -
8 0.1029 - - - - - - - -

Each column of Table 3.3 shows the corrected values as determined using data available only up to
dayR= r. Simply for comparison, the final column shows the actual number of individuals who
developed symptoms on a given day. This pristine data would not be available in the case of a real
attack but is useful in analyzing the accuracy of our correction as applied to the simulated data.
For reporting dayR= 6, we will present PDFs drawn from the corrected data as compared to those
drawn from the pristine data. Figure 3.1 directly compares the raw observations, the observations
after being corrected for the reporting delay, and the pristine data for the case being analyzed. The
corrected curve follows the pristine data closely with the exception of on the most recent day. Our
goal here is to determine how sensitive the PDFs will be to differences between the corrected and
pristine data.

Figure 3.2 compares the 1D PDFs of the number infected, the time of infection, and the logarithm
of dosage, as determined from the corrected observations and the pristine data. On DayR= 6, the
pristine data shows a bimodal distribution for the number infected, shown in the top panel, with
the primary peak most closely reflecting the actual number infected. The PDF developed from the
corrected data is much more narrow and suggests a significantly smaller infected population. If
we take an additional day of data and perform this comparisonfor R= 7, we find that the PDF
developed from the pristine data is no longer bimodal and is better matched by the PDF from the
corrected data. ForR= [8,9], we find that the PDF from the corrected data very closely matches
that from the pristine data, showing that our correction should provide very reliable results as the
epidemic progresses.

The middle panel of Figure 3.2 shows the PDFs of the time of infection. We find that the peak for
the corrected data is close to that for the pristine data whenR= 6. When looking atR= [7,9], we
find that the PDFs match for the corrected and pristine data, again validating our method. In the
bottom panel, we see that the PDF of the logarithm of dosage ismuch wider for the pristine data as
compared to the corrected data forR= 6. As was the case for the number infected, the difference
between the PDFs for dosage is much smaller forR= [8,9].
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Table 3.3. Each column provides the estimateMi of the number
of individuals turning symptomatic on dayi, using only data col-
lected on daysr < R. The final column shows the actual number
of symptomatics,M∗

i , for comparison.

R=4 5 6 7 8 9 M∗
i

i=0 137 115 118 121 119 119 123
1 889 700 708 707 714 725 753
2 2051 1541 1567 1549 1545 15691618
3 3323 2318 2305 2249 2240 22632340
4 - 2557 2626 2549 2580 25982651
5 - - 2058 2226 2371 23852477
6 - - - 2256 2278 2340 2350
7 - - - - 1973 1926 1998
8 - - - - - 1760 1690

Figures 3.3 and 3.4 show 4000 samples from the joint PDF of theattack parameters as determined
from the corrected observations and the pristine data, respectively. As was seen in the 1D PDFs,
the distribution is significantly narrower for the corrected data as compared to the pristine data.
This could give an inaccurate picture of the uncertainty in the attack parameters when determining
the resource allocations. However, the corrected data giveus a starting point for making resource
allocations that was not available with only the raw data.
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Figure 3.1. Number of individuals who have reported by Day
R = 6 having developed symptoms on daysi = [0,5]. The long
reporting delay results in a large discrepancy between the number
of individuals who have sought treatment by Day 6 (blue) and the
number who actually developed symptoms on a given day (red).
Also shown is our estimation of the total number to develop symp-
toms (black), which closely tracks the red curve except for the final
point.
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Figure 3.2. Comparison of the 1D PDFs of the number of indi-
viduals to be infected (top), the time of infection (middle), and the
logarithm of dosage (bottom), based on the pristine data andthe
corrected data on DayR= 6, as presented in Figure 3.1.
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Figure 3.3. Evolution of the epidemic using 4000 samples taken
from the joint PDF of the attack parameters based on the corrected
data on DayR= 6 as presented in Figure 3.1. The actual number
of people showing symptoms by Day 6 is plotted using symbols.
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Figure 3.4. Evolution of the epidemic using 4000 samples taken
from the joint PDF of the attack parameters based on the pristine
data, for comparison to Figure 3.3. The actual number of people
showing symptoms by Day 6 is plotted using symbols.
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Chapter 4

Resource allocation in attacks with
non-communicable agents

In this section, we formulate a resource allocation problem, based on probabilistic reconstruc-
tion of an attack’s parameters, as discussed in [14]. The solution of the problem results in a
time-dependent allocation profile, which can updated with the availability of information and con-
strained by the actual capabilities of the transportation infrastructure. This enables an efficient yet
realistic allocation of resourcesin a “reload” scenario. In this chapter, we will use anthrax as the
agent for conducting the attacks.

4.1 Formulation

The problem of resource allocation in reload scenarios is governed by two non-dimensional num-
bers, which are ratios of timescales. The response to a bioattack, of a reload nature, is governed by
three main processes viz,

1. the time-scale of the epidemic/outbreak,τE. For the anthrax attacks,τE ≈ 15 days.

2. the time-scale of the transportation infrastructure,τR. This may be the time required to
gather and transport significant fractions of the resource demand, starting from a “standstill”.
Typically τR≈ 2 days.

3. the stagger time-scaleτS. This is the average time-delay between subsequent attacks.

The following time-scale ratios should hold if a set of staggered bioattacks are to be amenable to
the resource allocation techniques outlined here:

• τS/τE ≪ 1. This condition indicates that the stagger should be relatively small, e.g., typically
less than the time required for the first attack to be detected. It is expected that the heightened
security posture after thedetectionof a bioattack will prevent any subsequent attacks. Also,
the parameter domainτS/τE ≫ 1 indicates a large separation between two bioattacks; these
can be addressed separately and do not constitute a “reload”scenario. A “good” value for
τS/τE is 0.2.
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• τR/τI ≪ 1. This condition indicates that response time of the transportation infrastructure
should be significantly smaller than the epidemic, so as to accommodate changes in resource
allocations, as dictated by the data stream. An inability torespond to the dynamic changes
in resource demand essentially renders the current treatment useless; one may as well con-
sider a static/point estimate of the resources required, allocate it, and ignore the information
content of the morbidity streams. A “good” value isτR/τI ≈ 0.2.

4.1.1 Optimal allocation of resources

As noted above, the basic problem is one of making optimal allocation of resources under signifi-
cant uncertainty. In previous work, we showed how to capturethis uncertainty in a PDF that can be
used to predict the number of patients who arrive at the hospital requesting treatment. Specifically,
we construct a number of such scenarios that are consistent with the data we currently have.

The basic strategy is to use the data that we have to make a decision of how much resource to
allocate today. We also estimate the quantity of resources that might be required in the future
(i.e., a resource allocation profile) to plan future logistical requirements. When new information
is obtained the next day, a new estimation of the attack parameters (and the resource demands)
is performed. The scenarios are recalculated in light of thenew data, the available resources
are decreased by the amount allocated today, and the allocation recalculated. Thus we have one
decision variable: the amount we allocate today based on theinformation at hand. Let that variable
bea.

We adopt the following assumptions and notations: Let

• K be the number of scenarios;

• T be the number of days that we consider, i.e., the planning horizon of the epidemic;

• Nk, j be the number of people requiring treatment who arrive on dayj in scenariok;

• rk, j be the allocation made on dayj in scenariok;

• Dk, j be the number of people who die on dayj in scenariok;

• Dk be the total number of people who die in scenariok;

• R be the total number of resource units available for the attack, where we assume for sim-
plicity that one unit of resource treats one patient;

• sk, j be the number of resource units available on dayj of scenariok;

• t j be the fraction of people, arriving on dayj, who will die having been treated;

• u j be the fraction of people, arriving on dayj, who will die not having been treated.
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We assume that those arriving later in the attack will be morelikely to be successfully treated.
This is motivated by the fact that longer incubations generally indicate a lower dose exposure
(or a robust constitution). Thus we assume thatt j+1 > t j andu j+1 > u j . In practice, we make
this difference (t j+1− t j = u j+1−u j = ε = 10−6) small and it merely serves as a mathematical
stratagem to remove multiple solutions.

To construct the optimization problem, we need to specify the objective function. As a first cut,
let us assume that we want to minimize some function of the sumof the number of deaths in each
scenario, i.e., we seek to minimize

K

∑
k=1

M(Dk)

whereM(Dk) is some measure ofDk. We could consider various measures, but clearly one could
takeM to be simply the expected number of deaths. The optimizationproblem is then

min
a

K

∑
k=1

M(Dk),

where we have to specify constraints on resources and on how to computeDk. The resource
constraint is, clearly,

0≤ a≤ R.

Given the treatment assumptions described above, we can easily compute

Dk, j = rk, j t j +(Nk, j − rk, j)u j . (4.1)

For day 1, we tentatively substitutea for rk,1.

The allocationsrk, j , j > 1 can be chosen to be the optimal allocations for scenariok, given that
allocationa was made in day 1. These allocations will be constrained as follows:

rk, j ≥ 0
T

∑
j=2

rk, j ≤ R−a for eachk. (4.2)

Although it is possible to iteratively solve problems for each scenario separately, it is more efficient
to make the collectionrk, j variables in the optimization problem and solve one large problem rather
than K smaller problems for each trial value ofa.
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Before we pose the final version of the initial problem, we must address an important situation.
It is possible that in some scenarios, an allocationa or rk, j will be greater than the number of
people who arrive, i.e.,a > Nk,1, in which case, the value ofDk, j from above will not correctly
calculate the number of deaths. To handle this situation, instead of substitutinga for all rk,1, we
retain separaterk,1 variables and impose the constraintrk,1 ≤ a for all k. We also impose the simple
bound constraintsrk, j ≤ Nk, j for all (k, j), and we change (4.2) to

T

∑
j=2

rk, j ≤ R− rk,1.

Another important concern is that without further constraints, the optimal choice ofa may be to
allocate all possible resources on the first day, which seemsunlikely to be the best policy. One
way to address this issue is to make tentative allocations for all days in the planning horizon, i.e.,
to introduce decision variablesai ≥ 0 for 1≤ i ≤ T and to restrict each scenario’s allocations by
rk, j ≤ a j , with a1 = a and

T

∑
j=1

a j ≤ R.

In other words, we decide,a priori, that the daily allocation cannot exceed a certain level. Obvi-
ously the level chosen has a significant impact on the qualityof the allocation calculated. This is
studied further below.

Of course, the purpose of the exercise is still to choose the first day’s allocationa = a1. Another
possibility is to penalize over-allocation of resources, in keeping with some standard approaches.
To do this, we introduce a penalty term in the objective function of the form

ρ · (a− rk,1)+,

wherex+ = x if x > 0 and 0 otherwise, andρ is a constant chosen to appropriately balance the
costs, i.e., penalize wastage / overallocation of resources. We choose this form for our studies
here.

Policy makers may further wish to limit daily allocations tospecified fractions of the available
resources, saya j ≤ σ jR. For simplicity, below we use a common valueσ j = σ ∈ (0,1] for all j
(with σ = 1 imposing no further restriction).

The final topic we consider here is the reuse of resources. As noted, a high percentage of patients
being treated will die anyway and they will die at a nonuniform rate. Some, in fact, will die quite
early and their resources can be used on incoming patients. Data for estimating the rates are not
readily available, but reasonable approximations can be made. Based on typical treatment progres-
sions, the longer one survives, the more likely complete recovery becomes. Thus the percentage of
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people who die aftern days of treatment should increase rapidly for a few days and then gradually
decrease. As a first cut, we assumed a ten-day period and used asimple function,fn = f 0

n/∑10
k=1 f 0

k
with f 0

n = n/(1+ exp(n/2)) to estimate these rates (withfn = 0 for n > 10). This is in the form
of the expected percentage of people being treated who will die n days after treatment has begun.
Given fn, it is straightforward to estimate the number of resources that will be available on any
given day, as in (4.5) below. Along the same lines, as noted above, there will be some scenarios
for which allocations will exceed demand and the extra resources will likewise be available for
incoming patients. The number of people who will die is stillgiven by (4.1).

Our optimization problem is shown in Figure 4.1. Some remarks about it are in order. It is a two-
stage stochastic optimization problem with recourse. The first stage is today and the second stage
is days 2–T. Each scenario takes recourse on the basis of today’s allocation and does the best that
it can after that. Constraints (4.3), (4.4), and (4.5) together imply that each scenario consumes at
mostR resources.

min
a,rk, j ,sk, j

1
K

K

∑
k=1

{

M(Dk)+ρ(a− rk,1)+
}

subject to: 0 ≤ a≤ σR

0 ≤ rk, j ≤ min(Nk, j ,σR)

rk,1 ≤ a

rk, j ≤ sk, j (4.3)

sk,1 = R (4.4)

sk, j = sk, j−1− rk, j−1 (4.5)

+
j−1

∑
n=1

fnt j−nrk, j−n

Dk, j = t jrk, j +(Nk, j − rk, j)u j

Dk =
T

∑
j=1

Dk, j .

Figure 4.1.Multi-scenario resource allocation problem.

One could, in principle, construct a multi-stage problem bydividing the days 2–T into two or more
stages. Suppose, for example, that the second stage is days 2–4. Then one could trace each of theK
scenarios through day 4. At that point, one assumes that, foreachk, the dataNk, j , j = 1, . . . ,4, are
“true”, constructs a PDF based on this data and samples that to obtainK new time series for each
k. Although this can be easily continued, it is clear that the number of possible paths through the
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attack grows rapidly. In this paper, we confine ourselves to just the two stages, but the extension to
more stages is theoretically possible.

We have not yet specifiedM in the objective function, but we note that the constraints are all linear.
Thus, if M is a linear function, we have a classical linear programmingproblem for which there
are many excellent algorithms available. If we takeM to be the identity operator, i.e.,

M(Dk) = Dk =
T

∑
j=1

Dk, j (4.6)

then we are simply computing the expected number of deaths ineach scenario, and

D̄ =
1
K

K

∑
k=1

Dk (4.7)

is the expected number of deaths over all the scenarios. Thishas an obvious appeal; results using
this choice ofM are reported in the next section. A potential problem with this is that scenarios with
a large number of infected people could dominate the decisions. Recall our assumption that people
arriving later are better candidates for treatment; in a scenario with a large number of people, the
algorithm would delay the allocation of resources much moreso than for a scenario with a much
smaller number of infected people. It could be argued that the sampling procedure should properly
account for this, but one could also divideDk by the total number of people infected in scenariok.
This downplays the influence of the larger cases, while keeping the problem linear.

A different approach, related to the work in [37], is to compute the optimal number of deaths for
each scenario inK separate problems. Call the resultsDk

∗. Then one could obtain an allocation
that stays as close as possible to all of these in some sense. Anatural way to do this is to minimize
the variance between the vectorDk

∗ and the vectorDk resulting from any other allocation. In
particular, one could use

K

∑
k=1

(Dk−Dk
∗)2

as the objective function. In [37] we referred to this as the least-regret formulation with the inter-
pretation that the allocation made today is the one that we will least regret in the future since it does
reasonably well for all scenarios. As above, we could scale each of the terms by the total number
of arrivals in that scenario. Since this is a quadratic function, the optimization is now a convex
quadratic programming problem; again, good algorithms exist. The computation of eachDk

∗ is a
small linear programming problem that is solved quickly. One advantage of the least-regret for-
mulation is that is produces an allocation schedule, i.e., an allocation for each day over the entire
course of the episode. This provides the emergency manager with a better planning aid than just
the allocation for today. Thus, in our reporting below, we calculate the allocation for today using
the problem in figure 4.1 and then calculate the schedule for the remaining days using least regret.
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We now present some numerical results illustrating some of the issues raised here.

4.2 An attack on one city

To explore the approach, we first generated a test case involving an anthrax attack on a sin-
gle city. This is described in [37]. Briefly, an aerosolized anthrax release is simulated over
a domain with spatially variable population density. Per this distribution and an atmospheric
dispersion model, 22,384 individuals are infected with a range of doses, with an average dose
of 1470 spores. People develop symptoms over time; the time series for the first 10 days is
{3,123,719,2046,2202,2194,2058,1918,1656}. This time series was used to draw 100 samples
from the joint PDF of the attack parameters using a single-component random-walk Markov Chain
Monte Carlo (MCMC) sampler. Note that these samples were drawn after the MCMC sampler had
“burnt-in” and had “converged” per themcgibbsit package inR (Chapters 7 and 8 in [38]; also
see [39]). For each attack parameter sample, 10 epidemic realizations were calculated (the forward
model is stochastic), resulting in a set of 1000 epidemic realizations (or scenarios). Such ensem-
bles, generated from the first 5 days of data in the time-series above, are plotted as the gray region
in Figure 4.2. Note that we measure time from the day that the first person was diagnosed with
anthrax (rather than the time of attack/infection). The distribution developed with data collected
through Day 7 is much narrower than that through Day 3, confirming that the addition of 4 extra
days of data significantly reduces the uncertainty. This hasnot been plotted here.

The model was implemented in AMPL [40, 41, 42] and used the CPLEX 11 [43] simplex method
to solve the problems.

We ran many tests based on the model described above. We fixed our available resources such
that they could treat 10,000 patients (out of the 22,384 infected), i.e., they are scarce. Our first
observation is that the form of the functionM does not make much of a difference in the results.
Thus all of the results we show here were calculated using (4.6) to minimize the expected deaths
(4.7). Our second observation is that the penalty parameter, ρ, should be taken to be a small value
to ensure its desired effect. After some tests with several values ofρ, summarized in Table 4.1, we
chose useρ = 0.001 for all of the results reported here.

Table 4.1.Effect of ρ ona and expected deaths (4.7).

ρ a D̄
0. 10000 9358.0
0.0001 2384 9358.0
0.001 2364 9358.0
0.01 2317 9358.2
0.1 2261 9360.2

In Figure 4.2 we plot the allocations, given a resource demand drawn from 5 days of observations
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in the time series. The gray region denotes the ensemble of scenarios. The time-series values used
for the inference are plotted with triangles; the future observations in the time-series are plotted
with diamonds. Allocations were calculated forσ = 0.04 and 0.1. Clearlyσ makes a significant
difference. Recall that there are two possible reasons for imposing a constraint on the amount
of resource that can be shipped on a given day: the first is thatthis may simply be a logistical
constraint; the second is that the emergency manager may want to conserve resources as a hedge
against a subsequent attack. Observe that our formulation only computes the allocation for Day 6;
to give managers an idea of allocations that might be appropriate on subsequent days, we obtain
tentative allocations for days 7–T by averaging the allocations for each day over all of the scenarios.
(Subsequently arriving data should influence the actual allocations for later days.) As is evident
in Figure 4.2, the severe restriction imposed byσ = .04 implies that many fewer resources can
be allocated than for the lighter restriction ofσ = .10. Thus there is a commensurate increase in
the number of deaths withσ = .04, as we show in Figure 4.3. Here we plot the PDF of excess
casualties (over the optimal/minimal level that we would have achieved had we perfect knowledge
of the epidemic) for the two values ofσ. As might be expected, the effect ofσ (i.e., the placing of
a ceiling on how much can be shipped on a given day) is felt mainly in those scenarios that project
a large number of infected people turning symptomatic. We also see that increasingσ narrows the
PDF (we reduce the long-tail probability of an extremely adverse outcome) while raising the peak
of the PDF and moving to lower values of excess casualties, i.e., increasing the probability of a less
adverse outcome. Since the probability mass under the PDF is1, this is tantamount to increasing
the probability of a certain (acceptable) level of casualties while simultaneously trading it to reduce
the probability of an extremely adverse outcome — a classic hedging / risk management operation.
This is captured quantitatively in the change of shape of thePDF withσ.

For σ ≥ 0.20 we obtain an allocation (not shown here) resulting in veryfew excess casualties in
each scenario. These results show that the model can be used for assessing the effects of conserving
resources in anticipation of a second attack or for planningpurposes to see the need for a higher
shipping capacity.

One could also compare the PDFs of excess casualties if a “naive” approach to resource allocation
was considered, e.g., given anR, one allocates on a scenario-by-scenario basis (leading to1,000
allocations), then simply uses the mean of these allocations. Such a “naive” allocation results in
a very long tail (see [37] for a comparison) and is not very competitive for hedging purposes vis-
à-vis the more sophisticated techniques considered here and in [37]. For the rest of this paper, the
“naive” approach will be ignored.

4.3 An attack on two cities: The “reload” case and the equilibration
of pain

The main complication in dealing with an attack on two or morecities is in deciding how to allocate
the resources among all of the cities. From the point of view of the model, it does not make any
difference if a life is saved in the first city or the second. Thus, without further constraints, there is
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an inherent non-uniqueness in the solution of the problem, since the optimal number of deaths can
be achieved in many ways, including the extreme one of sending all of the resources to one city
and ignoring the other. In practice, it seems reasonable to assume that there will have to be some
“social” or infrastructural constraint to ensure that all cities are treated fairly. We illustrate how
this could be achieved below, but first we deal with another issue, namely that of whether or not to
anticipate subsequent attacks.

As noted in Section 4.1.1 an emergency manager may wish to restrict the amount of resources that
can be shipped on each day. This is done by imposing the constraints rk, j ≤ σR. The manager
could equally well chooseσ to conserve some of the resources in case there is a subsequent attack,
the “reload” case. If there is a subsequent attack, there is no way to say anything about it until
there is some evidence in the form of people in the second cityarriving at the local hospital in need
of treatment. As is the case for the first city, a few days of data are required before any reasonable
PDF can be computed and sampled.

Extending the basic model above to the case of several citiesis straightforward. The major addition
for the reload case is the social constraint. We illustrate the possibilities with a simple constraint
that seeks to ensure that each city receives a proportional amount of the resources. A way to do
this is to impose the constraints

Di/Ai ≤ (1+π)∑
j 6=i

D j/∑
j 6=i

Ai ,

whereDi are the deaths in cityi, Ai is the total number of patients in cityi, andπ ∈ [0,1]. For the
results reported here, we usedπ = 0.1, so that the relative resource allocations are within 10%.

We demonstrate this allocation approach on a simulated reload scenario. The first attack (on
City A) is the same as in Section 4.2. However, on Day 3 of the first attack, City B records an
anthrax diagnosis and it is verified that it too has been attacked. The time-series for City B is
{0,0,1,76,711,1765,2720,3099,3186,2896} for the first 10 days. The attack on City B was sim-
ulated in the manner described in [37]. 29,861 people were infected, with an average dose of 2749
spores. The two attacked cities therefore have a resource demand of around 50,000 units. In the
study below, we will assume that only 25,000 units are available.

The allocations are shown in Figures 4.4 and 4.5 for Day 6 of the attack, i.e., we have a time-series
5 days long for City A and 3 days long for City B. The gray regionin Figures 4.4 and 4.5 show
the ensemble of scenarios for the two attacks; as expected, the ensemble for City B is far broader
than City A, denoting a larger uncertainty arising from a smaller time-series of observations. The
observed and unobserved evolution of the epidemic in the twocities is plotted using triangles and
diamonds. The allocations developed withσ = 0.04 and 0.1 are plotted for Day 6 (and beyond)
of the epidemic. Note that the allocation is only meant for Day 6. Both the plots demonstrate
how allocations are curtailed asσ decreases, leading to extra casualties, especially for scenarios
that project larger epidemics. Also note that the effect ofσ is felt mostly during the peak of the
epidemic; the allocations are similar towards the end. Thisis a consequence of our modeling
decision to slightly favor later allocations.
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In Figure 4.6 we plot the PDFs of excess casualties (over the minimum that we would achieved had
we perfect knowledge of the attack and the epidemic). The excess casualties for Cities A and B,
for σ = 0.02,0.04 and 0.1 are totaled and plotted. Note that theσ = 0.1 case is not at all restrictive
and one even has overallocation of resources (the “negative” casualties). This happens when two
exceptionally small scenarios for City A and B are considered. Note that theσ value merely
places a bound on daily allocation; the constraint that daily allocations must add up to the available
resources is not violated. The hedging effect ofσ seen in Section 4.2 is also reproduced here,
though with a few modifications. In all cases, we see a multimodal excess-casualty distribution.
While σ = 0.04 does manage to translate the excess-casualty PDF to the left (vis-à-visσ = 0.02),
we see the width of its support is unchanged, i.e., the highervalue of σ reduces the expected
casualties (and consequently risk), but does not improve the hedge compared toσ = 0.02.

4.4 An attack on one city with corrected data

As reported in Chp. 3, the raw data consisting of just the number of people who arrive on a given
day is not sufficient to create good PDFs, since we need to knowthe day on which they became
symptomatic. In this section, we show the differences in thePDFs between the corrected and
uncorrected data and then show a series of resource allocations made based on the corrected data
over a 6-day period of the same attack. The results demonstrate that the resource allocations early
in the attack are quite good. That is, even as we get additional data and the PDFs narrow, the
allocations do not differ very significantly.

Fig. 3.3 and 3.4 show the resulting set of scenarios from Day 6with the corrected and uncorrected
data. As one can readily see, there is a significant difference in the size and range of the scenarios
and thus there would be a significant difference in the allocations.

In Fig. 4.7 we show the allocations schedules that are calculated for days 4–9. We assume that it
takes 3 days to ramp up the transportation infrastructure for resource distribution purposes, thus
placing a constraint on the allocation that can be realistically performed. Days 4, 5, and 6 show the
effect of this ramp-up to enable a full allocation of 10% of the resources. Note that the form of these
allocations is nearly the same, i.e., we ship at high levels early in the attack and then decrease the
shipments rapidly thereafter. Also note that the scenariosfor days 8 and 9 are very close and so we
do not expect much change to occur after day 9. Also note that in this case, a better reconstruction
of the epidemic (with more data) results in lower levels of allocation (see the allocations for Day
6-9). Further, most of the allocation is done early with a quick curtailing of allocation later in the
outbreak. This is because as the outbreak is better defined/reconstructed from data, the fall-off
in the epidemic curve becomes more certain, allowing a better (less uncertain) allocation in that
regime.
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Figure 4.2. Allocations for the attacked city, obtained from data
collected over the first 5 days. The gray region denotes the evolu-
tion of all the scenarios considered. The net effect ofσ is to reduce
the allocation during the early days of the epidemic. R = 10,000.
The observed evolution of the epidemic is plotted with triangles;
the future, unobserved evolution with diamonds.
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Figure 4.3. PDFs of excess casualties forσ = 0.04 and 0.1. R
= 10,000. A tighter daily constraint on allocations (σ = 0.04) in-
creases the probability of excess casualties. However, note that the
PDFs have rather compact support.

42



Day

S
ym

pt
om

at
ic

pa
tie

nt
s

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

Day
0 5 10 15 20 25 30

Observed
Unobserved
City A; σ = 0.02
City A; σ = 0.04
City A; σ = 0.1

Figure 4.4. Allocation under various values ofσ for City A. The
gray region denotes the evolution of all the scenarios considered.
R = 50,000 (total for both cities). These allocations were drawn
from data collected over 5 days; allocations are for Day 6. The
observed evolution of the epidemic is plotted with triangles; the
future, unobserved evolution with diamonds.
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Figure 4.5. Allocation under various values ofσ for City B. R =
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data collected over 3 days (Days 3, 4 and 5, the attack stagger
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R = 50,000. Note howσ = 0.1 results in certain “negative” casual-
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Chapter 5

Resource allocation for outbreaks caused by
communicable diseases

In this chapter, we will address the problem of resource allocation in case of outbreaks of com-
municable diseases. As mentioned before, the process consists of two elements viz. estimation of
outbreak parameters and the resource allocation process under an uncertain characterization of the
outbreak (in the form of an ensemble of outbreak realizations).

The resource allocation problem for communicable diseasesis considerably more involved com-
pared to non-communicable diseases. In Chp. 4, where we discussed the allocation of equipment
and personnel in response to an anthrax attack, we assumed that the level of resource allocated
made no difference to the evolution of the outbreak. This is because, unlike antibiotics which
suppress and can cure the disease, the resources considered(equipment and personnel) provide
palliative or supporting care. Thus the resource allocation / optimization procedure did not require
estimating the impact of the allocation on the outbreak itself; only the effect on casualties was
estimated. If any distribution of antibiotics disrupted the outbreak, the data-driven methodology
would capture the disruption and predict a smaller outbreak(though with a time-lag, required to
collect sufficient data to capture the disruption).

In case of a communicable disease, equipment and personnel are most likely to be engaged in
disrupting the transmission itself, and any resource allocation procedure will require the evaluation
of its disruptive effect. This leads to an extremely computationally intensive procedure, which we
will not address in this study. However, there also exist resources, e.g., drugs like Tamiflu, which
provide palliative/supporting care, whose demand estimates are set by the size of the outbreak;
the availability of such resources reduces casualties (andother losses) but does nothing to disrupt
the epidemic. However, if exogenous process (e.g., medicalresponses like vaccinations etc) are
involved in modulating disease spread, their effect can impact resource allocation greatly. Thus
such modulations need to be captured for a proper estimationof resource demand.

In our study we will concentrate on resources that provide palliative care during an epidemic of a
communicable disease. The procedure developed for anthraxin Chp. 4 is directly applicable, and
we will not demonstrate its performance such epidemics. Rather, we will develop an estimation
procedure for the important epidemic parameters, with the understanding that posterior predictive
calculations (which result in an ensemble of outbreak realizations) and the least-regret calculations
are identical to that of anthrax and therefore need not be investigated further.

47



5.1 Disease dynamics

Epidemics of communicable diseases show rich dynamics. Starting from a few index cases, they
spread. In certain cases, the outbreak may cease because of its low transmissivity or because it
infects a relatively unconnected clique of people. In othercases, it spreads widely, till changes in
social behavior (usually social distancing) halts its spreads. Thus the infection intensity (rate of
new infections) initially increases in time, before settling into a decline. This temporal variation
of infection intensity cannot, of course, be observed; at most one may know the number of people
exhibiting symptoms, at the end of their incubation period.Typically (e.g., for smallpox, plague,
influenza and a host of diseases), the incubation phase is notcontagious, and transmission starts
only after a person shows symptoms. The symptomatic are often measured/recorded when the seek
medical care; if this data is used to analyze an outbreak, onemust also accommodate a reporting
delay, as described in Chp. 3.

In this chapter, we will attempt to infer outbreak parameters of a communicable disease from
a time-series of symptomatics (and NOT people seeking medical care, i.e., we will not include
reporting delay in out inference) collected on a daily basis. Thus we have a time-seriesni of the
number of new symptomatics on Dayi, over a time duration 0≤ t ≤ T. We assume that there
exist a total ofNtot affected people, of which a fraction 1−α are index cases. The index cases are
assumed to have been infectedτ days before the first exhibition of symptoms, i.e.,τ < 0. There
exists an unknown infection intensityf (t;p), parameterized byp). The objective is to determine
estimates of{Ntot,α,τ,p}. Choosing the form off (t;p) is a challenge; sometimes the choice may
change as an epidemic progresses.

The data for the inference will be obtained from agent-basedsimulation of a communicable dis-
ease. The technique depends on the existence of a social network between individuals (agents),
over which the spread of the disease occurs. A outbreak is very dependent on the index cases (or
rather the connectivity of the index cases in the social network) and multiple simulations with the
samenumberof index cases (but with different choices of them) can lead to very different out-
breaks. The simulation technique is very similar to the one employed in [44] and is described in
detail in [23], Sec. 3.

Below, we formulate a Bayesian inverse problem, where we leave f (t;p) unspecified. Thereafter,
we demonstrate the inference technique on a plague and an influenza epidemic. In each case, we
describe the particulars of the transmission dynamics of the outbreaks. The true values ofNtot, τ
and 1−α are known from the simulation and are provided for comparison with inferred values.
The estimates ofp as a function ofni are also provided.

5.2 Formulation of the inverse problem

Consider an epidemic that has been observed in the time duration 0≤ t ≤ T, during which time,
Ntot = Nind +Nsechave been infected. This includes theNind index cases andNsecsecondary cases.
For largeT, α = Nsec/Ntot ≈ 1. Assume that the index cases were infected at timeτ,τ < 0. t = 0
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indicates the time the first person (one of the index cases) shows symptoms and starts spreading
the disease.

During the time-period[0,T], there exists a time-dependent infection intensity given by αNtot f (t;p),
which is the rate at which people are infected. The functionf (t;p) is unknown and models the
spread of the disease, which in turn is governed mainly by thesocial network and the transmissivity
of the disease. Note that

Z T

0
f (t;p)dt = 1 (5.1)

The limits of integration are[0. . .T] since this is the time-duration over which symptomatic pa-
tients spread the disease. Consider the time-seriesni , i = 0. . .m of new symptomatic cases that
appear in the time-interval[ti−1, ti), ti − ti−1 = ∆t = 1 day. ni is a mixture of index cases and
secondary cases turning symptomatic and can be given by

nmodel
i = Ntot

(

(1−α) [C(ti)−C(ti−1)]+α
Z T

0
f (s;p) [C(ti −s)−C(ti−1−s)]ds

)

ni = nmodel
i + ε (5.2)

whereC(t) is the cumulative distribution function (CDF) of the incubation period of the disease
andε ∼ N(0,σ2) is a measurement error.

Thus given a set of outbreak parameters{Ntot,α,τ,p}, the likelihood of observing the time-series
ni , i = 0. . .m is

π(ni, i = 0. . .m|Ntot,α,τ,p) = exp

(

−∑m
i=0(ni −nmodel

i )2

2σ2

)

. (5.3)

Using Bayes’ theorem, the joint posterior probabilityπ(Ntot,α,τ,p) conditioned on data is

π(Ntot,α,τ,p|ni, i = 0. . .m) = exp

(

−∑m
i=0(ni −nmodel

i )2

2σ2

)

πprior (Ntot,α,τ,p) (5.4)

The posterior distribution can be sampled using a Markov Chain Monte Carlo (MCMC) method
and marginalized to obtain probability density functions for each of the parameters in question.
We use a simple random-walk MCMC to sample the posterior. Further, to assist in sampling
we reparameterize the problem in terms of the logarithms of the parameters (except forτ which,
since it is a negative quantity, is reparameterized in termsof log(−τ)). The priors on each of the
parameters are assumed independent, are vague and are modeled as normal distribution, unless
mentioned otherwise.
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5.3 Test case 1: A plague outbreak

In this section, we consider the inference of a plague outbreak. First, we describe the epidemic
model.

5.3.1 The outbreak simulation

The epidemic is assumed to evolve over a graph. Nodes in the graph represent people and the
edges represent social links over which the disease could potentially travel. The transmission is
stochastic and is modeled as a Poisson process with rateλ. Each node undergoes a susceptible –
exposed (i.e., incubating) – infectious – removed sequence, with removal denoting recovery (and
immunity) or death. The mortality rate for PPP, if left untreated, is 100% [45]. Treatment during
the incubation phase has a 100% probability of success [45].Treatment during the infectious
(symptomatic) phase is unknown.

Each nodei, on being infected, resides in the exposed and infectious phases for timeτE andτI . τE

andτI are random variables obeying a log-normal distribution with means (SD) of 4.3 (1.8) and
2.5 (1.2) days. These are obtained from [45].

The transmission model on a network is somewhat different from typical ODE-based SEIR models.
In [46], it was observed by following infection networks that the effective reproductive number of
PPPR(T) could be expressed as

R(T) = R0exp(−δT) (5.5)

whereR0 = 2.99, δ = 0.0615 andT is the time measured since the start of the epidemic. On
the other hand, in [45], a “steady-state” reproductive number was assumed, and was found to be
equal to 1.3. Curiously, if one averages theR(t) over 30 days (the duration of the Madagascar and
Mukden outbreaks considered in [46]), one obtains an averageR= 1.39. However, a reproductive
number over 1.0 as proposed in [45] would indicate an epidemic that grows without bounds; on
the other hand the expression in Eqn. 5.5 ensures that the epidemic will eventually die down.

Eqn. 5.5 is adapted for use in a network model. We proceed as follows. Consider a nodei with
incubation and infectious periods ofτE andτI . Consider, too, that social linksl i j exist between
nodesi and j, j ∈ Li , whereLi is the set of nodesi is connected to (i.e., nodei’s neighbors). Let
|Li | denote the number of neighbors nodei has.

When nodei is infected, it is allocated a reproductive number per Eqn. 5.5. R(Ti) denotes the
number of peoplei will infect over the periodτI , whereTi is the time thati was infected (this also
ensures that the time-varying nature of the effective reproductive number is captured).

Since i has|Li | neighbors, a subset of them are marked for potential infection by i. We iterate
through them and mark them for infection (via transmission from i) with probabilityR(Ti)/|Li |. If
Li contains nodes which have already been infected, they are skipped over in the iteration process.
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Once the potential “victims” ofi are marked, we proceed with the dynamics of transmission.
Consider a nodej, j ∈ Li which has been marked for infection. The probabilitypi j that i will
infect j is given bypi j = 1−exp(−αiλiti j ) whereλi = 1/τI is the rate of infection,ti j is the time
duration over which transmission could have occurred between i and j (essentially, duration of
contact betweeni and j after i turned infectious) andαi is a constant (for a given nodei) that
ensures thati will succeed in infectingj with a probability of 0.9999 (i.e., 1.0 - 10−5) by the
conclusion of its infectious period. Thusαi = − ln(10−5).

5.3.2 Inference of outbreak parameters

Fig. 5.1 shows the temporal evolution of an outbreak. We start with 100 index cases, who infected
an 1063 people over the next 43 days. Plotted in red are the newsymptomatic cases, collated on
a daily basis. It is noisy, and peaks at around day 15; thereafter, it decays, indicating a weakening
epidemic. Plotted in blue is the latent infection intensityas a function of time. We see clearly that
for the first 10 days, the infection intensity rises, after which it settles into a decline over the next
30 days.

Inferring the infection intensityf (t;p) is key to predicting the evolution of the outbreak and con-
sequently the resource requirements. We model the infection intensity as aΓ distribution, i.e.,

f (t;p) =
g(t;k,θ)

G(T;k,θ)
=

1
θγ(k,T/θ)

( t
θ

)k−1
exp

(

− t
θ

)

. (5.6)

whereγ(k,T/θ) is the incomplete Gamma function,g(;) is the Gamma probability density function
andG(;) is the corresponding CDF. Note that the expression in Eq. 5.6obeys the normalization
Eq. 5.1. Also, the parametersp are the shape (k) and scale (θ) parameters of the Gamma distribu-
tion.

Following the description in Sec. 5.2, we perform an inference of the outbreak parameters using a
time-series 20 days long. Over this duration, an extra 805 people were infected via transmission.
The inference was performed using the transformed variables (i.e., the log-variables), though all
results will be shown in terms of the variables{Ntot,α,τ,θ,k}. The priors used are

log(Ntot ∼ N(log(103),10),

α ∼ B(1.25,1.25),

log(−τ) ∼ N(0,1),

log(θ) ∼ N(0,22),

log(k) ∼ N(0,1)

The first two prior are recognizable vague. The incubation period distribution for plague [45], with
a median of 4.3 days, ensures that given 100 index cases, one may have, with high probability,

51



Day

N
ew

ca
se

s
(d

ai
ly

)

0 10 20 30 40

20

40

60

80

100

120

Incubating
Symptomatic

Figure 5.1. Evolution of the plague epidemic. New cases of
symptomatic patients are plotted in red while the latent infection
rate (daily infections) are in blue. The simulation was started with
100 index cases distributed in the social network. We see, from the
symptomatic cases, that the epidemic peaks around Day 15. The
infection rate peaks a few days before.

one symptomatic case withinedays of infection. Similarly, the prior forθ, indicates that the time-
scale for the decline of the epidemic may vary bye2 days, approximately a week. The prior for
k was chosen so that the rise in infection intensity would be roughly linear, a results that can be
obtained from early-epoch linearization of conventional SEIR epidemiology models. The standard
deviation of the measurement error,σ is set to 10.

In Fig. 5.2 we plot the MCMC chain and the histograms of the samples of the outbreak parameters,
i.e., of{Ntot,α,τ,k}. The chains mix properly, i.e., ergodicity of the MCMC chainis achieved. The
histograms on the right indicate the posterior marginalized distribution of the outbreak parameters.
In Fig. 5.3, we determine the maximuma posterioriestimates of the outbreak parameters and plot
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Table 5.1.Estimates (medians) of the outbreak parameters devel-
oped from time-series of different lengths. The 95% confidence
intervals are mentioned in parenthesis and the true values are in
square brackets.

Variable m = 10 m = 15 m = 20 m = 25

Ntot 397 (284,609) 673 (537, 1133) 848 (743,974) 1024.4 (927.6,1612.2)
[497] [725] [905] [1048]

α 0.79 (0.63, 0.95) 0.87 (0.39, 0.96) 0.90 (0.67,0.98) 0.92 (0.41, 0.98)
[0.80] [0.86] [0.89] [0.90]

τ -1.75 (-4.7, -0.4) -1.9 (-10.6, -0.5) -1.9 (-9.1, -0.5) -2.0 (-13.8, -0.5)
[-2] [-2] [-2] [-2]

θ 6.5 (0.79, 125) 10.4 (2.16, 156.6) 10 (3.5, 75) 10.2 (4.8, 36.5)

k 2.3 (1.2, 7.2) 2.13 (1.32, 4.7) 2.0 (1.25, 3.84) 1.98 (1.28, 4.98)

the corresponding latent infection intensity; the actual intensity too is plotted as a comparison. The
blue dot at the left extreme is the number of index cases; the numerical estimate from the time-
series has not been plotted. For both 10 and 25 days of data, wesee that the infection intensity
is properly captured, including the downturn in the infection intensity, as the outbreak begins to
decline. The infection intensity curve from the 10-day time-series is seen to underpredict future
infection intensities; the one developed from the 25-day time-series over-predicts it. This is a con-
sequence of the Gamma-distributed model trying to capture the stochastic nonlinear dynamics of
the spread of the disease on a social network. A more mechanistic model of the disease spread
would likely provide a better bit, but it is unclear what sucha model would be, which preserves
the speed and parsimony of a Gamma model. In Table 5.1, we summarize the outbreak param-
eter estimates drawn from time-series of different lengths. Note that the true values ofNtot and
α are functions of time, i.e., they increase as the epidemic progresses. We see that the inference
procedure is fairly accurate; further, the simple model forthe infection intensity is quite success-
ful in summarizing the involved stochastic transmission dynamics simulated in the agent-based
simulation.

5.4 Test case 2: An influenza outbreak

In Sec. 5.3, we showed how an outbreak that “failed to take off” could be modeled and inferred
from a short time-series. The Gamma-distribution model of the infection intensity can be used to
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Figure 5.2. The MCMC chains for the outbreak parameters
{Ntot,α,τ,k}, plotted in sequence, from top to bottom, on the left.
On the right are the histograms of the samples of the outbreakpa-
rameters. These were developed from a time-series 20 days long.
The figures forθ were left out for lack of space.
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Figure 5.3. The latent infection intensity curve, developed from
the maximum likelihood estimates of the outbreak parameters, us-
ing 10 and 25 days of data. The true infection intensity is also
plotted. The blue dot at the left extreme indicates the indexcases;
we have not plotted the numerical estimate derived from the time-
series.

approximately infer characteristics of an endemic disease(where the infection intensity reaches a
constant) by employing a large value for scale parameterθ. However, it is not very useful for a
large pandemic that grows in time.

Given the recent interest in swine flu [47, 48], we simulate aninfluenza epidemic which proves re-
sistant to countermeasures and therefore grows “unbounded” (i.e., before saturation effects become
important). This is done with our agent-based simulation capability, with parameters obtained from
the 1918 pandemic. These results are then used to infer outbreak parameters.
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5.4.1 The outbreak simulation

The disease dynamics for influenza are slightly different from that of plague. While the disease
transmission occurs over a social network, the reproductive number does not decay in time (the
primary reason why the outbreak can become a pandemic). Transmission is modeled as a Poisson
process, but the disease shows 2 extra stages, compared to plague. The different compartments of
disease progression are

1. Susceptible (S), people who can be infected.

2. Exposed (E), i.e., people who are incubating the disease, but are not contagious. They move
on to the I and A stages described below.

3. Infectious (I ), people who are symptomatic and contagious. These people are generally the
ones who seek medical help and a fraction of them may be hospitalized and reported.

4. Asymptomatic and contagious (A), this being influenza. In fact most people infected with
influenza are in the A category. Such people are not very contagious, but they do exist in
large numbers.

5. Recovered (R); people from the I and A stages move into this stage.

6. Dead (D); people from the I stage can move into this stage.

As discussed in [49], only about 36% of the people in the 1918 epidemic in Geneva progressed
from theE to theI stage in the (more virulent) “fall” version of the disease; in the “spring’ version,
only about 10% of the people showed severe symptoms. Further, the asymptomatic patients were
far less contagious; the parameter estimates in [49] show that the contagiousness of the asymp-
tomatic were 0.003 and 0.014 times that of the symptomatic patients. In our model, we will
assume that the asymptomatic cohort exists, but is not contagious. Mortality rate was 0.7% for
the “spring” outbreak and 3.25% for the “fall” outbreak [50]. We also limit our simulation for a
short period of time so that births and deaths in the general population do not appreciably affect
the progress of the disease.

Each node spends a duration in each of stagesE, I andA. These durations are modeled as random
variables. Bombardt [7] models theE phase with a lognormal and theI phase with a normal
distribution, which we adopt here.Bombardt states the the mean and standard deviation for the
E stage are 2 days and 1 day respectively, while those forI stage are 5 days and 1 day. Gani
et al. [50] find that the mean incubation period (i.e.,E stage) is 2 days for pandemic influenza
(specifically H5N1 “avian flu”) and 4 days for the symptomaticperiod. Longiniet al. [51] and
Mills et al. [52] cite 1.91 and 4.1 days respectively for the mean values for E and I stages, even
though the first publication targets the 1957-1958 and 1968-1969 influenza pandemics while the
latter models the 1918 pandemic, with data collected from UScities. The recent swine fluE stage
has been estimated to be 1.9 days too [48]. Thus, the characterization of the progress of the disease
seems consistent.

56



Table 5.2.Summary of influenza characterization from a variety
of sources. All estimates of duration are in days.

Source Incubation (E) Symptomatic (I ) R0 Remarks
Chowell [49] 2 2 1.49 & 3.75 1918, Geneva

Mills [52] 1.9 4.1 2.0 1918, US cities

Longini [51] 1.9 4.1 1.4 Southeast Asia; “regular” flu

Fraser [48] 1.9 - 1.58 Swine flu; Mexico, 2009

Gani [50] 2.0 4.0 1.39 1957, 1968 pandemics

Bombardt [53] lognormal; normal; 1918 Camps Custer
mean = 2; sd = 1 mean = 5; sd = 1 and Valdahon

The basic reproductive numberR0 shows significant variations. Chowellet al. [49] report aR0

of 1.49 for the “spring” outbreak and 3.75 for the “fall” outbreak in Geneva, 1918. US cities, on
the other hand, showed anR0 of 2 in 1918 [52]. Studies for influenza epidemic (mostly H5N1) in
Southeast Asia [51, 50] have tended to assume aR0 of 1.4, which is similar to theR0 observed in
the recent swine-flu epidemic [48] (1.58). We summarize the results reviewed to date in Table 5.2.

For our modeling purposes, we choose aconsensusset of figures. We will model incubationE
as Bombardt does, i.e., as a lognormal distribution with mean 2 days and standard deviation of 1
day. The symptomatic stageI will be modeled using a normal distribution, with a mean of 4 days
and standard deviation 1. The asymptomatic stageA will be modeled identical toI, except that the
cohort does not suffer deaths. We assume that only 36% of the people coming out of incubation
will progress to theI stage, with the rest moving on to theA cohort. Since we aim to capture the
1918 effects, we will assume a mortality rate of 3.25% and aλ that corresponds to aR0 of 3.75.
On recovery, people are assumed to be immune to influenza. These are summarized in Table 5.3
below.

The implementation of the disease model is the same as in Sec.5.3 and is omitted.

5.4.2 Inference of outbreak parameters

Fig. 5.4 shows the temporal evolution of an outbreak. We start with 100 index cases, who infected
26479 people over the next 42 days. Plotted in red are the new symptomatic cases, collated on a
daily basis. Plotted in blue is the latent infection intensity as a function of time. Both the infection
intensity and the new symptomatic cases (collated daily) show a monotonic increase.
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Table 5.3.Summary of parameters for our influenza model.

Model Parameter Value
Incubation period (E) log-normal, mean = 2 days, std. dev. = 1 day
Infectious period (I ) normal, mean = 4 days, std. dev. = 1 day

Asymptomatic period (A) same asI
Infectious fraction 36 %

Mortality rate 3.25%; applies only to theI cohort
R0 3.75
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Figure 5.4. Evolution of the influenza epidemic. New cases of
symptomatic patients are plotted in red while the latent infection
rate (daily infections) are in blue. The simulation was started with
100 index cases distributed in the social network. We see that both
the time-series exhibit an upward trend.

.

Inferring the infection intensityf (t;p) is key to predicting the evolution of the outbreak and con-
sequently the resource requirements. We model the infection intensity as follows

f (t;p) =
a(exp(t/b)−1)

ab(exp(T/b)−1)−aT
(5.7)

whereT is the time duration over which the infection process has occurred. The expression in
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Table 5.4.Estimates (medians) of the outbreak parameters devel-
oped from time-series of different lengths. The 95% confidence
intervals are mentioned in parenthesis and the true values are in
square brackets.

Variable m = 15 m = 25

Ntot 1671 (795, 13873) 5220 (2994, 29691)
[1474] [4614]

α 0.54 (0., 0.92) 0.78 (0.04, 0.98)
[0.93] [0.98]

τ -4 (-19,, -0.1) -6.8 (-28, -0.27)
[-1] [-1]

a 2.73 (1.06, 15.8) 2.8 (1.2, 14.8)

b 104.9 (26, 1.2×105) 192 (11.3, 2.1×105)

Eq. 5.7 obeys the normalization Eq. 5.1.aandbare the governing parameters of the infection inten-
sity and form the objects of inference from data. Following the description in Sec. 5.3, we perform
an inference of the outbreak parameters using a time-seriesof different lengths. The problem was
reparameterized in terms of the logarithms of the quantities being inferred, i.e.,{Ntot,α,τ,a,b}.The
priors used are

log(Ntot) ∼ N(log(103),10),

α ∼ B(1.25,1.25),

log(−τ) ∼ N(0,1),

log(a) ∼ N(0,52),

log(b) ∼ N(0,52)

For the purposes of this study, the standard deviation of themeasurement errorσ is set to 50.

In Table 5.4, we summarize the outbreak parameter estimatesdrawn from time-series of different
lengths. We see that the size of the epidemicNtot is estimated fairly accurately, but there are
significant errors in estimates of the rest of the parameters. This is conjectured to be due to the
exponential nature of the infection intensity, which makesthe predictionsnmodel

i very sensitive to
the model parameters. We are currently investigating how reparameterizing may ameliorate the
sensitivity and allow more robust inferences.
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Chapter 6

Conclusions

Our study of resource allocation techniques in reload scenarios was driven by the realization that
mounting a quick and efficient response to a bioattack holds the largest potential to reduce casu-
alties and minimize impact on the affected population. To date, early warning via detection of
aerosolized pathogens by environmental sensors has been viewed as the optimal way of determin-
ing when and how to mount a medical response. We consider the case when an attack may be not
be detected by such sensors either because the site was not instrumented or if the pathogen was
introduced via a vector (which, for communicable diseases,could be humans). In such a case,
the estimation of resource allocation have to be performed using the time-series of morbidity (di-
agnosed cases etc) that would result from the ensuing outbreak. In our study, we have restricted
ourselves to resources like medical equipment and personnel which are difficult to gather and
transport.

We have developed an approach that allows the estimation of attack/outbreak parameters from
short time-series of morbidity data. The attack parameters, viz., the number of infected people, the
time of attack and the dose, can be related to the time-dependent demand for medical resources
directly using existing epidemic and resource-use models.The attack parameters are estimated
probabilistically, which reflects the uncertainty due to lack/quality of the data. The attack param-
eters are used to bound the possible realizations of the resource demand; thereafter, a stochastic
optimization algorithm develops a resource allocation profile (in time). Resources are assumed to
be insufficient (hence an efficient allocation is paramount). This can be used to dispatch resources
in the short term and plan for transportation needs in the long term. We find that our resource
allocations amount to hedging – they render the probabilitydensity function of casualties resulting
from a resource allocation profile compactly supported, indicating a significant reduction of the
probability of an exceedingly bad outcome. The price for reducing this probability is the increased
probability (almost a certainty) of a smaller, perhaps acceptable, level of casualties. Our test cases
have involved single-site attacks as well as staggered attacks on multiple sites, where the resource
demands at different sites have different levels of uncertainty. The observations above hold true in
both cases; further, for multi-site attacks, our allocation technique ensures “fairness”, i.e., there are
no hot-spots of risk which could endanger the entire system via cascading failures. We observe,
empirically, that resource allocation profile does not varysignificantly (by more than 25%) after
about 6 days of data. This lack of volatility in the allocation profile is helpful since it assists in
planning for the mobilization of infrastructural capabilities (and to some extent, resource reserves).

Our algorithm involves a “free” parameter. An optimal valueof this “free” parameter cannot
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be gauged from the time-series of morbidity and thus is exogenous to the problem at hand. It
represents a “risk appetite” and takes the form of a constraint on the daily allocation of resources.
This constraint can be used to prevent an over-allocation ofresources, a recourse that may prove
important in the aftermath of an attack, if further attacks are expected and resources have to be
husbanded. More practically, this constraint may be used toenforce resource allocation which
conform to the dictates of the transportation infrastructure. In the immediate aftermath of an attack,
the available rolling/transportation stock may simply be insufficient. The constraint can be made
time-dependent, to reflect the mobilization of infrastructural capabilities to meet an emergency.

The technique works well for outbreaks/attacks carried outwith pathogens causing non-commu-
nicable diseases. The problem of epidemics caused by communicable diseases is more difficult,
primarily as it poses a harder (non-stationary) estimationproblem. We have outlined an estimation
approach here, but it is limited by the simple epidemic modelemployed in the estimation algorithm.
This is an area that should be investigated in more detail; our resource allocation techniques can
find use in responding to endemic diseases (and their possible pandemic variants). Our example in
Chp. 5 used influenza modeled on the fall variant of the 1918 pandemic.

In our study, we have not attempted to model the imperfections of transportation infrastructure
beyond assuming that there is an initial mobilization delay. However a 25% volatility in resource
allocation is not trivial, and advanced routing algorithms(for rolling stock) may be required to
accommodate it. Routing on networks is an enduring problem in operations research, and our
technique for estimating uncertain demands/throughputs at certain points in the network may allow
the application of network routing algorithms to a new field of national security/interest.
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