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Abstract

We present a case study of performance measurement
and modeling of a CCA (Common Component Architecture)
component-based application in a high performance com-
puting environment. Component-based HPC applications
allow the possibility of creating component-level perfor-
mance models and synthesizing them into application per-
formance models. However, they impose the restriction that
performance measurement/monitoring needs to be done in
a non-intrusive manner and at a fairly coarse-grained level.
We propose a performance measurement infrastructure for
HPC based loosely on recent work done for Grid environ-
ments. A prototypical implementation of the infrastructure
is used to collect data for three components in a scientific
application and construct their performance models. Both
computational and message-passing performance are ad-
dressed. 1

1 Introduction

The performance of scientific simulations in high per-
formance computing (HPC) environments is fundamentally
governed by the (effective) processing speed of the indi-
vidual CPUs and the time spent in interprocessor commu-
nications. The effective processing speed is primarily de-
termined by the performance of the cache (in cache-based
RISC and CISC processors) and much effort is devoted
to preserving data locality. Interprocessor communication
costs determine the load-balancing and scalability charac-
teristics of codes and a multitude of software and algorith-
mic strategies (combining communication steps, minimiz-
ing/combining global reductions and barriers, overlapping
communications with computations, etc.) are employed to
reduce them.

1Presented at the 18th International Parallel and Distributed Process-
ing Symposium, Santa Fe, NM, USA, April �������	��
����� , 2004.

The discipline of performance measurement has pro-
vided us with tools and techniques to gauge the interac-
tions of scientific applications with the execution platform.
These take the form of high precision timers which report
the time taken to execute sections of the code and various
counters which report on the behavior of various compo-
nents of the hardware as the code executes[2, 3]. In a par-
allel environment these tools track and report on the size,
frequency, source, destination and the time spent in passing
messages between processors [19]. This information can
then be used to synthesize a performance model of the ap-
plication on the given platform - in some cases, these mod-
els have even served in a predictive capacity [11, 12].

In order to manage the growing complexity of scien-
tific simulation codes, there has been an effort to introduce
component-based software methodology in HPC environ-
ments. Popular component models like Java Beans [9] and
CORBA [1] are largely unsuitable for HPC [5] and a new
light-weight model, called the Common Component Archi-
tecture (CCA) [6], was proposed. The principal motiva-
tions behind the CCA are to promote code reuse and in-
terdisciplinary collaboration in the high performance com-
puting community. The component model consists of mod-
ularized components with standard, well-defined interfaces.
Since components communicate through these interfaces,
program modification is simplified to modifying a single
component or switching in a similar component without af-
fecting the rest of the application. To build a CCA applica-
tion, an application developer simply composes together a
set of components using a CCA-compliant framework. De-
tails regarding the flexibility, performance and design char-
acteristics of CCA applications can be found in [13].

CCA component-based applications are composed out
of standalone components at runtime, an injudicious se-
lection of which can result in a correct but sub-optimal
component assembly. It thus becomes imperative to be
able to classify the performance characteristics and require-
ments of each implementation of a component and to have
a generalized means of synthesizing a composite perfor-



mance model to judge the optimality of a component as-
sembly. Further component-based software is seldom used
exclusively by the authors of the components themselves
and manual instrumentation of the code is impossible. Ex-
haustive automatic instrumentation of an executable where
a binary is rewritten or instrumented at runtime [18] too
has little meaning. Consequently, a non-intrusive strategy
where each component is monitored to collect execution
time, the hardware characteristics and relevant inputs (like
the size of arrays) that affect the collected performance data
is clearly indicated. These data then need to be synthesized
into individual component performance models. Also, since
the containing CCA framework creates, configures and as-
sembles components, it possesses the global understanding
of how the components are networked into an application.
This information, coupled with the individual components’
performance models, can be used to synthesize a predic-
tive performance model of the entire application. In this
work, we will attempt to create a small set of components
to assemble a non-intrusive performance measurement and
modeling infrastructure. This infrastructure will then be
used to monitor an existing CCA-component based scien-
tific simulation code (assembly of CCA components) and
construct performance models for the components. It is as-
sumed the none of the scientific components will be modi-
fied to assist in performance measurement nor do they have
any special features (e.g. performance-related interfaces)
that allow or enable the collection of performance-related
data. While the material presented in this work is far from
realizing the goal of synthesizing an application-level per-
formance model and using it in a predictive capacity, it is
essential that it be viewed as step toward realizing a com-
pletely automated system for performance prediction – and
hence optimization – of high performance component based
applications.

2 Related Work

The three most widely-used component standards
(CORBA [1], COM/DCOM [14], Java Beans [9]) are ill-
suited to handle high performance scientific computing due
to a lack of support for efficient parallel communication,
insufficient scientific data abstractions (e.g., complex num-
bers), and/or limited language interoperability [6]. Thus,
performance metrics developed for these environments are
inadequate for HPC. This primarily arises from the very
different platforms that HPC and commercial component
based applications run on - HPC is done almost exclusively
on tightly-connected clusters of MPPs (massively parallel
processors) or SMPs (Symmetric Multi-processors) while
commercial codes often operate on LANs (Large Area Net-
works) or WANs (Wide Area Networks).

However, despite the different semantics, several re-

search efforts in these standards offer viable strategies in
measuring performance. A performance monitoring system
for the Enterprise Java Beans standard is described in [16].
For each component to be monitored, a proxy is created us-
ing the same interface as the component. The proxy inter-
cepts all method invocations and notifies a monitor com-
ponent before forwarding the invocation to the component.
The monitor handles the notifications and selects the data
to present, either to a user or to another component (e.g., a
visualizer component). The goal of this monitoring system
is to identify hot spots or components that do not scale well.

The Wabash tool [20, 21] is designed for pre-deployment
testing and monitoring of distributed CORBA systems. Be-
cause of the distributed nature, Wabash groups components
into regions based on the geographical location. An inter-
ceptor is created in the same address space of each server
object (i.e., a component that provides services) and man-
ages all incoming and outgoing requests to the server. A
manager component is responsible for querying the inter-
ceptor for data retrieval and event management.

In the work done by the Parallel Software Group at the
Imperial College of Science in London [10], the research
is focused on grid-based component computing. However,
the performance is also measured through the use of prox-
ies. Their performance system is designed to automatically
select the optimal implementation of the application based
on performance models and available resources. With �
components, each having

���
implementations, there is a to-

tal of ������
	 ��� implementations to choose from. The per-
formance characteristics and a performance model for each
component is constructed by the component developer and
stored in the component repository. Their approach is to
use the proxies to simulate an application in order to de-
termine the call-path. This simulation skips the implemen-
tation of the components by using the proxies. Once the
call-path is determined, a recursive composite performance
model is created by examining the behavior of each method
call in the call-path. In order to ensure that the composite
model is implementation-independent, a variable is used in
the model whenever there is a reference to an implemen-
tation. To evaluate the model, a specific implementation’s
performance model replaces the variables and the compos-
ite model returns an estimated execution time or estimated
cost (based on some hardware resources model). The im-
plementation with the lowest execution time or lowest cost
is then selected and a execution plan is created for the ap-
plication.

3 Performance Measurements in HPC Com-
ponent Environments

As indicated in Section 1, performance measurement and
modeling (PMM), in a component environment, will assist
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in optimizing the component assembly. It is required that
PMM strategies (a) provide a coarse-grained performance
model of the component and (b) be non-intrusive. The sim-
plest approach, as reviewed in Section 2, is that of proxies,
interposed between the caller and the called components,
which intercept method calls and execute performance re-
lated tasks.

In this section we provide a brief summary of the CCA
environment for HPC, adapt the approaches in Section 2
to HPC and address the issue of the minimal set of perfor-
mance data required to construct component-level perfor-
mance models.

3.1 The Common Component Architecture
(CCA)

The CCA model uses the provides-uses design pattern.
Components provide functionalities through interfaces that
they export; they use other components’ functionalities via
interfaces. These interfaces are called Ports; thus a com-
ponent has ProvidesPorts and UsesPorts. Components are
peers and are independent. They are created and exist inside
a framework; this is where they register themselves, declare
their UsesPorts and ProvidesPorts and connect with other
components.

CCAFFEINE [5] is the CCA framework we employ for
our research. CCAFFEINE is a low latency framework
for scientific computations. Components can be written in
most languages within the framework; we develop most of
our components in C++. All CCAFFEINE components are
derived from a data-less abstract class with one deferred
method called setServices(Services *q). All components
implement the setServices method which is invoked by the
framework at component creation and is used by the com-
ponents to register themselves and their UsesPorts and Pro-
videsPorts. Components also implement other data-less ab-
stract classes, called Ports, to allow access to their standard
functionalities. Every component is compiled into a shared
object library that will be dynamically loaded at runtime.

A CCAFFEINE code can be assembled and run through
a script or a Graphical User Interface (GUI). All compo-
nents exist on the same processor and the same address
space. Once components are instantiated and registered
with the framework, the process of connecting ports is just
the movement of (pointers to) interfaces from the provid-
ing to the using component. A method invocation on a Us-
esPort thus incurs a virtual function call overhead before
the actual implemented method is used. CCAFFEINE uses
the SCMD (Single Component Multiple Data) [5] model
of parallel computation. Identical frameworks, containing
the same components, are instantiated on all � processors.
Parallelism is implemented by running the same compo-
nent on all � processors and using MPI to communicate

between them. The framework adheres to the MPI-1 stan-
dard ; dynamic process creation/deletion and a dynamically
sized parallel virtual machine are not supported. This min-
imalist nature renders CCAFFEINE light, simple, fast, and
very unobtrusive to the components. Performance is left to
the component developer who is in the best position to de-
termine the optimal algorithms and implementations for the
problem at hand.

3.2 Performance Measurement and Modeling

A CCA application is composed of components and the
composite performance of a component assembly is deter-
mined by the performance of the individual components as
well as the efficiency of their interaction. Thus, the per-
formance of a component has to be considered in a certain
context consisting of the problem being solved (e.g., a com-
ponent may have to do two functions, one which requires
sequential access and the other strided access of an array),
the parameters/arguments being passed to a method (e.g.,
length of an array) and the interaction between the caller
and the callee (e.g., if a transformation of the data storage
needs to be done). If multiple implementations of a com-
ponent exist (i.e., implementations which provide the same
functionality) then within a given context, there will be an
optimal choice of implementation. This requires that perfor-
mance models be available for all components and a means
synthesize these into a model for the application exist.

Most scientific components intersperse compute inten-
sive phases with message passing calls, which incur costs
inversely proportional to the network speed. These calls
sometimes involve global reductions and barriers, result-
ing in additional synchronization costs. For the purposes of
this paper we will assume blocking communications where
communications and computations are not overlapped. We
will ignore disk I/O in this study. Thus, in order that a per-
formance model for a component may be constructed, we
require the following :

1. The total execution time spent in a method call. These
methods are those in the ProvidesPorts of a compo-
nent.

2. The total time spent in message passing calls, as deter-
mined by the total inclusive time spent in MPI during
a method invocation.

3. The difference between the above is the time spent
in computation, a quantity sensitive to the cache-hit
rate. We will record this quantity for the period of the
method call.

4. The input parameters that affect performance. These
typically involve the size of the data being passed to the
component and some measure of repetitive operations
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that might need to be done (e.g., the number of times a
smoother may be applied in a multigrid solution).

The first three requirements are traditional and may be
obtained from publicly available tools [4]. The fourth
requires some knowledge of the algorithms being imple-
mented, and is extracted by a proxy before the method in-
vocation is forwarded to the component. We envisage that
proxies will be simple and preferably, amenable to auto-
matic generation.

4 PMM Software Infrastructure

As stated in Section 3, performance measurement will
be done via proxies interposed between caller and callee
components. These proxies are expected to be lightweight
and serve as a means of intercepting and forwarding method
calls. The actual functionality of interacting with and
recording hardware characteristics will be kept in a sepa-
rate component, as will the functionality of storing this data
for each invocation. Our performance system consists of
three distinct component types: a TAU (Tuning and Anal-
ysis Utilities) component, proxy components and a “Mas-
termind” component. These components work together in
order to measure, compile and report the data back to the
user.

4.1 TAU Component

In order to measure performance in a high performance
scientific environment, a component that can interact with
the system’s hardware as well as time desired events is
needed. For our performance measurement system, we use
the TAU component[19], which utilizes the TAU measure-
ment library[4, 15]. The TAU component is accessed via
a MeasurementPort, which defines interfaces for timing,
event management, timer control and measurement query.
The timing interface provides a means to create, name, start,
stop and group timers. It helps track performance data as-
sociated with a code region by bracketing it with start and
stop calls.

The TAU implementation of this generic performance
component interface supports both profiling and tracing
measurement options. Profiling records aggregate inclusive
and exclusive wall-clock time, process virtual time, hard-
ware performance metrics such as data cache misses and
floating point instructions executed, as well as a combi-
nation of multiple performance metrics. The event inter-
face helps track application and runtime system level atomic
events. For each event of a given name, the minimum, max-
imum, mean, standard deviation and number of entries are
recorded. TAU relies on an external library such as PAPI
[2] or PCL [3] to access low-level processor-specific hard-
ware performance metrics and low latency timers. Timer

control is achieved through the control interface, which can
enable and disable timers of a given group at runtime. At
runtime, a user can enable or disable all MPI timers via their
group identifier. The query interface provides a means for
the program to access a collection of performance metrics.
In our performance system, the query interface is used to
obtain the current values for the metrics being measured.
The TAU library also dumps out summary profile files at
program termination.

4.2 Proxies

For each component that the user wants to analyze, a
proxy component is created. The proxy component shares
the same interface as the actual component. When the ap-
plication is composed and executed, the proxy is placed di-
rectly “in front” of the actual component. Since the proxy
implements the same interface as the component, the proxy
intercepts all of the method invocations for the component.
In other words, the proxy uses and provides the same types
of ports that the actual component provides. In this man-
ner, the proxy is able to snoop the method invocation on
the Provides Port, and then forward the method invocation
to the component on the Uses Port. In addition, the proxy
also uses a Monitor port (provided by the Mastermind com-
ponent; see below) to make measurements. If the method
is one that the user wants to measure, monitoring is started
before the method invocation is forwarded and stopped af-
terward. When the monitoring is started, parameters that
influence the method’s performance are sent by the proxy
to the Mastermind component. These parameters must be
selected by someone with a knowledge of the algorithm im-
plemented in the component. For example, for a routine that
performs some simple processing on each index of an array
of numbers, the performance parameter would most likely
be the size of the array. Creating a proxy from a compo-
nent’s header file is relatively straight-forward and effort is
under way to automate it.

4.3 Mastermind

The Mastermind component is responsible for gather-
ing, storing and reporting of the measurement data. For
each method that is monitored, a record object is created
and stored by the Mastermind. The record object stores all
the measurement data for each of the invocations of a sin-
gle routine. When monitoring is started via a call to the
Mastermind, the Mastermind passes the parameters to the
record object and tells the record to begin timing. To make
a measurement, the TAU component is queried at the start
and the end of each method invocation to turn on/off tim-
ing and hardware counters, prior to recording the measure-
ments. The MPI time is determined by the summation of
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Figure 1. A simple application composed of 4
components. C denotes a component, P de-
notes a proxy and M and T denote an instance
of Mastermind and TauMeasurement compo-
nents. The black lines denote port connec-
tion between components and the dashed
lines are the proxy-to-Mastermind port con-
nections. The proxies, along with the Mas-
termind, TauMeasurement and the dashed port
connections form the non-intrusive PMM in-
frastructure “around” the original component
assembly.

the times of all the MPI routines. The single invocation
measurements, along with the parameters, are stored in the
record. When a record object is destroyed, it outputs to a
file all of the measurement data for each invocation that it
stored.

Thus we envisage a non-intrusive performance measure-
ment and modeling component infrastructure built around
an existing scientific simulation component assembly. Fig-
ure 1 shows a component assembly of four components with
a PMM infrastructure of proxies, Mastermind and TAU
built around it. The infrastructure is non-intrusive and mod-
ification of the scientific components was not required.

5 Case Study

We use the infrastructure described in Section 4 to mea-
sure and model the performance of a component-based sci-
entific simulation code. The code simulates the interac-
tion of a shock wave with an interface between two gases.
The scientific details are in [17]. The code employs Struc-
tured Adaptive Mesh Refinement [8, 7] for solving a set of
Partial Differential Equations (PDE) called the Euler equa-
tions. Briefly, the method consists of laying a relatively
coarse Cartesian mesh over a rectangular domain. Based on
some suitable metric, regions requiring further refinement
are identified, the grid points flagged and collated into rect-
angular children patches (also called “boxes”) on which a
denser Cartesian mesh is imposed. The refinement factor

x

y

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Patches

Level 1 Patch

Level 2 Patch

Figure 2. The density field plotted for a Mach
1.5 shock interacting with an interface be-
tween Air and Freon. The simulation was run
on a 3-level grid hierarchy. Patches outlined
with the thickest lines are the coarsest (Level
0), those outlined with medium lines are on
Level 1 (refined once by a factor of 2) and the
ones outlined with the finest lines are twice
refined (Level 2).

between parent and child mesh is usually kept constant for
a given problem. The process is done recursively, so that
one ultimately obtains a hierarchy of patches with differ-
ent grid densities, with the finest patches overlaying a small
part of the domain. The more accurate solution from the
finest meshes is periodically interpolated onto the coarser
ones. Typically, patches on the coarsest level are processed
first, followed recursively by their children patches. Chil-
dren patches are also processed a set number of times dur-
ing each recursion.

Figure 2 shows a snapshot from the simulation. Level 0
boxes are the coarse mesh patches, Level 1 patches are those
which have been refined once and Level 2 patches have been
refined twice. The factor of refinement is 2 and the sequence
of processing is �������

	
�����	�����
���

	
�����
����� , where �

�
is the

set of patches on level � . Patches can be of any size or aspect
ratio. This sequence is repeated multiple times.

Figure 8 shows the component version of the code. On
the left is the ShockDriver, a component that orchestrates
the simulation. On its right is AMRMesh that manages the
patches. The RK2 component below it orchestrates the re-
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cursive processing of patches. To its right are StatesCon-
structor and EFMFlux which are invoked on a patch-by-
patch basis. The invocations to StatesConstructor and
EFMFlux include a data array (a different one for each
patch) and an output array of the same size. Neither of
these components involve message passing, most of which
is done by AMRMesh. We will attempt to model the perfor-
mance of both StatesConstructor and EFMFlux and an-
alyze the message passing costs of AMRMesh. We will
also analyze the performance of another component, Go-
dunovFlux, which can be substituted for EFMFlux. Three
proxies, one each for StatesConstructor, GodunovFlux
and EFMFlux were created and interposed between Invis-
cidFlux and the component in question. A proxy was also
written for AMRMesh to capture message-passing costs.
An instance each of Mastermind and TAUMeasurement
component were created for performance measurement and
recording.

The simulation was run on three processors of a clus-
ter of dual 2.8 GHz Pentium Xeons with 512 kB caches.
gcc version 3.2 was used for compiling with -O2 opti-
mization. Table 1 shows where most of the time is spent
in the component code. About 25% of the time is spent
in MPI Waitsome() which is invoked from two meth-
ods in AMRMesh - one that does “ghost-cell updates” on
patches (gets data from abutting, but off-processor patches
onto a patch) and the other that results in load-balancing
and domain (re-) decomposition. The other methods, one in
StatesConstructor and the other in EFMFlux are modeled
below.

In Figure 3 we plot the execution times for each invo-
cation of StatesConstructor, as collected during a simu-
lation. The StatesConstructor component is invoked in
two modes, one which requires sequential and the other
which requires strided access of arrays to calculate X- and
Y- derivatives of a field respectively. Sequential and strided
access of a given array occurs in an interleaved manner, as
dictated by the numerical algorithm. Both the times (per
invocation) are plotted. We see that for a given array per-
invocation execution time is not constant, especially for
large arrays. The Y-derivative calculation (strided access)
is expected to take longer for large arrays and this is seen in
the spread of timings. On the other hand, for small, largely
cache-resident arrays, both the modes take roughly the same
time. As the arrays overflow the cache, the strided mode
becomes more expensive and one sees a localization of tim-
ings around two foci. The ratio of strided and sequential
access times varies from � � for small arrays to ��� for
large ones. Further, for larger arrays, one observes large
scatters. Similar phenomena are also observed for both Go-
dunovFlux and EFMFlux (not shown here).

Since the StatesConstructor is invoked to calculate the
X- and Y-derivatives an equal number of times, we will con-
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Figure 3. Raw per invocation execution time
for the StatesConstructor component, col-
lected during a simulation, plotted as a func-
tion of the data array size. For a given ar-
ray size, the larger timings correspond to
the calculation of Y-derivatives on the field
since it involves strided access of non-cache-
resident arrays. Array sizes are the actual
number of double precision numbers in the
array. The different symbols ( � , � and � ) rep-
resent data from different processors (Proc �
in the legend) and similar trends are seen on
all processors.

sider the average of the sequential and strided array process-
ing times for modeling. However, we also include a stan-
dard deviation in our analysis to track the variability intro-
duced by the cache. It is expected that both the mean and the
standard deviation will be sensitive to the cache size. In Fig-
ures 4 and 5 we plot the execution times for the StatesCon-
structor and EFMFlux components. Regression analysis
was used to fit simple polynomial and power laws, which
are also plotted in the figures. The mean execution time
scales linearly with the array size, once the cache effects
have been averaged out. Similar trends are seen the the
analysis for GodunovFlux. (not shown here). Note that
these timings do not include the cost of the work done in
the proxies, since all the extraction and recording of param-
eters is done outside the timers and counters that actually
measure the performance of a component. Further, these
instrumentation related overheads are small and will not be
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Figure 4. Average execution time ( � ) for
StatesConstructor as a function of the array
size. Since StatesConstructor has a dual mode
of operation (sequential versus strided) and
the mean includes both, the standard devia-
tion of is rather large. The performance model
is given in Eq. 1. The standard deviation ( � )
is plotted against the right Y-axis. All timings
are in microseconds. Solid lines are best-fits
to the data.

addressed in this paper.
If �����������
	
�� � 	��������������
���������� � ��� and ������ are the exe-

cution times (in microseconds) for StatesConstructor, Go-
dunovFlux and EFMFlux and  the input array size, the
best-fit expressions for the three components are

� ���������
	
�� � 	��������������"! #%$'&�( ��) �+*-,/.�0 (  214365 ) 7�8 1
� �9����� � ���:! 3 *�7 5<;>= ) 5 �+?  
������ ! 3 8@) � 5<;A= ) �+7  (1)

The corresponding expressions for the standard deviationsB are

B ���������
	C�9� � 	������D�������"! #%$'&�( ��) EF*-,/.�0  G1B ������ � ���H! 3 ?�EI7 ;A= ) ��?FE  B ����� ! 7�7J)LK 36= ) = �+?  M; *@) E �ON � ='PRQS �
3 ��) ��E N � = P

	 	
 UT

;V5 ) 8W? N � = P
	
Q  YX (2)

We see that GodunovFlux is more expensive that EFM-
Flux, especially for large arrays. Further, the variability in
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Figure 5. Average execution time ( � ) for EFM-
Flux as a function of the array size. Since
EFMFlux has a dual mode of operation (se-
quential versus strided) and the mean in-
cludes both, the standard deviation of is
rather large. The performance model is given
in Eq. 1. The standard deviation ( � ) is plot-
ted against the right Y-axis. All timings are in
microseconds. Solid lines are best-fits to the
data.

timings (i.e., standard deviation) for GodunovFlux increase
with  while its behavior is more complex for EFMFlux.
While GodunovFlux is the preferred choice for scientists
(it is more accurate), from a performance point of view,
EFMFlux has better characteristics. This is an excellent ex-
ample of a Quality of Service issue where numerical and/or
algorithmic characteristics (such as accuracy, stability and
robustness etc.) may need to be added to the performance
model. Thus the performance of a component implementa-
tion would be viewed with respect to the size of the problem
as well as the quality of the solution produced by it.

In Figure 6 we plot the communication time spent at dif-
ferent levels of the grid hierarchy during each communica-
tion (“ghost-cell update”) step. We plot data for processor
0 first. During the course of the simulation, the application
was load-balanced once, resulting in a different domain de-
composition. This is seen in a clustering of message pass-
ing times at Level 0 and 2. Ideally, these clusters should
have collapsed to a single point; the substantial scatter is
caused by fluctuating network loads. Inset, we plot results
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Figure 6. Per invocation message passing
time for different levels of the grid hierarchy
for the 3 processors. We see a clustering of
message passing times, especially for Levels
0 and 2. The grid hierarchy was subjected
to a re-grid step during the simulation which
resulted in a different domain decomposition
and consequently the clustering in message
passing times. Inset : We plot the timings
for all processors. Similar clustering is ob-
served. All times are in microseconds. Sym-
bols � , � and � indicate data from processors
0, 1 and 2.

for all the 3 processors. A similar scatter of data points is
seen. Comparing with Figures 4 and 5, we see that mes-
sage passing times are generally comparable to the purely
computational loads of StatesConstructor and EFMFlux,
and it is unlikely that the code, in the current configuration
(the given problem and the level of accuracy desired) will
scale well. This is also borne out by Table 1 where almost a
quarter of the time is shown to be spent in message passing.

6 Conclusions

We have proposed a software infrastructure for perfor-
mance measurement in HPC component environments. Our
prototypical implementation was used to collect perfor-
mance data for a scientific simulation and construct per-
formance models. While the data collected is no differ-

ent from what is required in traditional HPC, the measure-
ment system must be compatible with component software
development methods and new strategies, such as prox-
ies, must be adapted from other component-based environ-
ments. Proxies can be automatically generated from a com-
ponent’s header if the sole purpose is to time the execution
of a component. However, for performance modeling, one
frequently needs to record certain inputs to the component.
Proxies are the logical place to extract this information be-
fore forwarding the component invocation, but this requires
that this information be identifiable during proxy creation.
We are currently investigating simple mark-up approaches
identifying arguments/parameters which affect performance
and need to be extracted and recorded.

The problem of performance modeling is still unsolved.
The models derived here are valid only on a similar clus-
ter. Any significant change, such as halving of the cache
size, will have a large effect on the coefficients in the mod-
els (though the functional form is expected to remain un-
changed). Ideally, the coefficients should be parameterized
by processor speed and a cache model. We will address this
in future work, where the cache information collected dur-
ing these tests will be employed.

The ultimate aim of performance modeling is to be able
to compose a composite performance model and optimize
a component assembly. Apart from performance models,
this requires multiple implementations of a functionality (so
that one may have alternates to choose from) and a call trace
from which the inter-component interaction may be derived.
The wiring diagram (available from the framework) along
with the call trace (detected and recorded by the perfor-
mance infrastructure) can be used by the Mastermind to
create a composite performance model where the variables
are the individual performance models of the components
themselves. Figure 7 shows a schematic of how such a
system may construct an abstract dual (represented as a di-
rected graph) of the application. Edge weights signify the
number of invocations and the vertices are weighted by the
compute and communication times, as predicted by the per-
formance models of the component implementations. The
caller-callee relationship is preserved to identify subgraphs
that are insignificant from the performance point of view.
This facilitates dynamic performance optimization which
uses online performance monitoring to determine when per-
formance expectations are not being met and new model-
guided decisions of component use need to take place. This
is currently underway.
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Figure 8. Snapshot of the component application, as assembled for execution. We see three proxies
(for AMRMesh, EFMFlux and States), as well as the TauMeasurement and Mastermind components to
measure and record performance-related data. Data arrays are allocated in AMRMesh and passed
around among components via pointers.

% Time Exclusive Inclusive # Call Inclusive Name
msec total msec usec/call

100.0 55,244 1:52.032 1 112032939 int main(int, char **)
24.3 27,262 27,262 12.75 2138235 MPI Waitsome()
12.0 13,482 13,482 1632 8261 g proxy::compute()
10.9 12,240 12,240 1632 7501 sc proxy::compute()
1.0 1,077 1,077 7029.5 153 icc proxy::prolong()
0.8 895 895 186 4813 icc proxy::restrict()
0.7 768 768 20959 37 TAU GET FUNCTION VALUES()
0.6 662 662 1 662412 MPI Init()
0.2 168 168 3.25 51753 MPI Comm dup()
0.1 145 145 0.25 581244 MPI Finalize()

Table 1. Top 10 entries from a timing profile done with our infrastructure. Around 50% of the time is
accounted for by g proxy::compute(), sc proxy::compute() and MPI Waitsome(). The MPI call
is invoked from AMRMesh. The two other methods are modeled as a part of the work reported here.
Timings have been averaged over all the processors. The profile shows the inclusive time (total time
spent in the methods and all subsequent method calls), exclusive time (time spent in the specific
method less the time spent in subsequent instrumented methods), the number of times the method
was invoked, and the average time per call to the method. % time is calculated from a running sum
of the inclusive times.
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