
Reference Manual for Package “graphMC”

J. Ray, A. Pinar and C. Safta

Sandia National Laboratories, Livermore, CA

{jairay,apinar,csafta}@sandia.gov

1 Introduction

This is a manual for the package “graphMC”, a statistical package for testing the independence

of graphs generated by a Markov chain Monte Carlo method. It contains statistical software that

can be used to investigate whether a series of graphs generated by Markov chain (where the joint-

degree-distribution is held constant) resemble a first-order Markov process or whether they seem

to resemble independent draws from a distribution. We observe that if we follow an edge between

two labeled nodes in the graph, we get a binary time-series indicating whether the edge existed or

not in the graph realizations. A necessary condition for the sequence of graphs to be first-order

Markov is that the time-series of each of the edges should resemble a first order Markov process.

The same hold true if we desire to generate independent realizations of graphs from a Markov chain

(“MC”) on the space of graphs.

The package supplies the software used in the paper “A stopping criterion for Markov chains

when generating independent random graphs”, by J. Ray, A. Pinar and C. Seshadhri, being submit-

ted to Physical Review E. The paper contains the theory and justification for using these methods

with graphs. A version of the paper can also be found on arXiv [1].

The contents of the package are:

1. libMIX : A library that implements a graph re-wiring scheme that preserves the joint degree

distribution of the graph.

2. libgibbsit: A statistical library containing tests of first-order Markovianity, independence

and calculation of Markov transition probabilities. This is a stripped down and modified

version of the FORTRAN code gibbsit.f [2], and translated into C++. We are grateful to

StatLib [3] for making this code available to the public.

3. libgraphDB: A utility library, containing a graph data base. This is used for storing realization

of graphs generated by an MC.

4. ex01: An example that illustates how to use the tests of first-order Markovianity and inde-

pendence, in libgibbsit, with a binary time-series.

5. ex02: A example of how to use the tests when one has a MC on graphs. This example uses

libMIX to rewire and generate graph realizations inside a MC and also uses libgraphDB to

store them, prior to analyzing them

1

Below we describe the “public” functions in these libraries. We provide some description of the

examples, but the reader is advised to read the code in ex01/ and ex02/.

2 Description of libraries

This section contains description of the “public” functions in the 3 libraries distributed with this

package.

2.1 libMIX

libMIX contains a scheme for rewiring graphs while preserving the joint degree distribution. [4]

describes this re-wiring scheme being used within a MC. The public functions, whose use is demon-

strated in ex02/ex02.cpp are:

1. struct graph: This is a struct that is used to store a graph in a sparse representation format.

The definition is in include/graph.h.

2. int check simple(struct graph *G): Checks whether the graph is simple - no double edges

between nodes, no self-loops and no disconnected sub-graphs.

3. void mix jdd(struct graph *G, int X): Given a graph G, re-wire it X times and put it

back in the same struct.

4. edges2gr(char *fname, struct graph *G): Given an edge-list stored in a file fname, read

and fill up the struct graph. The function will allocate all the arrays in struct graph but

it is the caller’s responsibility to de-allocate the memory.

5. int make JDD(struct graph *G, int ***J): A function that calculates the joint degree

distribution of a graph. The function allocates a 2D matrix for J and the caller is responsible

for deallocating this 2D matrix.

2.2 libgibbsit

libgibbsit contains a set of tests for independence, and a function gibbsmain() that takes a bi-

nary time-series, thins it repeatedly, applies the tests of independence and first-order Markovianity.

It also tracks whether the time-series is long enough of us to compute these tests with any degree

of precision.

The individial tests mctest() and indtest() are used in ex01/ex01.cpp, as is the function to

estimate transition probabilities (mcest()). gibbsmain() is used in ex02/convergence.cpp. The

theory for this test is in Chapter 2.2.3, 3.1.2 and 7.2 and 7.3 in [5] and [6].

2

1. void mctest(int *data, int n, double *g2, double *bic): This function takes in an

array of zeros and ones (*data), of length n, and fits a second-order Markov model and first-

order Markov model to it. Bascially, we will in a 2×2×2 contingency table of different types

of 3-step transions e.g.{0, 0, 0}, {1, 0, 1} etc. and predict their expected values using log-linear

models for second- and first-order Markov processes. It returns ∆BIC = BICsecond−order −
BICfirst−order in bic and the G2 statistic (ratio of likelihoods) [5] in g2. A negative bic

indicates that the first-order Markov model is better fitted to the data. If not, the data

displays longer range correlations i.e., data[i+1] is dependent on data[i], data[i-1],

.... and you should consider thinning the time-series to make it first-order Markov. See

illustation in ex01/ex01.cpp.

2. void mcest(int *data, int n, double *alpha, double *beta): Function to estimate

the 0-1 and 1-0 transition probabilities in a binary time-series, assuming that the series is

first-order Markov. Use mctest() to make sure that it is. See illustation in ex01/ex01.cpp

3. void indtest(int *data, int n, double *g2, double *bic) : This function performs

a test of independence, by fitting log-linear models, similar to mctest(). See illustation in

ex01/ex01.cpp.

4. void gibbmain(double *original, int n, double q, double r,double s, double epsilon,

double *dwrk, int *iwrk, int *nmin, int *kthin, int *nburn, int *nprec, int *kmind,

int *r15): This is a function that (1) ensure that a time-series is long enough to do a test

of independence, and if not, provides an estimated length nprec and (2) returns the thinning

factors kthin (to turn the time-series into first-order Markov) and kmind, that turns it into

independent draws from a distribution. An illustration is in ex02/convergence.cpp.

original is the binary time series of length n. q is set to -1, indicating the the function

should calculate an edge-mean using the original time-series. We desire a time-series that,

when thinned to a first-order Markov series will still provide edge-mean estimates which are

with a tolerance of r with confidence q. dwrk, iwrk are work arrays supplied by the caller.

2.3 libutils

This is a rather simple library which is an implementation of a graphical database. This database

is used to store graphs as they are generated by an MC; they are then retrieved when performing

tests of independence etc. The header for the graphDB object is include/graphDB.h which provides

exhaustive documentation for the member functions. The functions are

1. graphDB::insertGraph(struct graph *pG): Store a graph into a database

2. graphDB::getNumGraphsInDB(): Number of graphs in the database

3

3. struct graph * graphDB::extractGraph(int i): Extract graph i from the database and

return a pointer to it.

4. struct graph * graphDB::extractCopyOfGraph(int i): Same as above but make a copy

of the graph first. It is the caller’s responsibility to delete this copy.

5. int graphDB::writeGraphsToFiles(std::string filename): Self-explanatory

6. int graphDB::createThinnedVersionOfDatabase(graphDB &ndb, int thin factor): Cre-

ate a decimated/thinned version of the database by retaining every thin factor-th instance.

7. graphDB::clear(): Delete all graphs in the database and clear out.

3 Description of example problems

We provide 2 examples, in ex01/ and ex02/, to illustrate the use of the software tools in this

package.

3.1 ex01

This example simply demonstrates the use of tests of first-order Markovianity and independence,

operating on a binary time-series provided in timeSeries.dat. The example demonstrates the use

of mctest(), indtest() and mcest(), from libgibbsit.

The program is executed simply as ./ex01.exe. The code output shows that one requires a

thinning by a factor of 4 before first-order Markovianity sets in; it needs a further thinning, by a

factor of 7, for become independent. Higher levels of thinning preserve a better fit of first-order

Markov model (versus a second-order one) and a better fit of an independence model (versus a

first-order Markov model).

3.2 ex02

ex02 is an example of a Markov chain on graphs. It is initialized using a real graph (lesmis.elist).

It first turns the edge-list into a graph using edges2gr() and then performs a random walk, using

mix jdd() to rewire the graph while preserving the joint degree distribution. The description of this

method is in [4]. Every |E| iterations, it stores the graph in the database (db.insertGraph(&G).

At the end of the run, checkConvergence() is invoked to check for independence of realizations.

checkConvergence() is implemented in convergence.cpp. It extracts the time-histories of

edges and examines them using gibbsmain(). It insists on having a MC long enough that edge-

means can be estimated with tolerance r = 0.01 with confidence s = 95%. The functioning of

checkConvergence() is best understood by reading through the source-code.

4

The example is executed as ./ex02.exe, which prints out a help screen. Also, one can run the

code using ex02/runit.sh.

Acknowledgements

This work was funded by the United States Department of Energy, Office of Science and by an

Early Career Award from the Laboratory Directed Research & Development (LDRD) program at

Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed

and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,

for the United States Department of Energy’s National Nuclear Security Administration under

contract DE-AC04-94AL85000.

References

[1] J. Ray, A. Pinar, and C. Seshadhri. A stopping criterion for markov chains when generating

independent random graphs. arXiv:1210.8184, 2012.

[2] Adrian E. Raftery and Steven M. Lewis. Fortran code for gibbsit.

http://lib.stat.cmu.edu/general/gibbsit.

[3] Statlib: Data, software and news from the statistic community. http://lib.stat.cmu.edu/.

[4] Isabelle Stanton and Ali Pinar. Constructing and sampling graphs with a prescribed joint degree

distribution using Markov chains. ACM Journal of Experimental Algorithmics. to appear.

[5] Y. M. Bishop, S. E. Fienberg, and P. W. Holland. Discrete multivariate analysis: Theory and

practice. Springer-Verlag, New York, NY, 2007.

[6] A. E. Raftery and S. M. Lewis. How many iterations in the Gibbs sampler? In J. M. Bernardo,

J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics, volume 4, pages

765–766. Oxford University Press, 1992.

5

