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Abstract

Terrorist attacks using an aerosolized pathogen preparation have gained credibility
as a national security concern after the anthrax attacks of 2001. The ability to character-
ize such attacks, i.e., to estimate the number of people infected, the time of infection,
and the average dose received, is important when planning a medical response. We
address this question of characterization by formulating a Bayesian inverse problem
predicated on a short time-series of diagnosed patients exhibiting symptoms. To be
of relevance to response planning, we limit ourselves to 3–5 days of data. In tests
performed with anthrax as the pathogen, we find that these data are usually sufficient,
especially if the model of the outbreak used in the inverse problem is an accurate one.
We also explore the effect of model error—situations for which the model used in the
inverse problem is only a partially accurate representation of the outbreak. We find that
while there is a consistent discrepancy between the inferred and the true characteriza-
tions, they are also close enough to be of relevance when planning a response.

1To whom correspondence should be addressed. Address: MS 9159, PO Box 969, Sandia National Laborato-
ries, Livermore, CA 94550-0969. Email: jairay@somnet.sandia.gov. Phone: 925-294-3638.
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1 Introduction

The anthrax attacks of 2001 [1] raised the credibility of aerosolized pathogens being used in
bioterrorist attack. Early warning, either in the form of an anomalous increase in syndromes
detected by public health monitoring networks [2] or via detection by environmental sen-
sors, holds the highest potential to reduce casualties. However, syndromic surveillance can
only provide heightened awareness—it results in neither definite evidence of an attack nor
in the identification of the pathogen. Also, the introduction of an aerosolized pathogen
into a population may not always be captured on environmental sensors. Examples in-
clude small releases that may not travel far, low quality formulations (coarse and heavy
particulate matter) which precipitate easily, as well as releases in areas which are not well
instrumented. In such a case, the first definitive diagnosis of a patient will be the first inti-
mation of an attack, but by then the disease may have established itself in the population.
Being able to infer the characteristics of the release (also referred to as the bioterrorist or
BT attack)—i.e., the number � of the people infected, the time � of infection, and a repre-
sentative dose � received by the infected people—has important ramifications in planning
a response [3]. The inferred characteristics can also serve as initial conditions for various
epidemic models that can predict the evolution and spread of the disease in a population [4]
and its ramification on society [3, 5].

Inferring the characteristics of the outbreak can be challenging. The observables on
which inferences are based consist of the time the diagnosed patients turned symptomatic
(typically expressed as a time interval during which they developed symptoms) and the
location of their residence and place of work. In case of a very mobile population, e.g., a
military force engaged in operations, the location of residence and/or work may be hard
to define. The model that relates the time of exhibition of symptoms to the characteris-
tics of the genesis of the outbreak is the incubation period distribution, which in many
cases is dependent on the dosage received. To be relevant in an operational, consequence-
management sense, these inferences have to be drawn early in the outbreak; a time-series
obtained from a 3–5 day observation period may be considered representative. Apart from
scarcity of observations, the incubation period distribution used in the inferences may be a
poor model for the particular instance of the disease. Thus these inferred characteristics are
expected to be rather approximate, and quantifying the uncertainty in the characterization
becomes a key requirement of the inference process.

In this paper we will limit ourselves to temporal analysis; we will not take the location
of diagnosed patients into consideration. Further, all tests will be performed with anthrax
as the pathogen. Broad uniform priors will be used in the inference process. We will op-
erate within a self-imposed limit of a 3–5 day observation period. We present four cases
to demonstrate the effect of the size of the outbreak ( � ) and a representative dose received
( � ) on the inferences. They will also explore the demonstrate the effect of model mismatch
i.e. when the model of anthrax used for the inference is a poor approximation of the actual
behavior of anthrax (which produces the observables/data). We conclude with an applica-
tion of this method to the Sverdlovsk outbreak of 1979 [6]. The results of this study will
provide a measure of the accuracy and robustness of this Bayesian method, preparatory to
extending this purely temporal analysis into a spatio-temporal one.
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2 Previous work

The question of inferring the characteristics of the genesis of an outbreak from a partially
observed epidemic has not been extensively studied. Walden and Kaplan [7] developed
a Bayesian formulation to estimate the size and time of a bioterrorist attack which they
tested on a low-dose anthrax attack corresponding, approximately, to the Sverdlovsk out-
break [6] of 1979, using an incubation period model developed by Brookmeyer [8]. They
also demonstrated the use of priors—prior belief regarding the size � of the outbreak—
to develop a smooth PDF for � in spite of a small infected population ( ���

�����
) and

a short time-series (5 days long), with data collected on a daily basis. An alternative ap-
proach (maximum likelihood) was used by Brookmeyer and Blades [9] to infer the size of
the 2001 anthrax attacks [1], before estimating the reduction of casualties by the timely
administration of antibiotics. This inference process was difficult due to the small number
of symptomatic patients (11 infectees in 3 separate attacks). They also used the anthrax
incubation model in [8]. Both [7] and [8] developed similar expression for the likelihood
function, i.e., the probability of observing a time series given an attack at time � with �
infected people. The incubation period distribution was not dose-dependent, and hence no
dosages were inferred in the two studies.

Significantly more effort has been spent in characterizing the incubation period of in-
halational anthrax. The bulk of the work has been experimental, with non-human primates
being subjected to anthrax challenges [10, 11, 12, 13, 14, 15]. Brookmeyer et al [8] devel-
oped a low-dose incubation period model applicable to the Sverdlovsk outbreak; their more
recent work, based on a competing risks formulation, includes dose-dependence [16]. A
more empirical study, but based on significantly more data, was done recently by Wilken-
ing [17], where he compared four different models called Models A, B, C and D. Model D
is a slight modification of Brookmeyer’s dose-dependent model described in [16]. While
Wilkening’s Model A agreed with Model D at the high-dose limit, their low-dose behavior
was different. Further, Wilkening developed two variants of his Model A, A1 and A2. A1
is a simpler model but its comparison with experimental results is slightly worse than A2.
In this study, we will use Wilkening’s Models A2 and D for simulated BT attacks while
Model A2 will be used in the inference scheme.

An effort with aims similar to ours is the Bayesian Aerosol Release Detector (BARD) [18].
It poses an inverse problem to infer the location and height of an anthrax release (the ap-
proach is general but has only been tested with anthrax), the time of release and the quantity
of material released. The observables are the number of respiratory visits to emergency de-
partments collated in 24-hour intervals and by zip code - such information can be obtained
from typical syndromic surveillance systems such as RODS [19, 20]. BARD does not
calculate the the number of people infected or the dosage - however, given PDFs for the lo-
cation and quantity, the magnitude of the outbreak and the dosage may be trivially obtained
by using the BARD inferences as the initial condition in a Gaussian plume to disperse the
aerosol and using Glassman’s [21] (or Druett’s [22]) model to decide the probability of
infection.

3 The inverse problem

Consider an attack at time � where � people are infected, with each of the � people receiv-
ing the same dose of � anthrax spores. The incubation period obeys a dose-dependent dis-
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tribution; we refer to its cumulative distribution function (CDF) as ������� ��� . For a few days	
(say 3–5 days) we can expect (1) a series ��
��� � ������� 	 � of times, the endpoints of 24-

hr intervals, when patients’ symptoms are observed and (2) the series � 
 �� � ������� 	 , of
new patients who turned symptomatic between � 
���� � and � 
 where � 
�� � 
���� � � ������ � ,
and � � is a constant. We define survival probability as �! �"$#&%'����� ��� � � � ������� ��� . We can
state the problem as such: Given a time-series ��� 
 �(� 
 ���� � ������� 	

, of patients showing
symptoms over a few days, estimate � �)� �*� ��� from these data.

Let + �-,/.
1032 � 
 be the total number of people who have developed symptoms by � . .
Thus � � + infected people are still asymptomatic and the probability of such an event
is 45�6 �"$#&%'��� . � �*� ���87$9 �;: . The probability that � 
 people will develop symptoms in the
time interval between �(
��3� and ��
 is 45������
 � �*� ��� � ������
 �<� � � �*� ���87$=?> . The proba-
bility of observing the 4$�(
��(�3
(7@�� � �A����� 	 time-series given a BT attack characterized by
� �B� �*� ��� , or equivalently, the likelihood function C , is

CD� �)� �*� ���FE GH��4���
(�(�3
(7@�( � ������� 	JI
�)� �K� ���

�
�ML

� � � +N��L8OP.
Q0�2 �3
�L
R 45�  �"$#&% ��� . � �K� ����7 9 �S: R

.T

Q0�2 45������
 � �K� ��� � ������
���� � �*� ���87 =U> � (1)

Exploiting Bayes rule, we obtain

V � �)� �*� � I 4���
��(�3
�7@�� � �A����� 	 � �
CW� �)� �K� ��� V 9 � �P� VYX � �K� VYZ � ���V �[4$� 
 ��� 
 7��( � ������� 	 � (2)

where V 9 � VYX and VSZ are the priors for � , � and � and V ��4���
(���3
[7@�� � ������� 	 � is
the probability of observing a 4$�(
����3
�7��( � ������� 	

time-series in any circumstance. In
this study, we use broad uniform distributions as priors. The joint probability distributionV � �B� �*� � I 4$� 
 ��� 
 7��( � ������� 	 � is marginalized to obtain individual PDFs for � , � and

� . A more detailed derivation can be found in [23].
The CDF ������� ��� in Eq. 1 can be either that of Wilkening’s Model A2 or D. These can

be found in [23, 17]. The parameters in these models were obtained by fitting to the incuba-
tion periods observed in experiments with non-human primates (performed by Henderson
et al [10] and Friedlander et al [13]) and the data from the Sverdlovsk outbreak. However,
the average dose during the Sverdlovsk outbreak had to be inferred from atmospheric dis-
persion models and the probability of exhibiting symptoms (in infinite time) given a dose
of � spores. This was done by Wilkening [17]. If one uses Glassman’s model [21] for the
probability of infection, one obtains an average dose of 2.4 spores. Alternatively, if one
uses Druett’s model [22] one obtains a dose of 300 spores. Wilkening retained both the
possibilities and incorporated them into separate models. Model D is based on a dose of
300 spores at Sverdlovsk while A2 assumes 2.4 spores.

In Fig. 1, we plot the median incubation period as predicted by Model A2 and D, as
a function of dosage � . The dosage at Sverdlovsk, inferred as 2.4 spores (represented
by \ ) is used to derive the parameters for Model A2 (solid line); the alternative inference
of 300 spores (represented by a filled ] ) is used for Model D (dashed line). Studies by
Henderson [10] with ^ � � R � �@_ , ` � a R � �?_ and b � c R � �?_ spores (represented as filled d )
and Friedlander with ` � e R ���@_ spores (represented by filled f ) were used to derive the
parameters of both the models. Studies by Ivins et al [14] (unfilled f ) and Gleiser et
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Figure 1: The median incubation period for anthrax as a function of dosage � . The solid
line is Model A2 which assumes a dose of 2.4 spores at Sverdlovsk, while the dashed
line is Model D, which assumes 300 spores. The solid symbols are median incubation
periods which were obtained from experimental investigations or from the data from the
Sverdlovsk outbreak. Symbols which are not filled denote experiments where the popula-
tion of primates were too small to draw statistically meaningful results. The experiments
by Brachman et al [15] are shown by vertical lines between symbols. In these tests, only
the lower and upper bounds of the incubation period were provided. These were not used
for determining model parameters and are only provided for reference.

al [12] (unfilled � ) were conducted with very few primates and consequently are plotted
only for reference. Brachman [15] conducted studies where he tried to simulate the effect
of a low dose, received regularly over an extended period of time, as might be the case in
a contaminated wool-sorting mill. The primates went through extended periods when they
received no spores at all. The dose was calculated as the total number of spores breathed in
and was generally low, between 1000 and 10,000 spores. We plot the ranges of incubation
periods observed (only the range was provided) for various dosages for reference.

We see that the tests by Gleiser et al and Ivins et al agree with both the models, which
in turn agree with each other, except at the low dose limit. Brachman’s tests show median
incubation periods which are at odds with the models’ predictions; however the mode of
infection, that approximating a continuous, low-level infection process spread over days
or months was very different from the quick (timescale of an hour) challenge one would
expect in a BT attack. Both the models show a kink at � �

� ���
; this is because they are
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evaluated with a lower value of � ( �
�?� ` R ��� ���������;��� ) corresponding to a primate	�
 _ 2 of 55,000 spores for comparison with primate anthrax challenge results at the high

dose limit, while the low dose predictions were developed with a human
	�
 _ 2 of 8600

spores for comparison with the inferences of the dose received at Sverdlovsk. To the best
of the authors’ knowledge, this is the sum total of experimental data obtained from an-
thrax challenges of non-human primates where incubation times were measured. We have
omitted a study by Klein et al [24] in which an incubation period increase was observed
with increasing doses, because only one primate was subjected to a given dose, making the
behavior statistically unreliable.

In [23], Eq. 2 was used to infer “idealized” attacks where � people were infected
identically with � spores each. Wilkening’s Model A2 was used to evolve the disease in
each person and was also used to infer the attack - thus the only source of uncertainty in
the inferences was the incompleteness (3–5 days) of the observables. It was noticed that
the time of the attack � was generally easy to infer regardless of the size of the attack.
The dose � was virtually impossible for small ( �� ��� �

) attacks and in general large
attacks were easier to infer accurately than smaller ones. In some cases, the observed
data supported multiple characterizations (and sometimes the wrong characterization more
than the correct one) but with the availability of data (and consequently time) the correct
characterization was always recovered.

4 Results

4.1 Tests with simulated attacks

We conduct four tests with simulated anthrax BT attacks. The infected population of size
� receives a range of doses reflecting atmospheric dispersion of an aerosolized pathogen.
We assume a general population density distribution over a 10 km square domain, over
which we release

��� � � spores. Assuming a 4 m/s wind and a Pasquill stability class of “B”,
we use a Gaussian plume to develop dose contours and expose the population. For Case A
and B, we use Glassman’s model [21] to determine the probability of infection of a person
exposed to a dose � while for Cases C and D, we use Wilkening’s Model D. Quantiles of
the dose distribution for the four cases are in Table 1. Note that 80% of the infected people
receive a range of doses spanning an order of magnitude. Details can be found in [23].

In Cases A and B, the evolution of anthrax in the infected people is governed by Wilken-
ing’s Model A2; this model is also used in the inference process. Thus uncertainty in the
inference is due to the incomplete nature of the observations and the errors incurred by fit-
ting a constant dose model (Eq. 2) to variable dose data. In Cases C and D, we use Model
D for the evolution of anthrax in the infected people; however, Model A2 is used in the in-
ference process. Table 1 contains the time-series for the four attacks, as well as the correct
values of �)� � and � , the average dose received by the � infected people.

In Fig. 2 we plot the probability density functions (PDFs) for Cases A and B for � , �
and ����� ��2 � ��� . In Table 2 we tabulate their maximum a priori (MAP) estimates and 90 %
credibility intervals (CIs) developed for the data available on Day 5. These are compared
with the true characterizations from Table 1. Since the infected population receives a range
of doses, we compare the logarithm of the median dose ����� �[2 � � _ 2 � to the logarithm of the
“representative” dose ����� ��2 � ��� inferred by fitting a constant dose model to variable dose
data. In Case B we see multimodal PDFs for � and � with Day 5 data, though by Day 7
(see [25] for data beyond Day 5) the PDFs are narrow and unimodal. The 90% CIs for � ,
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Time Case A Case B Case C Case D
0 1 9 1 3
1 5 73 5 208
2 15 317 7 478
3 29 522 11 565
4 40 628 15 490
5 31 556 19 410

� 318 4537 161 4453
� -1.5 -1.25 -0.75 -0.5�

� 2912.8 13,150.4 3606.5 16,532
� � e'� ` R � � � �@� `�^ R � � � ` � � � R ��� � ` � � R ��� �

� � _ �?� ^U` R � � � ` � � b R � � � �@� a@a R ��� � a*� ��e R ��� �
� _ 2 ^ � a � R � � � �@� ^ � R � ��� ` � ` � R ��� � �?� e b R �����
��� _ �K� � ^ R � � � �@� � b R � � � �Y� b a R ��� � ^ � � b R ��� �
��	
	 �*� ^ � R � � � e*� a � R � � � aK� � b R ��� � c*� e � R ��� �

Table 1: The daily number of new symptomatic patients for Cases A, B, C and D. The
middle 3 rows of the table provide the true characteristics of the attacks.

�
� is the mean

of the dose distribution, in units of spores. � , the time of the attack/infection, is measured
from the moment the first patient exhibited symptoms and is therefore always negative. The
values ��� are quantiles of the dose distribution;  % of the infected population receives a
dose of ��� spores or less. Time is measured in days.

� and ����� ��2 � ��� bracket the true values. The time of the attack is easily inferred, though
withing the finite time resolution of the observed data. The dose is harder to infer in the
smaller Case A. Thus while the errors introduced by violating the assumption of constant
dose in Eq. 2 are not negligible, the current formulation provides a reasonable and useful
characterization of the attack.

We now proceed to Cases C and D. These include a systematic difference between the
actual evolution of the attack and the model used to interpret the data. Table 1 contains the
observations and the correct characterization of the attack. Since Model A2 (used in the
inference) generally predicts a smaller shorter incubation periods compared to Model D
(see Fig. 1), the rise in the epidemic curve, as simulated with Model D, will be slower than
that predicted by Model A2. When this data is interpreted using Model A2, the posterior
distribution compensated for the slower growth by underestimating � i.e. by suggesting
a smaller attack. In Fig. 3 we plot PDFs for Cases C and D. We see that the PDF for �
for Case D is bimodal when only 3 days of data are available; with more data, the PDF is
unimodal. The PDF for ����� ��2 � ��� for Case C ( � �

��c �
) is too broad to be very informative.

The MAP estimate for � , � and ����� ��2 � ��� are tabulated in Table 2. The MAP estimate of
� is very close to the correct value for Case C and lower than the true number for Case D
(for reasons explained above). � is inferred about a day too late. The inferred dose (MAP
estimate) is within an half an order of magnitude of the true figure.

4.2 The Sverdlovsk incident of 1979

It is suspected that on April 2 ��� , 1979, there was an accidental release of a high-grade
anthrax formulation from a military facility in Sverdlovsk, Russia [6]. 70 people are be-

7



Size of attack

P
D

F

200 400 600 800 1000
0

0.001

0.002

0.003

0.004

0.005

Size of Attack; Day 03
Size of Attack; Day 04
Size of Attack; Day 05
Size of Attack; Day 07

Size of attack

P
D

F

2000 4000 6000 8000
0

0.001

0.002

0.003

Size of Attack; Day 03
Size of Attack; Day 04
Size of Attack; Day 05
Size of Attack; Day 07

Time of attack

P
D

F

-4 -3 -2 -1 0
0

0.2

0.4

0.6

0.8

1

Time of Attack; Day 03
Time of Attack; Day 04
Time of Attack; Day 05
Time of Attack; Day 07

Time of attack [days]

P
D

F

-4 -3 -2 -1 0
0

1

2

3

4

5

Time of Attack; Day 03
Time of Attack; Day 04
Time of Attack; Day 05
Time of Attack; Day 07

Dosage ( log10(Spores) )

P
D

F

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Dosage; Day 03
Dosage; Day 04
Dosage; Day 05
Dosage; Day 07

log10(Dose) [spores]

P
D

F

0 1 2 3 4 5
0

1

2

3

4

5

Dosage; Day 03
Dosage; Day 04
Dosage; Day 05
Dosage; Day 07

Figure 2: PDFs for � (top), � and ����� ��2 � ��� for Cases A (left) and B (right) as developed
from the data tabulated in Table 1. The inferences are based on 3, 4 and 5 days of data
(blue, red and black lines respectively).
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Case � � ����� �[2 � ���
A 400, 4 318 7 -1.4=5, 4 -1.5 7 3.0, 4 3.46 7

[225.8, 580.2] [-1.97, -0.73] [0.48, 4.12]

B 4200, 4 4437 7 -1.5, 4 -1.25 7 4.0, 4 4.09 7
[3894, 5143] [-1.67, -1.33] [3.8, 4.7]

C 170, 4 161 7 -1.5, 4 -0.75 7 2.5, 4 3.52 7
[124.9, 238.9] [-2.4, -0.94] [0.263, 3.87]

D 2800, 4 4453 7 -1.5, 4 -0.75 7 4.5, 4 4.20 7
[2726, 2998] [-1.97, -1.3] [4.272, 4.725]

Sverd- 50, 4 75–80 7 -2, 4 -2 7 1.3, 4 ? 7
lovsk [41.15, 66.49] [-3.22, -1.38] [0.18, 3.5]

Table 2: The MAP estimate and the 90% credibility intervals (in square brackets) for � , �
and ����� �[2 � ��� as calculated from data in Table 1. Data from Day 5 (Day 9 for Sverdlovsk)
are used. Correct values for � and � are in 4W7 . The “correct” representative dose is taken
to be ����� ��2 � � _ 25� , also in 4 7 .

lieved to have died [6, 8] and it has been estimated that 80 were infected [8]. This estimate
was obtained under the assumption that all the fatalities were due to inhalational anthrax.
The Sverdlovsk outbreak provides a good real-world test case for our inference procedure.
Wilkening [17] estimates that the average dosage was either around 2-3 spores, based on
his Model A, or around 300 spores based on his Model D, which is similar to the compet-
ing risks model of Brookmeyer [16]. Meselson [6] estimates 100-2000 spores as the likely
dosage.

The Sverdlovsk case presents significant challenges. It was a low-dose attack infecting
fewer than a hundred people. The first patient was detected on April 4 �

�
, 1979. The

time-series of symptom onset is available on a day-by-day basis in [26]. Around April
12 �

�
, tetracycline was administered around Sverdlovsk; around the middle of April people

were vaccinated. These prophylactic measures probably cured a few and increased the
incubation period in others. Further, the data we work with almost certainly contains some
recording errors. Noisiness of the data, the effect of prophylaxis (which is not modeled in
our inference process), and the small size of the infected population are expected to stress
our inference process.

In Fig. 4 we plot the inferences for � , � and ����� ��2 � ��� , based on the data in [26]. Model
A2 is used for inference. The data was collected on a daily basis for 42 days, the duration of
the outbreak. The time of release � was easy to infer. The PDFs for dosage (omitted here)
are indeterminate. The inference for � centers around 50 by Day 9 (April 13

���
), though

the earlier inferences underestimate � . Nevertheless, we are certainly within a factor of
two of the correct value of � even with 9 days of data. By Day 9 it is also clear that the the
size of the outbreak would almost certainly be less than 100. However, medical measures
during the outbreak affected about 59,000 people in the Chkalovskiy raion, of which about
80% were vaccinated at least once [6]. In Table 2, we summarize the MAP estimates and
confidence intervals developed from 9 days of data.
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Figure 4: PDFs for the � and � for the Sverdlovsk incident. The MAP values from 9 days
of data are compared with the true values in Table 2.

5 Conclusions

We have developed a Bayesian approach to characterize BT attacks from a time series of
diagnosed patients. Our tests with anthrax show that an observation period of 3–5 days
may be sufficient to estimate the number of asymptomatic infected people, the time of
infection, and a representative dose, and to provide quantified uncertainty intervals around
these estimates; in the absence of an accurate disease model, we may arrive within a factor
of two of the size of the attack. The resolution of the time series of diagnosed patients has
a small impact if the disease model is accurate; otherwise, model errors dominate.

This Bayesian approach is amenable to extension and improvement in many ways.
Informative prior distributions for � and � , drawn from syndromic surveillance data, may
increase the efficiency of the inference process. The ability to “fuse” disparate sources of
data via prior distributions contributes significantly to the robustness of Bayesian inference
in data-starved environments. One could also incorporate atmospheric transport processes
into the likelihood function, thus using the spatial locations of diagnosed patients to guide
posterior estimates, though for urban terrains this could lead to very involved computations.
Also, the present approach can immediately be applied to other noncontagious diseases,
as well as to contagious diseases with long incubation periods, such as smallpox, where
secondary cases do not appear in the early time series of patient data.

The importance of quantitatively characterizing a BT attack was explicitly identified in
the “Dark Winter” exercise [3]. Participants sought the ability “. . . to immediately predict
the likely size of the epidemic on the basis of the initial cases; to know how many people
were exposed.” Thus the primary utility of our inference procedure is within the frame-
work of a response plan. Response to a BT attack would typically involve confirmatory
testing and logistics (the transport of medical materiel and personnel), both of which could
be better targeted by a quantitative characterization of the attack. The probabilistic char-
acterizations developed here, along with resource hedging for risk-mitigation, support a
measured approach to addressing BT attacks. In addition to being more sustainable, mea-
sured responses may introduce fewer undesirable side effects and be less susceptible to
feints.
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