
Advanced algorithms for computations on
block-structured adaptively refined meshes

Jaideep Ray1, C. Kennedy2, J. Steensland and H. Najm
Sandia National Laboratories, Livermore, CA

E-mail: jairay@ca.sandia.gov

Abstract. Block-structured adaptively refined meshes are an efficient means of discretizing a domain
characterized by a large spectrum of spatiotemporal scales. Further, they allow the use of simple data
structures (multidimensional arrays) which considerably assist the task of using them in conjunction with
sophisticated numerical algorithms. In this work, we show how such meshes may be used with high order
(i.e. greater than 2nd order) discretization to achieve greater accuracies at significantly less computational
expense, as compared to conventional second order approaches. Our study explores how these high order
discretizations are coupled with high-order interpolations and filters to achieve high order convergence on
such meshes. One of the side-effects of using high order discretizations is that one now obtains shallow grid
hierarchies, which are easier to load balance. As a part of this work, we introduce the concept of bi-level
(grid) partitioning and motivate, via an analytical model, how it holds the potential to significantly reduce
load-imbalances while incurring a minimal communication cost.

1. Introduction
Essential to any computational method is the manner in which a continuous domain of interest is
discretized into a mesh. Generally, if the computation exhibits structures far smaller than the domain
size in sparsely dispersed clusters, an adaptive, locally refined meshing approach is adopted to minimize
the size the mesh while ensuring that solution structures are properly resolved. One such adaptive
meshing technique is block-structured adaptive mesh refinement (SAMR). The SAMR [1] method can
be summarized as follows: a coarse Cartesian mesh is overlaid on a rectangular domain, and, based on
a suitably defined error metric, the grid points which require further refinement are identified. These
points are flagged and collated into rectangular child patches on which another, denser, Cartesian mesh
is imposed. This is done recursively, leading to the formation of a Grid Hierarchy, GH. The refinement
factor between the parent and the child mesh is usually kept constant for a given problem (2 for the
purposes of this paper). The solution can be advanced in time using explicit or implicit time integration;
we use the time-refinement technique described in [2]. The solution is advanced with a different
timestep (as determined by stability constraints) on each level of the GH. Periodically the levels are
“synchronized” by interpolating the accurate solutions from the finer to the coarser meshes. The sequence
in which the different levels are integrated corresponds to the in-order traversal of a binary tree.

Since SAMR techniques always refine regions in rectangular patches, the multidimensional array is
the obvious data structure of choice. Such a simple solution renders SAMR a very attractive option
for multiscale simulations when the domain geometries are simple. However, there are certain practical

1 Corresponding author
2 Formerly at Sandia National Laboratories, Livermore, CA

Table 1. Coefficients for fourth and sixth order accurate derivative stencils. Third order skewed stencils
used at a right boundary are also shown. Their left counterparts are obtained by reflection and an
inversion of signs. In the first column, S denotes stencil, suffix E indicates a symmetric explicit stencil
while U indicates an upwind/skewed one. L.O.T.E. stands for Leading Order Truncation Error.

S cL bL aL ϒ aR bR cR L.O.T.E.

4E 0 1/12 -2/3 0 2/3 -1/12 0 -(1/30)ξ5

6E -1/60 3/20 -3/4 0 3/4 -3/20 1/60 +(i/140)ξ7

3U 0 0 -2/6 -1/2 1 -1/6 0 -(i/12)ξ4

3UU 0 0 0 -11/6 3 -3/2 1/3 +(i/4)ξ6

4U 0 0 -1/4 -5/6 3/2 -1/2 1/12 +(i/20)ξ5

difficulties. Time-refinement requires that fine mesh patches sub-cycle far more than coarse patches, and
most of the time is spent computing (and communicating) at the finer levels. Further, sub-cycling is done
in a recursive manner, leading to significant recursion overheads if the GH is deep. Interpolations from
coarse-to-fine patches (and vice versa) also add a significant cost to SAMR approaches, especially in 3D.
Sub-cycling also results in a peaked distribution of work load (as a function of space) which is difficult to
partition in an equitable manner for domain decomposition based parallelization. There are two possible
solutions: (a) avoid deep hierarchies by using high order (� 2nd order) discretizations to reduce the need
for excessive refinement and (b) adopt a quasi-domain-decomposition based partitioning approach that
achieves load-balance at the price of some communication cost. Both these approaches are investigated
below.

2. High order discretizations on SAMR meshes
High order methods exploit solution characteristics (usually smoothness) to achieve accuracy at modest
resolutions. In a SAMR context, where solutions are interpolated between coarse and fine meshes, they
need to be paired with interpolants of an appropriate order. Also, since high order approaches have low
numerical dissipation, unresolved wave numbers in the solution have to be explicitly filtered out before
they corrupt the solution. Further, wave-numbers resolved by less than approximately six grid points
often cause interpolants to fail [3].

All first-order derivatives in this work can be written as

f
�
i � cL fi � 3�

∆x � � bL fi � 2�
∆x � � aL fi � 1�

∆x � � ϒ fi�
∆x � � aR fi � 1�

∆x � � bR fi � 2�
∆x � � cR fi � 3�

∆x �	� (1)

where the coefficients for the 4th and 6th order discretizations (the stencils of interest for the purposes
of this paper) are in Table 1. At domain boundaries, skewed operators of a lower order (3 rd) are used
(see in Table 1). Interpolations of data from a coarse parent to a halo of points around a fine child
patch (prolongation) is used to allow the use of symmetric discretization operators on the fine patches.
Periodically, data is also restricted from the fine patches to the coarse ones. Interpolations are done
using a square (in 2D; cube in 3D) patch around the target interpolation point; at domain boundaries the
interpolation squares are skewed. Details of the coefficients for discretization, filters and interpolations
are in [4, 5]. We will denote the order of discretization, interpolation and filter by pD
 pI and pF

respectively.
We solve a problem Ut � D∇2U

�
AU
�
1 � U � � U � α � subject to the boundary condition ∇U � 0

as x �� ∞ on a unit square with a 2-level GH (� L0
 L1 �). This equation admits a traveling wave

solution U
�
ξ
 t � � 1

2

�
1
�

tanh ξ
2ε � where ε � 2 � D

A , ξ � x
�

y � 0 � 5 � st and s ��� AD
�
1 � 2α � . We

x

y

0.1 0.2 0.3 0.4 0.5 0.6
0.1

0.2

0.3

0.4

0.5

x

y

0.1 0.2 0.3 0.4 0.5 0.6
0.1

0.2

0.3

0.4

0.5

Figure 1. Results from a 2-level GH run with pD � 4
 pI � 6 on a 100 � 100 � L0 � mesh. Results from a
zoom into 0 � 1 � x � 0 � 6
 0 � 1 � y � 0 � 55 are shown at t � 6 � 10 � 4. The result on the left was computed
without filtering. We see oscillatory Runge phenomena developing around patch edges and propagating
inward. Applying a pF � 8 filter at the beginning of each timestep removes the problem (frame on the
right).

choose D � 1 � 0
 α � 0 � 3 and ε � 0 � 02. The problem is formulated along the lines of [6] without using
special stencils at coarse–fine patch interface. Fourth and sixth order spatial discretizations are used in
conjunction with Heun’s method (RK-2) to advance the solution to t � 10 � 3. Eighth order filters are
used.

Fig. 1 shows the effect of filters; their absence causes the Runge phenomenon. The choice of pD, pI

and pF was guided by [4]. In Fig. 2 we see plot the convergence of error (w.r.t. the analytical result)
on both L0 and L1 for three different L0 resolutions. We see that in both cases the desired order of
convergence (4th and 6th for the left and right figures respectively) are achieved on L0 while L1 shows a
faster convergence since the errors there are dominated by the higher order interpolation errors. Thus the
1D results from [4] hold true in the present 2D implementation.

3. Bi-level partitioning of SAMR meshes
Consider a 2D domain distributed over a number of processors after being subjected to a purely domain-
based decomposition. Let a sub-domain on a processor have N0 grid points on the coarsest level. Gl

refers to the set of all patches on level l. Let a fraction of this coarse level be refined into level 1 patches,
contained in the set G1. Thus, the number of grid points in G1, (i.e., the load on G1) is L1 � ∑M1 � 1

i � 0 α1
i N0R

where Ml is the number of patches in Gl , R is the refinement factor between 2 successive levels (usually
2) and αl

i is the fraction of the sub-domain that exists in patch i on level l. Patches on a level are
indexed from 0 to Ml � 1. Let G1 be recursively refined into G2
 G3
 ����� . Let L denote the index
of the finest level. During a time-step, the compute load Tcomp is Tcomp � tcompN0 ∑L

l � 0 R2l ∑Ml � 1
i � 0 αl

i
where tcomp is the computation time / load of a unit operation. Let us assume that patches are
roughly square and that the width of the halo of grid points kept around a patch to enable the use of

symmetric stencils ∝ � αl
iN0Rl . Since the intra-level communication follows a similar pattern as the

computation, Tcomm � tcomm ∑L
l � 0 ∑Ml � 1

i � 0 4βl
i � αl

iN0RlRl where tcomm is a unit communication time and βl
i

is the fraction of the perimeter of patch Gl � i that abuts another patch on the same level but in a different
sub-domain. At a given level, data is interpolated from child patches to the parent at the end of each

time step. If tinterp is the unit interpolation cost, then the total time spent in interpolation, Tinterp, is

Tinterp � N0tinterp ∑L � 1
l � 0 R2l � 1 ∑Ml � 1 � 1

i � 0 αl � 1
i � Note that Tinterp in a purely domain-based partitioning does

not incur a communication cost. Thus, the total time for an arbitrary processor to execute a time-step,
Ttotal , is Ttotal � Tcomp

�
Tinterp

�
Tcomm

�
twait where twait is the wait induced by load-imbalance among

processors.
Typically, SAMR packages [7, 8] load-balance by moving an arbitrary patch G l � i from a processor

with twait � 0 to another with maximum twait i.e., the least loaded one. This saves on compute τi
comp

and interpolation τi
interp loads for the patch i but incurs the cost of inter-level communication, i.e., the

cost of bringing back the interpolated data from the off-processor patch: α l
iN0R2l � 1tcomm. Let γ denote

the fraction of this communication time that could not be overlapped with computation. Then, the load
change on the sending processor

∆tsend � � τi
comp � τi

interp
� γτi

comm � αl
iN0R2l � 1 � γtcomm � tinterp � Rtcomp � � (2)

Thus, the requirement for ∆tsend � 0 is γtcomm � tinterp
�

Rtcomp. This is rarely realized since tinterp

and tcomp are far smaller than tcomm on todays fast processors. However, load-balance and (sub-linear)
scalability are realized.

We now motivate an alternate approach. A way to render ∆tsend � 0 is to increase the savings in
compute and interpolation costs while keeping the communication overhead unchanged. We consider
the case of moving all patches above level “q” off-processor in an effort to reduce Ttotal . Thus ∆tsend is
given by

∆tsend � ∑
Gq

τi
comm � ∑

Gm �m � q

�
τi

comp
� τi

interp � (3)

� Mq � 1

∑
i � 0

αq
i N0R2qγtcomm � L

∑
l � q � 1

Ml � 1

∑
i � 0

αl
iN0R2ltcomp � L � 1

∑
l � q

Ml � 1 � 1

∑
i � 0

αl � 1
i N0R2l � 1tinterp �

Resolution

E
rr

o
rs

50 100 150 200
10-4

10-3

10-2

10-1

100

L0 error
L0 (ideal)
L1 error

Resolution

L0
er

ro
r,

L0
(i

de
al

),
L1

er
ro

r

100 125 150 175 200 225 250

10-4

10-3

10-2

10-1

100

L0 error
L0 (ideal)
L1 error
L0 error; Uniform mesh
L0 (ideal); Uniform mesh

Figure 2. Convergence of the error with pD � 4
 PI � 6 (left) and pD � 6
 PI � 8 (right). The L0 mesh
was discretized at 3 different resolutions. The numerical error (with respect to the analytical solution) is
plotted with symbols; the ideal convergence (fourth or sixth) is plotted as a line. We see that fourth (sixth)
order convergence is seen on L0 in the left (right) figures. L1 convergence is dominated by interpolation
errors which converge as pI

�
pD. We use ∆t � 10 � 5 and 0 � 25 � 10 � 5 for the pD � 4 and pD � 6 runs

respectively. In the pD � 6 results, we plot the convergence of the error from a uniform mesh run as a
reference for the convergence slope.

Since q only takes integral values between 1 and L, the above expression can be evaluated repeated
to seach for the largest q for which ∆tsend � 0. This thus enables one to partition a GH partially, in
“units” of bi-levels, thus providing an extra parameter in the partitioning problem. We are currently
evaluating partitioners based on bi-level / partial partitioning, particularly with the view of quantifying
the sensitivity of ∆tsend with respect to q in realistic problems.

4. Conclusions
SAMR approaches for computational science, though attractive, pose unusual challenges in the context
of parallel efficiency, scalability and load-balancing. In some cases, as was done in Sec. 2, techniques
common in uniform mesh and/or unstructured mesh computations may be adapted to SAMR meshes. In
conjunction with [4], it is clear that high order convergence can be realized on SAMR meshes provided
that discretizations, interpolants and filters are chosen appropriately. This opens up the possibility of
achieving similar accuracies and efficiencies on SAMR meshes that high order numerical schemes have
delivered for uniform meshes. They also hold the possibility of rendering many of the issues that
arise from deeply refined grids irrelevant by making them unnecessary. In case deep refinements are
unavoidable, robust load-partitioning methods that optimize a single metric (e.g. load balance) may be
sub-optimal, as was shown in Sec. 3. Such cases require specialized approaches, which, in the adaptive
context, usually require that the metric being optimized itself be dynamic. Such an adaptive approach to
load-partitioning requires that a GH be characterized w.r.t. its parallel efficiency and “partitionability”
so that an appropriate partitioning technique can be chosen. Preliminary efforts and their results [9]
are encouraging.Coupling them with more sophisticated partial-partitionings as motivated in Sec. 3 are
under way.

Acknowledgments
This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences
(BES), SCIDAC Computational Chemistry Program; and by the DOE BES Division of Chemical
Sciences, Geosciences, and Biosciences. J. Steensland was supported under Sandia’s ASC (Advanced
Simulation and Computing) program. Sandia National Laboratories is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of
Energy under contract DE-AC04-94-AL85000.

References
[1] M.J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. Journal of Computational Physics,

82:64–84, 1989.
[2] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. J. Computational Phys.,

53:484–512, 1984.
[3] L. N. Trefethen and J. A. C. Weideman. Two results on polynomial interpolation in equally spaced points. J. Approx.

Theory, 65:247–260, 1991.
[4] Sophia Lefantzi, Jaideep Ray, Christopher A. Kennedy, and Habib N. Najm. A component-based toolkit for reacting

flows with high order spatial discretizations on structured adaptively refined meshes. Progress in Computational Fluid
Dynamics, 5:298–315, 2005.

[5] C. A. Kennedy and M. H. Carpenter. Several new numerial methods for compressible shear layer simulations. Appl. Num.
Math., 14:397–433, 1994.

[6] P. J. J. Ferket and A. A. Reusken. A finite difference discretization method for elliptic problems on composite grids.
Computing, 56:343–369, 1996.

[7] CHOMBO, 2003. http://seesar.lbl.gov/anag/chombo/, NERSC, ANAG of Lawrence Berkeley National Lab, CA, USA.
[8] Scott Kohn. SAMRAI homepage, structured adaptive mesh refinement applications infrastructure, 1999.

http://www.llnl.gov/CASC/SAMRAI/.
[9] Johan Steensland and Jaideep Ray. A partitioner-centric model for samr partitioning trade-off optimization: Part i.

International Journal of High Performance Computing Applications, 19:1–14, 2005.

