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1 Introduction

This is a manual for the package “sparse-msrf”, a Matlab package for estimating fossil-fuel

CO2 (ffCO2) emissions from sparse measurements of its concentration at a limited number

of locations. This software was used in the study documented in [1, 2, 3]. It is suggested

that you read either [1] or [2, 3] before delving into this software package.

Estimation of fields (defined on a grid), from sparse data, cannot be performed naively i.e.

by assuming that each grid-cell is an independent parameter to be estimated - there is simply

not enough observations to estimate all the cells. If the field is smooth, and adjoining grid-

cells are constrained to assume field values which are not too different, one can use Gaussian

Random Field [4] to model them and drastically reduce their dimensionality (making it

feasible to estimate the lower dimensional model from limited data). When fields are not

smooth, one can model them as a (linear) combination of proxies that contain similar patterns

or one can use basis sets with compact support e.g., wavelets. A wavelet encoding/model

of a field is not low-dimensional, unless one can “mask” (or eliminate) a large fraction of

the wavelets using a guess/easily observed proxy of the field being modeled (which then

results in a random field model). Since wavelets are a multi-resolution basis, one can called

a masked collection of wavelets a Multiscale Random Field model (MsRF).

Given the paucity of data, even the model may not be sufficiently low dimensional. In such

a case, one takes recourse to sparse reconstruction (shrinkage regression) which identifies

which wavelet weights can be estimated from observations while turning off the rest. This

is most efficient when the parameters being estimated (wavelet weights) are independent

(alternatively, when the bases are orthogonal); since wavelets are an orthogonal basis set,

this hold true for us.

The software contains the following capabilities:

• The ability to search through a number of wavelet families to determine the sparsity

of encoding a given non-stationary field

• The functionality to create a MsRF model by masking specific wavelets in a wavelet

encoding of a field. The field being used to create the masking could be an emission

field or an easily-observed proxy (as was in our case).
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• Functionality to construct various random sampling matrices and compare their sam-

pling efficiency versus the atmospheric transport model.

• A sparse reconstruction functionality, based on StOMP [5], to estimate an emission

field in an irregular (non-rectangular) domain while ensuring non-negativity (ffCO2

emissions cannot be negative).

The software package can be easily adapted to conduct network design or Observation System

Simulation Experiments for ffCO2 estimation. It can be modified to also estimate emission

patterns for gases which can be approximated as non-reactive tracers e.g. methane emissions

from landfills, when the number, and distribution of landfills is ambiguous [6].

Citation: The proper way to cite this package is: “J. Ray, J. Lee and S. Lefantzi, “sparse-

msrf: A package for sparse modeling and estimation of fossil-fuel CO2 emission fields”,

http://www.sandia.gov/~jairay/kfcs.html.

2 Description of the package

We envision that users will use this package to (1) experiment with wavelets to model non-

stationary field (not just ffCO2 emission fields) and (2) use the software to perform source or

emission field inversions for passive tracers. To that end, we also provide a realistic transport

model.

The contents of the package are separated into different directories.

• data/: This directory contains miscellaneous data, required as input for the study in

our paper.

– vulcan.8day.1/: Folder containing ffCO2 emissions from the Vulcan inventory for

US [7], aggregated to 1 degree and 8 day resolution. This is the “ground truth”

emission field and is used to select wavelet family for the MsRF.

– nlights-0.1x0.1/: A folder containing radiances of lights at night over North

America. This is an easily-observed proxy for ffCO2 emissions and is used to

choose which wavelets to mask.

– edgar2005.1x1/: Emission field from the EDGAR inventory [8] which is used to

provide a constant-in-time approximation of time-variant ffCO2 emission fields to

be estimated.

– tower.obs: Names of towers where ffCO2 concentrations are measured.

• doc/: Contains this manual and bibliography.
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• examples/: This folder contains 5 examples that drive the modeling and algorithmic

machinery of the package. 3 examples in (examples/ex01/) concern wavelet modeling

of ffCO2 fields using a variety of wavelets, the sparsity of representation and generally

exercise the machinery for representing a masked collection of wavelets. examples/ex02

contains a large example that uses Haar wavelet and nightlight radiances to construct

a MsRF, uses EDGAR to create a prior emission field and uses StOMP to perform

the estimation. This code is quite complicated and ought to be learnt piecemeal.

examples/ex03/ contains code that compares the sampling efficiency of the transport

model versus traditional random sampling matrices.

• H-matrices/: ffCO2 concentration at a space-time location i, y(xi, t) = Hiz where z

is the emission field and H is the linear operator that serves as the transport model

over North America, with emission at 1 degree and 8-day resolution. This directory

contains the Hi for 30+ observation towers.

• incoherence/: Folder with software machinery to compute random sampling matrices

and their coherence with the wavelet bases constituting the MsRF.

• msrf-selection/: This folder contains the software machinery for representing a fields

as a masked collection of wavelets of a number of families and orders. The masking

field (in our case, a nightlight matrix) is an argument to the Matlab functions that

perform the masking.

• sparse-inversion/ : This folder contains the bulk of the code. It has functions

that select the wavelets for masking using nightlights, use EDGAR to make the guess

emission field, and perform estimation of the non-negative field (Steps I and II, as

described in [3], are clearly marked). All the functions are documented, but it is

expected that you might need help. Mail Jaideep Ray.

Do not try to understand the code by looking through msrf-selection/ and sparse-inversion/;

rather start with the examples and work your way down.

3 Installation

The package depends on two open-source Matlab toolboxes, SparseLab [9] and WaveLab [10].

Install them first. They contain their own installation manuals.

Uncompress the sparse-msrf.tgz file

In each of the examples, you will have to set the path to the two toolboxes before you can

run them. These specifications are at the top of the example Matlab scripts.
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4 Description of examples

examples/ex01/Fig02.m: This example shows how different types of wavelets provide wavelet

coefficients of different average values (and their variance) at different spatial scales, when

encoding annually-averaged ffCO2 emissions from Vulcan. Run this once so that all useful

function in the toolboxes are in your path.

Use this example to explore the encoding different wavelet families and different orders

inside the same family can provide. If you are trying to model a different field e.g., methane

emissions, chances are that Haar wavelets (which we found to be best) is the wrong choice.

Type help MakeONFilter to determine the wavelet families and corresponding order that

are implemented in WaveLab. All user-settable parameters are at the top of the Matlab

script.

examples/ex01/Fig23.m: In any wavelet encoding, the bulk of the wavelets are at the finest

scales; the ability to mask off a large fraction of them results in an enormous reduction of

dimensionality (a sparse representation). This examples show how certain wavelet families

do not manage to yield a sparse representation; wavelet weights at fine scale are all rather

small, but not zero, and all about the same magnitude, making it impossible to construct as

masking threshold.

Use this example to explore how the masking metric becomes absolutely impossible as one

progresses to smoother wavelets with larger support, while the ffCO2 field has sharp discon-

tinuities at the 1 degree resolution scale.

examples/ex01/Fig24.m: The more wavelets we remove, the more approximate the model

and bigger the error when we try to model Vulcan emissions with them. This code allows

you to see how model fidelity drops as one strives for a sparse model.

examples/ex02/driver01.m: This is a complicated example that, as distributed, performs

an inversion over a 3-Week period (Week 31 to 33, where a Week is 8 days). One needs a

buffer of 2 Weeks ahead of the period of interest. This is the place to start if you wish to

delve into the workings of the modeling and inversion code. The example will take about 10

minutes to run.

Use this example to explore how to do a year-long inversion (see line 55). It’ll take 4 hours

and require 20 GB RAM; memory requirements increase with the duration over which you

are estimating the emissions. Also check how the inversion worsens when we do a bad job

of enforcing zero emissions outside US (reduce info.nCompSamples on line 49)

The example uses StOMP, as implemented in SparseLab2.1-Core/Solvers/SolveStOMP.m

(in the SparseLab toolbox that you install). The StOMP solver has some hardcoded param-
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eters. Change

{[x_I, flag] = lsqr(@lsqrMat,y,OptTol,20);}

on line 122 to

{[x_I, flag] = lsqr(@lsqrMat,y,OptTol,500);}

and recheck.

examples/ex03/Fig21.m contains an example where the incoherence of the H matrix, with

respect to the MsRF, is compared to the incoherence achieved with standard random matrices

(which are generated as part of the code). The example is distributed with incoherence

estimation over a 2 Week period (to save on memory).

Explore how the incoherence changes throughout the year by testing for bigger durations

(not just 2 Weeks) and at different points in the year (not just Week 21-23).

5 Disclaimer of warranty

We make no warranties, explicit or implicit, that the programs contained in this collection

are free of error, or are consistent with any particular standard of accuracy, or that they will

meet your requirements for any particular application. They should not be relied on for any

purpose where incorrect results could result in loss of property or personal injury. If you do

use programs for any such purpose, it is at your own risk. The authors disclaim all liability

of any kind, either direct or consequential, resulting from your use of these programs.
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