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Abstract

We present a Bayesian technique to estimate the fine-scale properties of a binary
medium from multiscale observations. The binary medium of interest consists of
spatially varying proportions of low and high permeability material with an isotropic
structure. Inclusions of one material within the other are far smaller than the domain
sizes of interest, and thus are never explicitly resolved. We consider the problem of
estimating the spatial distribution of the inclusion proportion, F(x), and a charac-
teristic length-scale of the inclusions, δ, from sparse multiscale measurements. The
observations consist of coarse-scale (of the order of the domain size) measurements of
the effective permeability of the medium (i.e., static data) and tracer breakthrough
times (i.e., dynamic data), which interrogate the fine scale, at a sparsely distributed
set of locations. This ill-posed problem is regularized by specifying a Gaussian process
model for the unknown field F(x) and expressing it as a superposition of Karhunen-
Loève modes. The effect of the fine-scale structures on the coarse-scale effective
permeability i.e., upscaling, is performed using a subgrid-model which includes δ as
one of its parameters. A statistical inverse problem is posed to infer the weights of
the Karhunen-Loève modes and δ, which is then solved using an adaptive Markov
Chain Monte Carlo method. The solution yields non-parametric distributions for the
objects of interest, thus providing most probable estimates and uncertainty bounds
on latent structures at coarse and fine scales. The technique is tested using synthetic
data. The individual contributions of the static and dynamic data to the inference
are also analyzed.
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1. Introduction

Estimation of heterogeneous material properties for accurate predictions of sys-
tem performance is an important problem in many fields of engineering. In particular,
efficient aquifer and petroleum reservoir management require accurate knowledge of
the distribution of material properties. The estimation of an unknown permeability
field is arguably one of the more important challenges associated with fluid through
porous media problems. This inverse form of estimation where a small number of
direct measurements of the aquifer properties supplemented by measurements of the
aquifer behavior under applied perturbations (e.g., injection of a tracer, transient
pumping/injection, etc.) are used to estimate the aquifer properties has been an
active area of research over the past 20 years [1, 2, 3, 4, 3, 5, 6, 7]. Furthermore,
permeability values inherently depend on the spatial scale of the particular measure-
ment technique. For instance, flow measurements through core plugs represent spatial
scales on the order of centimeters, whereas wellbore pressure transient analyses are
more on the order of hundreds of meters. This introduces a key challenge of how to
accommodate measurements at different spatial scales in the inversion process. In
this paper, we develop a computationally efficient stochastic inversion methodology
using measurements from fine and coarse scales. The conceptual model employed
here considers a binary permeability where the proportion of each phase varies in
space analogous to varying proportions of sand/clay in an aquifer of fluvial origin, or
varying fracture densities or levels of diagenesis in aquifers of other origin.

In this paper we present a multiscale statistical inversion technique that can be
used to estimate fields (permeability/transmissivity/conductivity) from sparse obser-
vations. In particular, we show that one may be able to estimate summaries of fine-
scale structures of the field, without resolving them on a mesh. While this method has
been demonstrated on the estimation of 2D fields using synthetic data, the method
can be extended to 3D. The 2D problem used in this paper is necessarily a compro-
mise in the representation of the complexity of flow and transport processes (which
are often strongly 3D), but it illustrates the main aspects of the inversion technique
without imposing the onerous computational costs of a 3D inversion. Further, 2D in-
versions have a long history [1, 2] in reservoir engineering and groundwater flows, and
our method adds to that literature. Practically, such 2D inversions may be applicable
when one observes strong directional heterogeneity in transmissivity (horizontally)
over a large (O(10 km)) domains. The method is applicable in cases where average
properties can be resolved from data at one scale and discrete heterogeneities can be
resolved from data collected at a finer scale.

A binary medium is one that can be adequately described in terms of inclusions of
one material phase embedded in another. The two materials can have vastly different
properties, and the effective behavior of the binary medium arises as a nonlinear
interaction of the two constituents. Further, the proportions of the two materials need
not be distributed evenly, and for situations with uneven proportions, inclusions of
the less common material will exist within a continuous matrix of the other material.
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Binary media exhibit complex behaviors and rich dynamics. Examples of binary
media are fractured rock (with the fractures acting as high permeability inclusions),
sandstone with embedded shale, and engineered composite materials. In many cases,
the domain size of the binary medium (henceforth, the coarse-scale) may be a few
orders of magnitude larger than the size of the inclusions and it is impractical to
measure the inclusions individually. However, the length-scale contrast between the
inclusion and domain size is not large enough that the inclusions can simply be
homogenized i.e., a mean value for the effect of the inclusion cannot be used, but
a more detailed characterization of the fine-scale is required. We call such behavior
“multiscale”.

This multiscale behavior raises the possibility that it may be possible to infer the
characteristics of the latent fine-scale from a judicious set of measurements which
inform on both the coarse and fine scales. In order to do so, a link function L,
that locally captures the effect of fine-scale processes and structure at the coarse-
scale is required. If this function is parameterized by structural/dynamical properties
of the fine-scale, it is possible to construct statistical summaries for the fine-scale.
Realizations of the fine-scale that are equally consistent with observations at both
scales can then be created.

We demonstrate inversion with a binary medium where the permeabilities of the
two materials, Kl (low) and Kh (high), are known. The difference in permeabilities
is parameterized as κ = log10(Kh/Kl). We assume that we have noisy measurements
of the coarse-scale effective log-permeability of the medium, k(obs), at a few locations;
they provide localized insights into the coarse-scale structure and are referred to as
static data. We also assume that we have noisy measurements of breakthrough times,
t
(obs)
b , of a tracer at the same locations, from a tracer test1; they capture the integrated

effect of fine-scale variations and are referred to as dynamic data. The proportion of
the high permeability phase F(x) is assumed to vary in space in an unknown but
smooth manner with a known covariance structure. F(x) is resolved on a relatively
coarse grid and describes the spatial variation at the domain-scale. We use the grid to
impose a separation of scales, and internal to a grid-box, the inclusions are modeled
using a correlated Gaussian field truncated at a threshold consistent with F(x). The
characteristic length of the Gaussian field, δ, is defined below (and is termed a subgrid
or fine-scale variable). We adopt the convention of referring to variations on the grid
as being “large” or “small”; we reserve “fine” or “subgrid” for variations that are
smaller than a grid-box. Together, F(x) and δ constitute a characterization of the

fine-scale binary medium and their estimation from data d = {k(obs), t
(obs)
b } constitutes

a statistical summary of the fine-scale. A model for generating fine scale structures

1We define a tracer test as follows: Water is transported through a porous medium by pumping
under a steady pressure gradient. Once a velocity field has been established in the porous medium,
a non-reactive tracer is injected; the advective travel time to arrive at various measurement points
is called the breakthrough time. The exact configuration for the test is described in Sec. 4
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given F(x) and δ, provides realizations of the latent, unresolved fine-scale consistent
with the observations.

The estimation of F(x) is posed as a Bayesian inverse problem, predicated on a
forward problem M(K) that predicts the breakthrough times tb at the observation
locations. Ke(x), the effective log-permeability field, is obtained from F(x) and δ via
a link function i.e. Ke(x) = L(F(x), δ, κ). Retention of δ in the inverse problem will
allow us to evaluate the information content in the observations regarding δ. To reduce
the dimensionality of the inversion, we develop a reduced-order model of F(x), based
on a Karhunen-Loève (KL) decomposition of a 2D field. This allows us to generate
F(x), and consequently Ke(x) = L(F(x), δ, κ), in a parametric manner by varying
δ and w = {wi}, i = 1 . . . M , where M is the number of Karhunen-Loève modes
retained in the reduced order model and wi are their weights. Associated predictions
of tb are obtained using M(K). The inverse problem is solved by sampling over
the (w, δ) space using an adaptive Markov Chain Monte Carlo (MCMC) technique
and constructed by using a joint posterior probability density distribution P (w, δ|d)
from the samples. The use of MCMC allows us to construct posterior distributions
of non-parametric shape, unlike other inversion techniques e.g., Kalman smoothers
and filters, which constrain P (w, δ|d) to be Gaussian. P (w, δ|d) is thereafter used in
posterior predictive checks, to construct fine-scale realizations of the binary medium,
gather statistics on Ke(x) and tb at the observation locations and gauge the quality
of the fit of the model to data.

This paper brings two new developments to the problem of estimating an upscaled
field variable e.g., permeability fields.

1. Incorporation of the effect of unresolved scales: Existing methods for estimating
multiscale fields (e.g., zonation; see review in Sec. 2.1) involve grid-refinement
under various guises – no attempt is made to incorporate structures unresolved
by the grid (i.e., subgrid). In contrast, we use a statistical model to capture
the effect of subgrid structures in our estimation procedure. The use of a model
that has a physical, but subgrid, lengthscale as one of its parameters makes the
formulation fundamentally multiscale.

2. The use of approximate expansions to reduce dimensionality in upscaling prob-
lems: While Gaussian process models have been used to regularize field variables
(as reviewed in Sec. 2.1), few have used Karhunen-Loève expansions to reduce
the dimensionality of a multiscale inverse problem. Further we use a Gaussian
processes to model a latent variable from which the object of inference, F(x),
and the observed field, Ke(x), are obtained via mappings. Thus, while the la-
tent field variable is constrained to be smooth (so that it can be modeled as
a Gaussian), this constraint is not necessarily extended to F(x) or Ke(x). In
our case, Ke(x) contains sharp changes. This is in contrast to existing studies
where the object of inference (which is also the observed field) is modeled as a
Gaussian and thus required to be a smooth function.
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Note that our use of a Karhunen-Loève expansion reduces the problem of esti-
mating a field F(x) to that of inferring the values of a few parameters which are
independent a priori. This has the convenient side-effect of allowing us to use adap-
tive, general-purpose (and efficient!) MCMC schemes (and software packages) in a
straightforward manner. In contrast, existing MCMC-based field-estimation meth-
ods (reviewed in Sec. 2.1) use specialized blocking schemes and need to retain spatial
correlations in their MCMC block proposals.

The paper is structured as follows. In Sec. 2 we review literature on the key ele-
ments of the research presented here. In Sec. 3 we describe the forward model M(K),
the link function L, and models used for reducing the dimensionality of the inverse
problem. In Sec. 4, we pose the inverse problem and test the inversion technique on
a problem with various types of data. In Sec. 5, we instantiate realizations of the
binary fine-scale from the inferences and test their predictive skill using transport
simulations i.e., breakthrough times. We draw our conclusions in Sec. 6.

2. Background

The estimation of field variables (permeabilities, hydraulic conductivities etc),
from limited data, per se, have long been topics of active research in many science
and engineering fields (see [8] and references therein); specifically for recent reviews
in hydrology see [1, 2]. In this section we restrict ourselves to reviewing existing
literature on the multiscale (or multilevel) inference of log-permeability modeled as
random fields, methods for generating random binary fields, upscaling and models for
binary media.

2.1. Estimation of random fields

The use of random fields to regularize a spatial variable has been explored within
the context of inferring log-permeability fields. Lee et al. [3] considered the esti-
mation of spatially dependent permeability by modeling it as a random field. They
estimated the permeability in each grid-block of the discretized field from dynamic
data obtained from an “inverted 9 spot test”. Two separate prior models were adopted
for the random field to regularize the problem – a Markov random field (MRF) model
with an unknown precision parameter (i.e., the precision parameter was also inferred
when estimating the permeability) and a model based on Gaussian processes (GP)
with a known variogram and mean permeability in the rectangular domain. Nei-
ther of the two models reduced the dimensionality of the problem i.e., the number
of parameters being estimated was equal to the size of the Cartesian mesh, which
ranged between 322 and 642. This work required specialized updating schemes to
improve mixing in the Metropolis-Hastings sampler used to construct the posterior
distribution of the permeability field. MRF priors were also used by Wang et al. [4]
when estimating the initial (spatial) distribution of a contaminant within a porous
medium. The contaminant was transported by groundwater flows and time-variant
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concentration measurements were available at a few locations. They employed a hi-
erarchical Bayesian formulation to estimate the concentration distribution as well as
the precision of the MRF model and the variance of the measurement error. As in [3],
no attempt was made to reduce the dimensionality of the inference problem. Fu and
Gómez-Hernández [5, 6] present a more recent example of the use of MCMC with
blocked-updating when inferring log-permeability fields. Unlike Lee et al. [3] where
a red-black decomposition of grid-blocks was used to update the log-permeability field
(modeled as a MRF) in the MCMC, they used a multiGaussian representation for the
object of inference and devised a specialized technique for constructing the proposal
within the MCMC. In particular, they divided the grid-blocks in the Cartesian mesh
into concentric “strips”, which were updated together as a block; the proposals for
the blocks were obtained by kriging.

The need for explicit regularization can be eliminated if one can represent the
field to be estimated using a low-dimensional model. If the object of inference can
be modeled as a multivariate Gaussian field, a truncated Karhunen-Loève expansion
can be used. In [7], Li et al. consider estimation of the log-conductivity distribution
of a reservoir from measurements of the steady-state hydraulic heads by preserving
400 terms in the Karhunen-Loève expansion. Application of Karhunen-Loève expan-
sion to provide a reduced-order model for a random field was also used by Marzouk
et al. in [9] to estimate a log-diffusivity field within the context of a 1D thermal trans-
port problem, with time-dependent temperature measurements at a few sensor points.
They found that the Karhunen-Loève expansion based on the prior covariance of the
log-diffusivity field was remarkably accurate for representing its posterior distribu-
tion, conditioned on the observations. In [10], Jafarpur and Mclaughlin compare the
use of a Karhunen-Loève transform versus the discrete cosine transform (DCT) and
find the latter to be more computationally efficient, if slightly less accurate. In [11]
they couple the reduced order DCT model to an ensemble Kalman filter to infer per-
meability fields as well as reservoir states via history matching. In [12], they use the
discrete cosine bases as a sparse representation for the log-permeability field and infer
their value as well as the sparsity pattern via history matching.

Multiscale/multilevel inversion techniques explicitly recognize the existence of
more than one scale and employ different types of data across scales. These techniques
generally involve solving the inverse problem at different levels of discretizations , (i.e.,
on a multilevel mesh), with conditioning relations (i.e., upscaling and downscaling
functions) to link scales together [13, 14]. Multiscale solutions primarily differ in the
complexity of the conditioning relations and whether the multiscale inference requires
iteration between scales. Other techniques run separate MCMC chains using coarse
and fine-scale models, with periodic swaps of parameters between them [15, 5], or
use a fast coarse-scale (or approximate model) as a preconditioner/filter for propos-
als (inside an MCMC chain), prior to computing the posterior with a finely-resolved
forward model [16, 17, 5]. These approaches exploit Christen and Fox’s [18] ap-
proach of using a computationally inexpensive approximation of a model (in this
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case, a low-resolution forward model) to efficiently explore a parameter space (al-
ternatively, MCMC proposals). Note that these methods require explicit definition
of coarse, fine and if necessary, intermediate scales. On the other hand, “zonation”
methods [19, 20, 21, 22] adopt a continuous-level-of-detail approach to inference and
in the process combine elements of dimensionality reduction and multiscale inference.

We borrow the approach adopted in [9, 16, 17] and use Karhunen-Loève expan-
sions to reduce the dimensionality of the inverse problem. We apply them here to
the spatially varying F(x) which is then input to the link function providing an effec-
tive permeability informed from both scales. Instead of using a multilevel inversion
technique, we assume that a sufficient contrast exists between the resolution at which
we perform the inference and the size of individual fine-scale/subgrid structures that
a complete description of the fine-scale is not very useful. However, we adopt the
practice, common in multiscale inversion, of enforcing scale separation using a grid.

2.2. Topological and upscaling models for random binary media

A key component of our inversion scheme is a link function that upscales subgrid
structures. Upscaling models can be categorized approximately into (a) models that
seek to estimate an effective permeability/conductivity of the media and (b) models
that seek to generate geometries/realizations of such media. We will not address
models for fractured media, since the fractures may sometimes be as long as the
domain.

2.2.1. Models for estimating permeability

There has been considerable work in estimating the effective permeability of a
random, porous binary medium. Effective medium theories (EMT) for binary as-
semblages [23, 24, 25, 26, 27, 28, 29, 30, 31, 32], seek to calculate a representative
permeability as a function of the permeabilities of the two components and their rela-
tive abundances. Reviews and comparisons to other methods can be found in [33, 34].
EMT-like approaches assume non-interaction between inclusions and work best when
the inclusion proportion is small [35, 33]. In contrast, Knudby et al. [34] have devel-
oped a model for estimating the effective permeability of a binary medium which does
consider the interaction of inclusions. It does so by using an average inter-inclusion
distance as a proxy for the average length of a flowpath through the low conductivity
component. However, Knudby et al.’s model, taken as-is, requires creation of a real-
ization of the binary medium so that the geometrical parameters (viz., the inclusion
size and the inter-inclusion distance) may be calculated.

2.2.2. Models for the geometry of random binary media

A very common means of generating representations of random media with mul-
tiple components is via indicator variables which choose between the components.
Indicator geostatistical techniques [36] do so via a variogram to define spatial vari-
ations [37, 38, 39] or via transition probabilities between indicator classes [40, 41].
Less common means of generating spatial binary media are object-based and Boolean
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models [42] and random media models based on pluriGaussian and truncated multi-
Gaussian fields [42, 43].

The development of excursion set theory, as applied to multiGaussian fields, has
mostly occurred in medical imaging and astrophysics [44, 45, 46]. In particular, given
a definition of a multiGaussian field (note, not a realization), it is possible to analyt-
ically calculate expected values of the total area, the number of distinct excursions
and the average excursion size above a given threshold [47, 48, 49]. These ideas have
also been employed in porous media flows - Phillips and Wilson [50] proposed mean
threshold crossing distances to estimate correlation lengths of permeability. In [51],
the authors of the current paper modeled a random binary medium as a truncated
multiGaussian field and used excursion set theory to estimate expected values for
inclusion size and number. These were the incorporated into an upscaling model de-
rived from Knudby et al. [34] (see Sec. 3.3). The model is analytical and sufficiently
efficient for use in an inference scheme based on MCMC sampling.

2.3. Adaptive Markov chain Monte Carlo techniques

Our inversion process is based on an adaptive MCMC techniques and although we
do not offer any algorithmic advancements, a brief background of MCMC techniques is
presented for completeness. In recent years, MCMC techniques have been increasingly
used to fit models to observations [52], since they allow estimation of parameters while
simultaneously quantifying the uncertainty in the estimate. Further, they place no
restrictions on the probability distributions of the estimated parameters. Metropolis-
Hastings (MH) samplers [52] are commonly used since they place no restrictions on
the kind of models, the type of likelihood expressions or the priors used in posing
the inverse problem. Blockwise updates, when a number of (or all) parameters are
updated at once are typically used when estimating field quantities [53, 54, 3, 52, 55,
5].

Adaptive Metropolis [56, 53] (AM) is a variation of the MH sampler which uses
a global adaptive strategy to perform online tuning of the current proposal to in-
crease mixing and acceptance rates. AM starts with a pre-specified proposal density
but periodically recalculates an empirical posterior covariance based on the samples
collected up to that point. The covariance asymptotically resembles that of the pos-
terior. The technique is neither Markovian nor reversible and in [53] the authors
identify the conditions under which AM will recover the desired stationary distribu-
tion. Delayed rejection [57, 58, 59] is a local MH variation that combines different
proposals. An MH sampler is started with a rather large proposal covariance. When
a proposal is rejected, the initial covariance is scaled down by a uniform factor, and
tried again rather than simply advancing in the sample path (hence delayed rejec-
tion, DR). DR has been shown to outperform MH [56]. Delayed Rejection Adaptive
Metropolis (DRAM), the MCMC technique used here, is an amalgamation of the AM
and DR [54]. DRAM is non-Markovian and provably ergodic, i.e., it yields asymp-
totically unbiased estimators [54].
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3. Models used in the inverse problem

In this section we describe the models used in our inverse problem. We first
describeM(K), a porous media transport model which serves as the forward problem
in the inversion. Subsequently, we discuss the Karhunen-Loève expansions of random
fields which are used to reduce the dimensionality of the inverse problem. Finally, we
review the link function L that summarizes the impact of subgrid structures.

3.1. The transport model M(K)

M(K) is a 2D Darcy-flow model for the transport of an inert tracer through a
saturated porous medium by an incompressible, single-phase fluid. Given a coarse-
scale log-permeability field K, appropriate initial and boundary conditions (including
a steady-state pressure gradient and a fluid source and sink inside D), the model
calculates a steady state velocity field and advects a tracer (treated as a passive
scalar) through it to obtain breakthrough times tb at a set of Ns “sensor” locations
inside D.

As shown in Fig. 1(a), we consider a 2D domain D with no-flow boundary con-
ditions imposed on ∂D. We consider a log-permeability field K defined on D. An
incompressible fluid, with viscosity µ is pumped in at the lower left corner and pumped
out at an equal rate at the upper right. In this problem, we will ignore the effect of
gravity. Therefore, via Darcy’s model for porous media flows, the velocity v is given
by

v =
K
µ
∇p, ∇ · v = ∇ · K

µ
∇p =

q

ρ
(1)

where p is the pressure field defined on D, q is the strength of the source/sink and ρ is
the density of the fluid. The equation is solved using the second-order finite-volume
scheme described in [60], on a uniform mesh. Two-point flux approximations are
used, and the permeability at the interface of adjacent grid-blocks are estimated by a
harmonic average. A solution of these equations, for an injection-production well pair
in a binary medium, is shown in Fig. 1(b). The light areas denote high-permeability
material and the dark regions are low-permeability. A few streamlines, flowing from
bottom left to top right, are plotted in Fig. 1(b). The local permeability is considered
isotropic, and the permeability K is modeled as a 2D field rather than a full tensor.
The proportion of high-permeability material F(x) and the true effective (upscaled)
log-permeability are shown in Fig. 1 (c) and (d). Note that the Ke(x) field shows a
rougher distribution and significantly more structure than F(x).

Solving (1) for p yields the velocity v at the centers of the grid-block edges i.e.,
the velocities are obtained on a staggered mesh. This is used to advect the passive
scalar, using the model in (2),

∂c

∂t
+ v · ∇c = qc (2)
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where c(x) is the concentration field of a tracer and qc, non-zero only at the lower left
and upper right corners of D, is the source and sink for the tracer. The concentration
of the tracer at the source, csource, is set to 1 and qc,source is set equal to the flux
of the fluid. The tracer flux at the sink, qc,sink, is obtained by multiplying the fluid
outflow with the local tracer concentration, csink(t), which increases in time until it
reaches the source value of 1.0. (2) was solved on the same Cartesian mesh as (1),
using an upwind second-order, finite-volume scheme [61]. Tracer concentrations were
monitored at two sets of sensor locations (set A with 20 sensors and B with 34) as
shown in Fig. 1(e) and (f); the time tb at which c = 0.5 was achieved at any given
sensor was denoted as its breakthrough time. Note that (2) does not model pore-scale
dispersion or molecular diffusion of the tracer.

3.2. Karhunen-Loève expansions of random fields

The inversion process targets permeability which lives in the space of the entire
computational domain. For production quality reservoir or groundwater studies this
introduces very high dimensional spaces which are computationally intractable to
solve with MCMC methods. An appropriate parameterization is therefore necessary
and although there are many to choose from, the KL expansion is the optimal since
it minimizes the mean squared error when used to represent a stochastic process.

Let R(x, ω) be a real-valued random field with zero mean, finite second moments
and covariance function that is continuous in D × D. ω ∈ Ω, where Ω is a sample
space and R(x, ω) can be considered to be a collection of real-valued random variables,
indexed by x ∈ D, D being a bounded spatial domain. Then, the Karhunen-Loève
expansion of R(x, ω) can be written as R(x, ω) =

∑∞
i=1 wi(ω)

√
λiφi(x). This equality

holds in the pointwise and mean-square sense; convergence is in L2(Ω) for all x ∈ D.
Further, if R(·) is Gaussian and almost surely continuous, then the convergence is uni-
form in D with probability 1 [62]. λi and φi(x) are the eigenvalues and eigenfunctions
of the covariance kernel C(x,y)∫

D
C(x1,x2)φi(x2)dx2 = λiφi(x1). (3)

Since R(·) is assumed Gaussian, the covariance kernel C(x,y) is symmetric and
positive semi-definite and so, by [63], C(x1,x2) =

∑∞
i=1 λiφi(x1)φi(x2) where φi(x) are

continuous functions and form an orthonormal system in L2(D). Also, wi ∼ N(0, 1)
and independent of each other.

In order to reduce the dimensionality of our inverse problem, we will model fields
with a truncated Karhunen-Loève series. In such a case, the approximate field RM(·)
and its covariance function can be represented as

RM(x, ω) =
M∑
i=1

wi(ω)
√

λiφi(x), CM(x1,x2) =
M∑
i=1

λiφi(x1)φi(x2)
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The total variance or “energy” of RM(·) is given by∫
D

E(RM(x, ω)2)dx =

∫
D

CM(x,x)dx =
M∑
i=1

λ2
i (4)

3.3. The link function L
Analogous to the motivation for a KL parameterization of permeability, the MCMC

based inversion process cannot afford to process any dynamics at the fine scale. To
this end, our coarse scale inversion is endowed with a link function (L(F(x), δ, κ))
that estimates the effect of unresolved inclusions on the log-permeability of a grid-
block. Note that (F(x), δ) is an incomplete specification of the fine-scale structures
that may reside within a grid-block and consequently an infinite number of realiza-
tions (i.e., an ensemble) of the fine-scale may be conditioned to it. The link function
L, being deterministic, maps the entire ensemble of binary field realizations to the
same effective permeability Ke, and in doing so incurs an upscaling error. The precise
upscaling procedure, called truncated Gaussian–distance based upscaling (TG–DBU)
is described in detail in [51].

TG–DBU starts with a model of the binary medium inside a grid-block. The
medium is modeled as a standard-normal, multiGaussian random field. The multi-
Gaussian field, in turn, is created by convolution of an uncorrelated white-noise field
with a Gaussian kernel. The size of the kernel is defined by its full-width at half
maximum (FWHM) value, which also defines the correlation length of the resulting
random field: δ = σ

√
8 ln 2. We truncate the correlated multiGaussian field at a

threshold w, to create a set of discrete, irregularly-shaped plateaus. We use the con-
vention that values lesser than (or equal to) w define the high permeability regions and
values greater than w are the low permeability regions. Knudby et al. [34] provide
a model for the effective permeability of the binary field as a function of (1) the frac-
tion of high-permeability material F, (2) an area weighted average distance between
high permeability regions along the direction of flow (called Dnorm), and (3), the log-
permeabilities of the two components of the binary medium, Kl and Kh. Dnorm can be
calculated from a fully-resolved realization of the binary medium; however, this can
become expensive if the binary medium, and operations on it, are to be performed
on a fine mesh. Instead, we use the model developed by McKenna et al. [51] that
combines point process theory, the Euler characteristic and expectation properties of
excursion sets of truncated Gaussian fields to estimate Dnorm. The complete random
binary field is never instantiated. The estimates of Dnorm so developed are used in
the upscaling expressions in [34] to calculate effective log-permeability at the coarse
scale, Ke. The upscaling expressions are functions of F(x), δ and κ in a grid-block.
Additional details on this link function can be found in [51].

Note that the log-permeability Ke = L(F, δ, κ) provided by TG–DBU is a point
approximation of the distribution of log-permeabilities consistent with F, δ and κ.
In Fig. 2 (left), we plot the effective log-permeabilities for Kl = 1,Kh = 100 and δ
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of 37.7 grid-cells (in a domain of 500× 500 grid-cells) as predicted by our model, L.
We also plot the numerically evaluated log-permeabilities corresponding to 30 binary
field realizations having the same {F, δ} with points, forming a cloud around Ke(x) =
L(F, δ, κ). Note that the model predicts Ke(x) for all F, but slightly underestimates
it. In Fig. 2 (right) we show the variation of Ke as a function of δ/∆, where ∆ is the
grid-block size. The assumptions underlying L dictate that δ/∆ � 1. The break in
the log-permeability predictions L(F, δ, κ) at F ≈ 0.5 is due to application of the phase
interchange theorem [64] as part of L that provides consistent upscaling of inclusions
of either material within the other. Additionally, this break also accounts for non-
linear percolation effects i.e., the high permeability phase exists in a connected region
large enough to span the domain, see [51]. Further, the high-permeability inclusions
increase the effective permeability far more (when F < 0.5) when they are finely
dispersed (smaller δ and consequently Dnorm), compared to their effect when they
exist as large, but isolated, entities.

The scaling function, L, used here is unique among binary media scaling functions
in that it incorporates F, δ and κ into estimates Ke. However, the impact of δ on
the resulting Ke values is enhanced in the areas with F near 0.50, where the effective
permeability can display a discontinuous change. This is because when the high- and
low-permeability phases are in approximately equal proportions, a slight change in δ
can establish long, high-permeability channels inside a grid-block, drastically changing
its effective permeability (i.e., the high permeability phase reaches the percolation
threshold). This change can be very significant if the inclusions exist as large, but
barely disconnected, entities. This sensitivity quickly degrades as F moves away from
0.5. Practically, ∆ denotes the grid-box size of the mesh that we will use in this work
to discretize a domain, and thus L acts as a subgrid model for the structures that the
grid will not resolve.

In the rest of the paper, we will use Ke(x) as a deterministic approximation
for the log-permeabilities and model the discrepancy between observations of log-
permeability and model predictions as simple i.i.d. Gaussians (homoscedastic errors).
While the choice of the error model (Gaussian versus a more involved one) does not
detract from the general characteristics of an inference procedure, it does impact the
accuracy of the estimates/inferences.
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Figure 1: (a) The 2D rectangular domain D with associated dimensions. No-flow
boundary conditions are defined on ∂D. A grid-block showing the collocation for
pressure p and the velocities (u, v) in the x- and y-directions is shown. (b) We show
a schematic of a binary medium higher permeability (white) and lower permeability
(gray). Individual inclusions of either material in the other are visible. (c) The true
Ft

c(x) field for the proportion of inclusions. (d) The true upscaled log-permeability
field Kt

c. (e) The 30 × 20 coarse-scale computational mesh with the locations of 20
sensors (sensor-set A, SSA). (f) We show the locations of the 34 sensors in sensor-set
B (SSB).
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Figure 2: Left: Plot of Ke calculated using the link function L, (labeled: TG-DBU)
compared to Ke calculated numerically from 30 random binary fields as a function
of F. These results were calculated for a square domain with length, ∆ = 500 units
and δ is 37.7 (δ/∆ = 0.075). Right: Variation of Ke as a function of δ/∆.
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4. Multiscale inference

In this section, we pose and solve an inverse problem using the models described
in Sec. 3. Specifically, we explore the ability of the observations to constrain the
inference of structures at two spatial scales, the relative contributions of the static
and dynamic data and the effect of increasing the number of observations. We also
demonstrate sampling of the posterior distribution to generate fine-scale realizations
which are consistent with the observations.

4.1. Posing the inverse problem

Consider that the domain D is 2D, rectangular, of size Lx × Ly, and discretized
by a Cartesian mesh of resolution Nx ×Ny. Consider a spatially variable field ζ(x),
−∞ < ζ(x) < ∞ defined on D. We model ζ(x) as a random field using a Gaussian
Process, i.e., the discrete form of ζ(x), the vector ζ, is a random variable with
multivariate Gaussian distribution and a known covariance matrix Γ. We further
specify that the inclusion proportion F(x) is an analytical function of ζ(x). F(x)
governs the predicted effective log-permeability Ke(x) and breakthrough time tb via
models L(F(x), δ) and M(K). These relationships are summarized in (5)

ζ ∼ N(0,Γ),

Γij = C(xi,xj) = a exp(−|xi − xj|2/b2),

F(x) =
1

2

(
1 + erf

(
ζ(x)√

2

))
,

Ke(x) = L(F(x), δ, κ),

tb = M(Ke(x)) (5)

where Γij, an element of the covariance matrix Γ, denotes the correlation between
grid-blocks i and j in the mesh. The scale a and range b of the covariance kernel are
assumed known. Note that the analytical transformation ζ 7→ F(x) is required to map
F ∈ [0, 1] to ζ ∈ [−∞,∞], so that a Gaussian model may be used. The inference does
not depend on the particular transformation in (5); any transformation that allows
the use of Gaussian fields (and consequently, a Karhunen-Loève decomposition) may
be used.

Given a set of noisy data d = {k(obs), t
(obs)
b } at a set of Ns “sensor” points, we

wish to infer the posterior distribution P (F(x), δ|d). Using Bayes’ formula, this can
be written as

P (F(x), δ|d)︸ ︷︷ ︸
Posterior

∝ P (d|F(x), δ)︸ ︷︷ ︸
Likelihood

π(F(x), δ)︸ ︷︷ ︸
Prior

(6)

where π(·) denotes our prior belief regarding the distribution of a variable. We model
the discrepancy between the data d and model predictions as Gaussian residuals, i.e.,

k(obs) −Ke(x) = k(obs) − L(F(x), δ, κ) = ek ∼ N(µk,Γk),

15



t
(obs)
b − tb = t

(obs)
b −M(Ke(x)) = et ∼ N(µt,Γt), (7)

where µk, µt are the means of the discrepancy between observed and model (i.e.,
predicted) log-permeabilities and breakthrough times and Γk,Γt the corresponding
error covariances respectively. Under these error-modeling assumptions, (6) reduces
to

P (F(x), δ|d) ∝ P (d|F(x), δ)π(F(x), δ)

∝ exp
(
−[ek − µk]

TΓ−1
k [ek − µk]

)
exp

(
−[et − µt]

TΓ−1
t [et − µt]

)
π(F(x), δ), (8)

We assume that the discrepancies ek and et are independent and model them as i.i.d.
Gaussians with constant standard deviations i.e.,

Γk = σ2
kI; Γt = σ2

t I.

where I is the identity matrix. This is equivalent to stating that there are no sys-
tematic discrepancies between observations and model predictions as a function of
F(x), δ and κ. Given the relationship between Ke(x),F(x) and ζ (5), and the mod-
eling assumptions regarding errors, (8) can be compactly written in terms of ζ as

P (ζ, δ|d) ∝ P (d|ζ, δ)π(ζ)π(δ)

∝ exp

(
− [ek(ζ, δ)− µk]

T [ek(ζ, δ)− µk]

σ2
k

)
exp

(
− [et(ζ, δ)− µt]

T [et(ζ, δ)− µt]

σ2
t

)
π(ζ)π(δ). (9)

Here, we have also assumed that the prior distributions of δ and ζ are independent.
Solving the inverse problem in (9) would require us to infer each of the elements

of ζ (though constrained by Γ); the dimensionality of the inverse problem is Nx ×
Ny, which can be extremely large depending on the mesh. In order to reduce the
dimensionality of the inverse problem, we appeal to the discussion in Sec. 3.2 and
construct a low-dimensional model of ζ(x) using a Karhunen-Loève expansion.

ζM =
M∑
i

wi

√
λiφi, with wi ∼ N(0, 1), (10)

where λi are the eigenvalues of the covariance matrix Γ, φi the corresponding eigen-
vectors, and wi the weights which are modeled as i.i.d standard normals due to the
Gaussian Process model for ζ. In this expansion, we retain the M -largest eigenmodes.
Note that by (4), the variance of the approximate field is less than the original one,
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and inferences will tend to be smoother than the true field. The link between the
Karhunen-Loève weights w and tb can be succinctly written as

w
KL modes−→ ζ

(5)
−→ F(x)

L, δ, κ−→ Ke(x)
M(K)
−→ tb (11)

Replacing ζ in (9) with its Karhunen-Loève expansion (10), we get

P (w, δ|d) ∝ exp

(
− [ek(w, δ)− µk]

T [ek(w, δ)− µk]

σ2
k

− [et(w, δ)− µt]
T [et(w, δ)− µt]

σ2
t

)
π(δ)

M∏
l=1

exp(−w2
l ). (12)

Here, the prior on w, π(w), has been expressed in terms of its independent elements,
wi, whose priors are standard normals. The objects of inference are the M elements
of w and δ. Note that the dimensionality of the inverse problem is no longer directly
dependent on the mesh used for the inversion.

We will assume that the porosity of the binary medium is a constant in space and
time, and is known. The basis for this assumption is the observation that variations
in K for most porous media are much larger than variations in porosity.

4.2. Solving the inverse problem

In this section, we solve (12) to develop a multi-dimensional posterior distribu-
tion from which we develop realizations of both the fine- and coarse-scale fields that
are consistent with the data. We first describe how we develop the “ground-truth”
binary field (fine-scale), followed by the generation of the synthetic data that serve
as observations, the development of the posterior distribution P (w, δ|d) and finally,
by an analysis of the inversion methodology.

4.2.1. Development of the “ground-truth” fine-scale binary field

The domain D is dimensioned as Lx = 1.5, Ly = 1.0. The covariance of the ζ
field is initialized with a = 1.0, b = 0.1(L2

x + L2
y)

1/2 (see (5)). ζ is modeled as a
multiGaussian field and a realization is obtained on a coarse 30 × 20 mesh of grid-
blocks on D. The “true” high-permeability proportions on the coarse mesh, Ft

c(x),
are calculated using the transformation in (5). Each grid-block is thereafter further
refined into 100 × 100 grid-cells, leading to a 3000 × 2000 grid-cell discretization of
D. The domain has a unit height. While there is a two-order-of-magnitude change
between the fine and coarse scales, we keep the multiscale approach here completely
general by purposefully omitting any assignment of an absolute scale to the description
of the ground truth.

We generate a random binary field on the 3000 × 2000 mesh per the procedure
in Sec. 3.3 and [51]. We initialize the mesh with white noise and convolve it with a
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Gaussian kernel with σ = 5.0 (δ = 11.774) grid-cells. F(x), the proportion of high-
permeability material in each grid-block is used to calculate the threshold w. The
w−level excursion set creates the random inclusions in each grid-block. Repeated over
all coarse-scale grid-blocks, we obtain the fine-scale binary medium on a 3000× 2000
grid. The high and low permeability materials are assigned permeabilities of Kh =
100 and Kl = 1 (κ= 2).

4.2.2. Generation of synthetic data

The synthetic data consist of measurements k(obs) of effective log-permeability of
the coarse grid-blocks containing the sensors. Data for two sets of sensors, SSA and
SSB (see sensor locations in Figure. 1, e and f), are available. The permeabilities
are calculated by solving a permeameter boundary condition problem using the true
fine-scale permeabilities for each of the coarse grid-blocks. For each grid-block, a
time-independent pressure difference is imposed in one direction, and zero-outflow in
the perpendicular one to calculate a flow-rate. The resulting flux is used to calcu-
late the effective grid-block permeability in that direction. The directions of pressure
difference and zero-outflow are then exchanged to obtain the permeability in the
perpendicular direction. The two permeabilities so calculated are similar and the
geometric mean of the permeabilities is taken as the “upscaled” permeability of the
binary medium in that grid-block. Flow simulations for each of the grid-blocks in
the 30 × 20 mesh are performed with MODFLOW-2005 [65]. We refer to the re-
sulting log-permeability field as the true, upscaled log-permeability field, Kt

c. Those
values that correspond to the sensor grid-blocks in the SSA and SSB sets form the
static data, k(obs). Gaussian observation errors (∼ N(0, {0.1}2), i.i.d.) are added to
them. Note that while we have used permeameter boundary conditions to calculate
synthetic observations of effective permeability at sensor grid-blocks, there are other
ways of estimating effective permeability around a well (e.g., various well testing and
interpretation methods). Further, each of these methods of estimating a “point-wise”
permeability has its own associated measurement error. This is an involved topic and
beyond the scope of this paper.

The original random binary field, on the 3000× 2000 mesh, is then subjected to a
tracer transport simulation, as described in Sec. 3.1. MODPATH [66] is a Lagrangian
particle tracking method operating on flux fields calculated in MODFLOW and is used
here to simulate transport through the binary porous medium. A fluid is injected via
a cross pattern of five wells within the single coarse-scale grid-block in the lower-left
corner and extracted via a similar configuration of pumping wells on the top-right
coarse grid-block to create a steady-state flow field. To calculate the breakthrough
times, we reverse the steady-state velocity field. Then, for each coarse-scale sensor
grid-block, we release 121 particles from a uniformly spaced 11 × 11 configuration
of locations and advect those particles back to the injection wells using the reversed
velocity field. The time it takes for half the particles (median of the distribution)
released in a particular grid-block to reach the lower-left (injection) grid-block is taken
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as the breakthrough time. Repeated for each of the sensor grid-blocks, we obtain the
dynamic data t

(obs)
b . Gaussian observation errors (∼ N(0, {0.001}2), i.i.d.) are added

to them after non-dimensionalization (non dimensional time = (raw time)*(injection
rate)/(domain pore volume)). Thus the breakthrough times contain the effect of the
fully resolved binary medium on the advective transport dynamics.

4.2.3. The error model

The error model in the inference accounts for both the measurement error and
the model error. The error model for k(obs) was obtained using offline runs. We
sampled sets of {F, δ} and developed a number of fine-scale realizations for each. We
calculated their effective log-permeability using the method described above (using
MODFLOW) for grid-blocks. A measurement error (same as mentioned in Sec. 4.2.2)
was also added. The effective log-permeability of the realizations was also estimated
using our upscaling model (Ke(F, δ)). The discrepancy between the MODFLOW-
upscaled effective log-permeability, and our upscaling model Ke(F, δ) was represented
as a Gaussian distribution with mean µk = 0.033 and standard deviation σk = 0.131.
The standard deviation for the breakthrough time, σt, is set to 5% of the maximum
non-dimensional breakthrough time observed in the SSA set of sensors. These values
are used in (9) and (12).

4.2.4. The prior model

Below, we summarize the prior beliefs employed in performing the inversion.

• We assume that the prior covariance for ζ is close to the posterior i.e., we can
use the Karhunen-Loève modes computed from the prior covariance to estimate
the posterior ζ distribution. The prior on the Karhunen-Loève weights is wi ∼
N(0, 1).

• We sample from (12) using the log form of δ, i.e. ln(δ). We model its prior
using a truncated Gaussian

ln (δ) ∼ N(ln (10), 22) if 1 < δ < 100.

Outside these limits, the prior is set to zero, thus loosely modeling the inclusions
to be larger than a fine-scale grid-cell, but smaller than a (coarse) grid-block.

• 30 terms were retained in the Karhunen-Loève expansion of the spatial field
i.e., M = 30 in (10). We computed the energy captured by 30 Karhunen-Loève
modes using (4) and compared it with that captured by 300 modes. The 30
modes account for 95.5% of the energy.

4.2.5. Generation of the posterior distribution P (w, δ|d)

The inverse problem was solved by taking between one and five million samples
from the posterior distribution (12). An adaptive Markov chain Monte Carlo sampler,
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called the Delayed Rejection Adaptive Metropolis (DRAM, [54]) was used for this
purpose. The chain was checked for mixing and burn-in using the metric in [67] (as
implemented in the mcgibbsit package [68] in R [69]) by monitoring the 5th and
95th percentiles as well as the median. 10,000 samples were retained by thinning the
chain and this sample set is used for developing posterior distributions of the objects
of inference. We checked the impact of thinning by computing the percentiles with
a chain thinned to 100,000 samples (instead of 10,000); no significant change was
observed.

In Fig. 3 we plot the probability density functions (PDF) for w1, w15, w30 and
ln (δ), by marginalizing over the thinned samples. The three weights, w1, w15, w30,
correspond to Karhunen-Loève modes which are representative of large, medium and
small-scale (but resolved) structures. Their joint PDFs are also plotted. We see that
the posterior distribution for w1, w15, and w30 are roughly Gaussian, though that
does not hold true for ln(δ) (which is a truncated Gaussian). The median value of
δ is found to be 5.16 grid-cells (compared to the true value of 11.774) with a 90%
credibility interval of (1.25– 18.25) grid-cells. The interquartile range is (2.55–10.08)
grid-cells. Thus δ is clearly underestimated and there is significant uncertainty in its
estimate. The approximately Gaussian (posterior) distributions for w15 and w30 are
centered around 1, unlike the priors which are standard normals (centered at 0.0).
The scatter plots show that the samples of these four parameters are not correlated
with each other; the correlations between the (posterior of the) weights of adjacent
Karhunen-Loève modes weaken very quickly and are insignificant for modes which
are at least 5 modes apart.

4.3. Results and discussion

In this section, we analyze the solution of the inverse problem. We first perform
the inversion using both the static and dynamic data, and then repeat using the static
and dynamic data individually. These steps are done to explore the contribution of
each type of data to the inference.

4.3.1. Assessment of F(x) and Ke(x) inferences

We use the samples from P (w, δ|d) (12) to generate realizations of Fi(x) and
Ke,i, i = 1 . . . 10, 000. The first 500 samples are discarded as “burn-in”. In Fig. 4,

in the top row, we plot their expected values F = E[F(x)] and Ke(x) = E[Ke(x)]
in color while the “true” values (as plotted in Fig. 1, middle row) are plotted as
dotted contours. For F, we see that the shade plot and the contours are similar with
respect to large scale structures, though there are differences at smaller scales. On the
other hand, the Ke(x) plot at the top right shows significant differences between the
shade and contour plots. This arises mostly because of the sharp gradients in Ke(x)
and the approximations inherent in the L(F(x), δ) model for the log-permeability.
In the middle row of Fig. 4, we plot the grid-block-wise standard deviation of the
9,500 samples of Fi(x) and Ke,i, along with the locations of the sensors in SSA.
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Figure 3: Plot of the joint and marginal probability densities of w1, w15, w30 and ln (δ)
from the posterior distribution. The joint distributions show very little correlations
between the Karhunen-Loève modes at the large, medium and small scales, as well
as their correlations with δ. Also, PDFs of the individual parameters are roughly
Gaussian, with the exception of δ.

Standard deviations (the uncertainty in the inferences) reach minimum values at the
measurement points and increase in the poorly instrumented regions. The regions
with the largest uncertainties are concentrated in regions of high gradients. The
bottom row shows the difference between the true and average values i.e. εF =
Ft

c(x) − F and εK = Kt
c −Ke(x). Regions of low errors are generally at the sensor

locations. In the plot for εK , the largest errors correspond strongly with the “wall”
of high gradients in Ke(x) near x = 25. The error approaches 50% in this region.

We repeat the experiment above using only the static data k(obs) and plot the
F = E[F(x))] and Ke(x) = E[Ke(x)] in Fig. 5, top row. Again, 9,500 samples are used.
Comparing the shade plot with the true field (plotted as contours), we see that the
inversion captures the large structures but not the smaller details. Their equivalents,
obtained from inversions that used only the dynamic data t

(obs)
b are plotted in Fig. 5,
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bottom row; they bear little resemblance to the true field. We omit the standard
deviations, εF and εK for both the cases, but they may be found in [70]. The standard
deviation for the static-data-only inversion shows much the same behavior as in Fig. 4,
i.e., they are minimum at sensor points.

4.3.2. Assessment of {w, δ} inferences

The marginalized PDFs for w1, w15, w30 and ln (δ) for all three combinations of
conditioning data are shown in Fig. 6. We also plot the prior distributions (using
symbols) for comparison. The top left figure shows that the observations are most in-
formative about w1 (i.e., the difference between the prior and posterior is the largest),
the Karhunen-Loève mode corresponding to the largest structures. The grid spacing
of the sensors in SSA is smaller than the length-scale of the first Karhunen-Loève
mode and provides dense sampling of it. Consequently, the distribution of w1 ob-
tained using just the static data is almost identical to that obtained from using both
static and dynamic data. Relative to the static data, the dynamic data contributes
very little to the inference of the lower (larger scale) Karhunen-Loève modes - the
posterior for w1 in Fig 6 (top left) is barely different from the prior. For intermediate
Karhunen-Loève modes e.g., w15, (top right in Fig. 6) both the static and dynamic
data contribute to the inference, though the contribution of the static data is larger;
the posterior developed from static data alone is quite close that developed using
{k(obs), t

(obs)
b }. At the small scales i.e., w30 (Fig. 6, bottom left), the dynamic data

contributes little - the posterior distributions obtained from the k(obs)-only and t
(obs)
b -

only inversions are almost the same as the prior, whereas the inversion conditioned
jointly on (k(obs), t

(obs)
b ) is somewhat informative. Thus, dynamic data is informative,

only after the larger/coarser scales have been accounted for by the static data; by

itself, t
(obs)
b does not have the information content to resolve both scales. Transport

occurs preferentially through high permeability regions, which can be affected by
the smallest scales; since breakthrough times are the integrated effect of the travel
times of the tracer, one may naively expect that the effect of small scale variations
are easily captured there. However, breakthrough times are also affected by the
larger Karhunen-Loève modes and deconvolving the impact of the smaller and larger
lengthscales cannot be done without k(obs), which uniquely capture the coarse-scale
structures. The inference using SSA sensors develops the distribution for δ almost
entirely based on k(obs); adding t

(obs)
b modifies the distribution only modestly. Inver-

sions using just {t(obs)
b } results in a posterior distribution for δ indistinguishable from

the prior. Also, as discussed in Sec. 4.2.5, δ is underestimated.

4.3.3. Impact of the number of sensors

In Fig. 7 we compare the marginalized posteriors for w1, w15, w30 and ln (δ) as
obtained with sensor-sets SSA and SSB. Both static and dynamic data were used in
the estimation. The second set, which has more than half as many sensors, results
in a PDF for w1 which is sharper than that obtained with SSA, while the PDF for
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ln (δ) is almost unchanged and not very different from the prior. Also, the PDFs for
w15 and w30 change significantly when recomputed using SSB, indicating that the
information content of t

(obs)
b with respect to finer scale structures collected by SSA

and SSB could be different; the marginals developed using the SSB sensor set are
steeper.

In order to analyze the model fits arising from SSA and SSB measurements, we
conduct a posterior predictive check using t

(obs)
b . Note that since inferences were drawn

using both k(obs) and t
(obs)
b , good fits with k(obs) may compensate for bad fits with t

(obs)
b .

In Fig. 8, we plot the results of posterior predictive check performed using inferences
drawn from both SSA and SSB. We use the realizations Fi(x), i = 500 . . . 10, 000,
to generate the corresponding coarse-scale Ke,i = L(Fi(x), δi, κ); thereafter tb,i =
M(Ke,i) at the SSA- and SSB-sets of sensors. We plot the median, the 1st and the
99th percentile of the breakthrough times. The spread of the replicates of tb obtained
with SSB (right figure) is generally smaller than those obtained with SSA, indicating
a reduction in predictive uncertainty.

We next evaluate the predictive ensemble of breakthrough times (plotted for SSA
and SSB in Fig. 8) quantitatively using the continuous rank probability score (CRPS),
the mean absolute error (MAE) and the interval score (IS) [71, 72]. These metrics
are defined for each sensor / observation; we report metrics averaged over all sensors
(in SSA or SSB). 950 samples from the predictive ensemble (rather than the full
9500 ensemble members) were used for the purpose; the sensitivity of the metrics to
the number of samples was checked by repeating the calculations with double and
half the number of samples. The interquartile range was used for calculating the IS.
In Table 1, we tabulate the CRPS, MAE and IS for the two predictive ensembles in
Fig. 8. Results indicate that predictions at the SSB sensors are slightly more accurate
(i.e., similar to observations) and produce a more predictive ensemble, Fig. 8 (right).

Ensemble CRPS MAE IS
SSA 0.038 0.052 0.167
SSB 0.040 0.051 0.160

Table 1: CRPS, MAE, and IS for the predictive ensembles of breakthrough times
developed from the SSA and SSB sensor sets (see Fig. 8). CRPS, MAE and IS have
units of breakthrough times i.e., they are non-dimensional. The metrics show that the
inversion performed using the SSB sensors leads to a slightly more predictive model.

Finally, we address the question of whether the change in the posterior density of
w15 and w30 in Fig. 6, when the inference is conducted using {k(obs), t

(obs)
b } (vis-à-vis

the estimation using just {k(obs)}), is due to the larger number of observations that

are used in the former or due to the different types of information in k(obs) and t
(obs)
b .

In Fig. 9, we plot the posterior densities of w15 and w30 as obtained using the SSA
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and SSB sets of sensors, computed using just {k(obs)} observations (i.e., static-data

only) as well as conditioned jointly on {k(obs), t
(obs)
b } (i.e., static and dynamic data).

If the difference in the estimation of w15 using {k(obs), t
(obs)
b } versus {k(obs)} (both

obtained from SSA sensors) had been due to the number of observations ({k(obs), t
(obs)
b }

has 20 observations of each type), then the posterior distribution computed using
just the static data obtained from the SSB sensor set (34 observations) should be

similar to that computed from the 40 {k(obs), t
(obs)
b } observations from the SSA set

(20 observations each of{k(obs)} and {t(obs)
b }). However, Fig. 9 (left) shows quite the

opposite trend, as the posterior computed from just the static data from the SSB
sensors set moves away from that computed using {k(obs), t

(obs)
b } from the SSA sensor

set. Further, since the larger number of observations in SSB resolve w15 better (vis-à-
vis SSA), the static-data only estimate of w15 is quite close to the posterior obtained

from using both {k(obs), t
(obs)
b } from the SSB sensors. Thus, the difference in the

posterior distributions is not due to the extra observations in {k(obs), t
(obs)
b }; rather it

is due to the different types of information in {k(obs)} and {t(obs)
b }. In Fig. 9 (right),

we see that the posterior densities of w30 obtained from the SSA and SSB sensors
using just the static data are rather similar to each other and to the prior. This is
because neither of the two sensor sets are dense enough to resolve w30. However, when
t
(obs)
b are used in the inference, the posterior densities differ from those obtained using

just the static data, particularly for the SSB sensors. Furthermore, we do not see a
trend; had the posterior distribution of w30 been solely dependent on the number
of observations, the static-only estimate from SSB should have occupied a position
between the static-only estimate of w30 drawn from SSA sensor set and the SSA
estimate conditioned on {k(obs), t

(obs)
b }. Clearly, this is not the case in Fig. 9 (right).

4.4. Summary

To summarize, we have developed an inference scheme, predicated on a multiscale
link function, to infer coarse-scale features and summaries of fine-scale structures of a
random binary field from a combination of static and dynamic observations. We can
estimate a spatially variable proportion F(x) of the high-permeability material from
observations that are obtained on the coarse-scale but are nevertheless informative
about the fine-scale. The size of the inclusions, δ, is under-estimated and there is
significant uncertainty in the estimate. This arises from the behavior of the link
function L. As seen in Fig. 2 (left), the link function generally underestimates the
effective permeability; further, as seen in Fig. 2 (right), smaller δ lead to larger Ke

when F < 0.5. Thus when L is used to fit to data, it compensates for its tendency
to underestimate effective permeability by indicating a smaller δ. Further, Ke is
sensitive to δ approximately in the region 0.3 ≤ F ≤ 0.7 for small δ/∆; thus, since
only a few grid-blocks lie in this sensitive range, δ can only be estimated with large
uncertainty. Computational experiments with fields where F(x) restricted around
0.5 e.g., 0.4 < F(x) < 0.6, have shown that δ can be inferred quite accurately [73].
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We see that the static data can inform on the large-scale features mainly because
the distribution of sensors is sufficient to resolve such structures. The dynamic data,
which is an integrated measure of the effect of small variations in the permeability
field is key to estimating smaller (but nevertheless resolved) structures. Increasing
the number of sensors leads to estimates with lower uncertainties.

We have also explored how the static (k(obs)) and dynamic (t
(obs)
b ) data contribute

to the estimation of {w, ln(δ)}. By itself, t
(obs)
b is not sufficiently informative to

estimate both the large-scale structures and the smaller details. However, if the
large-scale structures are constrained/estimated using k(obs), the smaller details can

be inferred from t
(obs)
b . Thus joint inversions on {k(obs), t

(obs)
b } result in more accurate

estimations of {w, ln(δ)} not only because of the larger number of observations in-
volved, but rather because of the type of information. Since k(obs) is informative about
the larger length scales in the domain while t

(obs)
b is impacted most by the smaller

scales that contort the flowpaths in the porous medium, joint inversion conditions the
estimates to multiscale data.

In the next section (Sec. 5), we explore the robustness of the inference. Since
the aim of reconstructing a permeability field is generally to use it to predict trans-
port phenomena, we will subject the reconstructions conditioned on multiscale data
(as well as those obtained individually from static and dynamic data) to posterior
predictive tests involving transport on ensembles of fine-scale binary fields.
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Figure 4: Results from the inference, computed using 9500 samples from the posterior
distribution. In the top row, we plot the means F = E[F(x)] and Ke(x) = E[Ke(x)];
they bear a strong resemblance to the true values in Fig. 1 (middle row) and also
plotted as overlaid contours. In the middle row, we plot the pointwise standard
deviation of Fi(x) and Ke,i; they are smallest at the sensor locations. In the bottom

row, we plot the errors εF = Ft
c(x)−F and εK = Kt

c−Ke(x), which show large values
in regions of high gradients.
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Figure 5: Top: Results (the means F and Ke(x)) from an inversion using only static
data. The true values are plotted as contours. Bottom: Their counterparts, calculated
using only dynamic data. Computations were done using 9,500 samples as in Fig. 4.
We see that the static-data-only inversion in the top row are slightly worse than the
results in Fig. 4; they miss the finer details and are overly smooth. The inversions in
the bottom row bear little resemblance to the true Ft

c(x) and Kt
c plotted as contours.
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Figure 6: Marginalized PDFs of w1, w15, w30 and ln(δ) as inferred from k(obs)-only

(dotted lines), t
(obs)
b -only (dashed lines) and jointly from (k(obs), t

(obs)
b ) (solid lines).

The priors are plotted with ∇ for comparison. Note that the prior and posterior
densities for ln(δ), plotted in the bottom right figure are truncated at ln(δ) = 0, 4.6
but the kernel density estimates used to create plots smooth them near the truncation
limits.
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Figure 7: Prior and marginalized posterior values of the Karhunen-Loève mode
weights w1, w15, w30 and ln (δ) as computed using the sensor-sets SSA (solid line)
and SSB (dashed line). We see that the posteriors for w1 are similar, indicating that
the higher sensor density of SSB collects little extra information on them. However,
the PDFs for w15 and w30 are quite different, indicating that the uncertainty in their
values may have been underestimated in both cases. The posterior density for ln(δ)
(bottom right) obtained from either set of sensors is not very different from the priors.
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Figure 8: Results from the posterior predictive check for breakthrough times con-
ducted by generating coarse-scale Ke,i and usingM(K) to generate the breakthrough
times. The filled, inverted triangles are the observations at the sensors. The median
breakthrough times from the posterior predictive checks are plotted with open sym-
bols and the error bars denote the 1st and 99th percentiles of the breakthrough time
distribution. Results for SSA observations (Left) and SSB observations (Right).
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Figure 9: Posterior densities of w15 and w30 obtained using just the static observations
k(obs) (dashed lines) as well as static and dynamic data {k(obs), t

(obs)
b } (solid lines). The

priors are plotted with dots. Estimates drawn from SSA sensors are in black; their
SSB counterparts are in red. Left: The w15 density drawn solely from SSB k(obs)

(34 observations) is quite different from the density obtained from SSA observations
(of any type). Instead, it shows a marked similarity to the posterior distribution

obtained from SSB {k(obs), t
(obs)
b }. Right: The w30 distributions obtained from static

data only are very similar to the prior, regardless of the sensor set; the distribution
becomes informative (different from the prior) only when t

(obs)
b are included. Thus,

it is the type of data, rather than the quantity, that renders the posterior densities
informative.
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5. Posterior predictive modeling

The discussion in Sec. 4 focused on the probabilistic reconstruction of inclusion
proportion F(x) and a lengthscale δ on a coarse 30 × 20 mesh. However, the link
function L allows us to also construct realizations of the fine-scale binary medium,
given {w, δ}. In this section, we explore the difference between fine-scale binary
permeability fields developed by conditioning P (w, δ|d) jointly on static and dynamic
data (multiscale data) and those reconstructed from only one type of data. We assess
them based on their ability to reproduce the observed breakthrough times at the SSA
sensors. P (w, δ|d) is used to develop realizations of the fine-scale binary medium
(on a 3000 × 2000 mesh) as outlined in Sec. 4.2, which is then incorporated in flow
simulations using MODFLOW and advective transport using MODPATH.

Fig. 10 shows example realizations of the binary medium which are consistent
with the multiscale observations i.e., they were developed from {w, δ} conditioned

on {k(obs), t
(obs)
b }. The white and gray regions are the high and low permeability

phases, respectively. A single particle track from the injection wells to each of the
SSA sensors is also shown. We choose eight {w, δ}i samples from the posterior to
develop the corresponding Fi(x) from (11). Then, using the procedure (based on
excursion sets of multiGaussian [mG] fields) described in Sec. 3.3, we develop the
corresponding fine-scale binary field on a 3000× 2000 mesh. The true binary field is
plotted in the middle of the figure (Fig. 10(e)). The variation between realizations is
due to both the stochastic nature of the construction process, where white noise is
convolved with a Gaussian kernel, and the sampled value of δ, which is different for
each realization. Of these eight examples, realization (g) has the largest δ value and
realization (i) has the smallest.

Three combinations of k(obs) and t
(obs)
b conditioning data ({k(obs), t

(obs)
b }, {k(obs)}, {t(obs)

b })
were used, and for each combination, 1000 fine-scale binary realizations were created.
For each of the SSA sensors and for each realization, the median travel time between
the injector and the sensor is determined. Recall that sensor locations are defined
at the grid-block scale and that for each location a total of 121 particles are tracked
between the injector and the sensor. The median time from these 121 particles is
extracted at each sensor location and designated as the breakthrough time for that
location. A distribution of breakthrough times across the 1000 realizations is then
created. Fig. 11 (left) shows a comparison of the three breakthrough time CDFs
(cumulative distribution function) against the observed breakthrough time for sensor
location 14 (coordinates: 21,13). All three distributions capture the observed break-
through time (accurate) with the “Fine and Coarse” (alternatively, inferred jointly

from {k(obs), t
(obs)
b }) and “Fine Only” data (alternatively, inferred solely from {t(obs)

b })
combinations being the narrowest (most precise) although somewhat biased towards
underestimation of the observed travel time. The “Coarse Only” data combination
(alternatively, inferred solely from {k(obs)}) produces a breakthrough time distribution
that is less precise but also less biased.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: Fine-scale realizations of the random binary field conditioned on the ob-
servations and showing a single flowpath from the injection wells to each SSA sensor.
These were developed from the posterior distribution of {w, δ} using the mG-based
technique described in Sec. 3.3. The center image (e) is the ground truth fine-scale
realization. White indicates high permeability and gray is low permeability. Varia-
tion in the binary patterns are due to the stochastic nature of the process and the
variation in the estimated δ parameter between realizations.
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Fig. 11 (right) shows the precision and bias for all 20 SSA sensors and provides
perspective on how these quantities change across the model domain. For each sensor
location, the black “+” indicates both the location of the sensor and the relative
location of the observed breakthrough time. The distribution of breakthrough times
from each combination of k(obs) and t

(obs)
b is shown as a circle. The center of the

circle is offset from the observed breakthrough time by the amount of bias, calculated
here as the difference between the median of the distribution and the observed value.
Underestimation shifts the center of the circle to the left and over estimation to the
right. The center 95% of the breakthrough time distribution defines the radius of the
circle. Both the radius and the bias offset are calculated in units of dimensionless
travel time. The axes scales in Fig. 11 (right) serve as both geographic coordinates and
travel time measures to define both the sensor locations and the relationship of the
median breakthrough time distributions to the observed breakthrough time. At each
location, the order of the circles is set such that the smallest (tightest distribution)
is at the front and the largest is at the back.

Examination of Fig. 11 (right) shows that all three combinations of k(obs) and t
(obs)
b

create accurate distributions of breakthrough times (all circles contain the observed
value denoted by the “+”). Additionally, estimated fields that are conditioned jointly

on {k(obs), t
(obs)
b } create the most precise distribution (black circle is smallest and

therefore on the top) for the majority of the SSA locations. Bias is relatively small
at all locations as shown by all three circles being approximately centered on the
observed value. The spatial pattern shown Fig. 11 (right) is consistent with the flow
patterns for this domain with a source and sink in the lower left and upper right
corners. The breakthrough time distributions are most precise along the diagonal
between the injector and producer where the majority of the flow takes place and
least precise along the upper and lower boundaries where the flow fraction is quite
low (see Fig. 1, b). The amount of bias is also smallest along the diagonal and greatest
along the top and bottom boundaries. For additional details see [70].

Fig. 11 is focused on comparison of the probabilistic estimates of the breakthrough
time to the observed values at the SSA sensor locations. However, since the ground
truth in this study is known, it is possible to examine the quality of the travel time
estimates for every location in the model domain. Fig. 12 (left) shows distributions
of the average absolute error (AAE) between the estimated and true breakthrough
time. Each average is calculated over all 600 coarse-scale grid blocks for a single
realization and the distribution of the averages is then determined across all 1000
realizations. Lower values in the distribution come from realizations that better fit
the true breakthrough time at all locations. The majority of the fields conditioned
jointly to the {k(obs), t

(obs)
b } or just the k(obs) data have a median travel time AAE of

less than 0.5 time units (Figure 12). Those fields conditioned to only t
(obs)
b data have

considerably larger AAE values, up to 2.0 time units).
All comparisons shown above consider the breakthrough time values from the

injector to one or more coarse grid cells. These comparisons are consistent with the
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Figure 11: Comparison of the median travel times to the SSA sensors for three
different data combinations. Left: Breakthrough time CDFs for 1000 samples are
shown for an example location (sensor 14). Right: The circle plots summarize the
breakthrough time distributions and compare them to the true breakthrough times
for all sensor locations. Details are in the text. “Coarse & fine” refer to realizations
conditioned jointly on {k(obs), t

(obs)
b }, “Coarse only” refer to inferences using on {k(obs)}

while “Fine only” indicates inferences conditioned only on {t(obs)
b }.

conditioning data, t
(obs)
b (median travel time), used in the inverse estimates. However,

additional information can be gained from the full distribution of travel times to each
coarse grid block. The two-sample Kolmogorov-Smirnov (KS) test is used to compare
the true travel time distribution to the distribution calculated on each estimated field
for each coarse-scale grid block. The KS test is a non-parametric test of the difference
between two distributions. The KS test statistic is the maximum vertical distance,
D between two CDFs:

Di,j =
sup
x
|Fi,n(x)− Fj,n′(x)| (13)

Here the ith and jth distributions have the same number of travel times, 121, for
all comparisons (n = n′). Values of the D statistic range from 0, when there is no
difference between the distributions, to 1.0 when the values of distributions do not
overlap at all. The null hypothesis of the KS test is that both samples come from
the same underlying population. Here, for each fine-scale realization, we compare
the modeled and observed travel time distribution at every location within the model
domain and calculate the test statistic, D. The average value of D across all 600
locations is retained for each of the 1000 realizations.

Fig. 12 (right) shows the resulting distributions of the average D value for these

sets of 1000 realizations. The smallest values of D occur when both k(obs) and t
(obs)
b

are used as conditioning data. The distributions of D when only k(obs) or t
(obs)
b are
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Figure 12: Average absolute errors (AAE) between median travel times from the
estimated and true travel time distributions for all locations in each field (left) and
distribution of average KS statistic values calculated by comparing the full distribu-
tion of estimated and true travel time distributions at all locations (right).

used have slightly larger values and are very similar.
To summarize, we sampled the distribution P (w, δ|d), developed in Sec. 4.3, to

construct 1000 realizations of the fine-scale binary medium on a 3000×2000 mesh and
predict breakthrough times at the SSA sensors via simulation. This was performed
for the three different P (w, δ|d) developed (conditioned on {k(obs), t

(obs)
b }, {k(obs)}

and {t(obs)
b }) in Sec. 4.3 to gauge the impact of multiscale data in the estimation of

Ke(x). Posterior predictive model evaluations using 1000 realizations created from
each of the three combinations of conditioning data clearly showed that while all
data combinations produce accurate results, using data collected on both scales i.e.,
{k(obs), t

(obs)
b }, as opposed to a single scale ({k(obs)} or {t(obs)

b }), creates predictions
that are most precise and closest to the observed values.

6. Conclusions

We have developed a multiscale, statistical technique to reconstruct characteristics
of a random, porous binary medium from partial observations. The binary medium
consists of high and low permeability material in spatially varying proportions. The
geometry of the medium consists of inclusions of the less abundant material embed-
ded in a matrix of the other. The uneven spatial distribution of the two materials,
F(x), and a characteristic inclusion lengthscale, δ, are the objects of inference. The
inclusions are too small to be resolved on the coarse mesh and the effective permeabil-
ity of a grid-block is Ke(x) is calculated using a deterministic upscaling model, i.e.,
Ke(x) = L(F(x), δ, κ). The observations consist of measurements of log-permeability
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(k(obs)) and breakthrough times (t
(obs)
b ) of a tracer from a tracer test at a set of sensor

points. The log-permeability measurements inform on the large-scale variations in the
domain of interest; the breakthrough times are governed strongly by the flow paths
through the medium and are informative on the small-scale structures.

The reconstruction is posed as a Bayesian inverse problem, predicated on fitting
a transport model to the data. The transport model is formulated at the coarse-
scale, but with a statistical subgrid model that incorporates the impact of the fine,
unresolved scales. The subgrid model (alternatively, the link function between the
scales) is parameterized with the high-permeability material proportion, F(x), and
characteristic length, δ. The inverse problem is regularized by expressing F(x) using
Gaussian processes; its dimensionality is reduced by expanding F(x) in terms of a
truncated Karhunen-Loève series. Fitting the model to data yields a joint distribution
of the Karhunen-Loève weights, inferring characteristics of the variation of F(x) and
Ke(x) in the domain. This distribution is realized without any approximations, using
an adaptive MCMC sampler.

We find that F(x) obtained by jointly conditioning on {k(obs), t
(obs)
b } is far more

accurate than if it is obtained solely from k(obs) or t
(obs)
b . Inversion based on k(obs)

captures the large-scale variation correctly; however, the permeability field distri-
bution so reconstructed predicts breakthrough times poorly since it lacks smaller
details/structures responsible for contorted flow paths. The inversions based solely

on t
(obs)
b are extremely poor, due to inability of these data to constrain large struc-

tures. However, when the two are put together, k(obs) constrains the larger structures
while t

(obs)
b is used to constrain the smaller ones. Thus the improved inferences (when

conditioned jointly on k(obs) and t
(obs)
b ) are not just due to more plentiful observa-

tions, but rather due to the different types of information in k(obs) and t
(obs)
b . Since

the information is derived from different scales (large for k(obs) and small for t
(obs)
b ),

the inversion is fundamentally multiscale.
We found that we could estimate the inclusion size δ, but with significant un-

certainty. This is because when one of the two components of the binary medium
dominates e.g. F < 0.3 or F > 0.7, the sensitivity of the effective permeability to δ is
muted, especially if the inclusions are small compared to the grid-block. In our case,
a large fraction of the grid-blocks had a preponderance of one phase or the other,
leading to the large uncertainty in the estimate. Further, the δ was underestimated
as a consequence of the behavior of the subgrid model L.

Plots of marginalized posteriors of the objects of inference show that they are
approximately Gaussian. While the priors used for them are Gaussian, the posterior
shapes are surprising, given that both the fluid transport and the link function are
strongly nonlinear.

We use the inferences of F(x) and δ to reconstruct realizations of the resolved
binary medium on a fine mesh. We check the predictive skill of the ensemble of real-
izations by performing transport simulations with them, in an effort to recreate the
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observations from which they were inferred. We find that fine-scale realization devel-
oped by conditioning jointly on {k(obs), t

(obs)
b } (i.e., “multiscale” realizations) have a

greater predictive skill that those inferred with one type of information. Preliminary
results indicate that the inferences may also be more robust for predictive modeling in
situations where the flow patterns are very different from those used in the estimation
[70].

This work raises a few new questions. While we find that multiscale inversion
leads to more robustness in inferences of binary media, the Bayesian technique is
computationally expensive and will probably scale only to problems of modest size.
Approximating the posterior distribution as a Gaussian opens up the possibility of
employing scalable Ensemble Kalman Filtering techniques, which are currently being
investigated. A second avenue of research lies in whether the fine-scale realizations
constructed from the data can be used in an efficient manner for predictions; cur-
rently, ensemble predictions require many simulations on a fine (e.g., 3000 × 2000)
mesh. While an embarrassingly parallel problem, it nevertheless consumes signifi-
cant computing resources and often does not provide a timely solution. Finally, we
consider whether the incorporation of model errors into the inversion process can be
performed in a more accurate manner. We are currently exploring ways in which
the model errors can be used to jointly infer the Karhunen-Loève weights, δ and a
permeability field from the same observations. Preliminary results, obtained by incor-
porating upscaling errors (modeled using kernel density estimation) in the inversion
process, are encouraging [70].
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