
A Partitioner-Centric Model for SAMR Partitioning Trade-Off
Optimization: Part I

�

Johan Steensland and Jaideep Ray

11th September 2003

Abstract

Optimal partitioning of structured adaptive mesh
applications necessitates dynamically determining and
optimizing for the most time-inhibiting factor, such as
load imbalance and communication volume. But any
trivial monitoring of an application primarily evaluates
the current partitioning, rather than the inherent nature
of the grid hierarchy itself. We present an analytical
model that given a structured adaptive grid determines,
ab initio, to what extent the partitioner should focus
on optimizing load imbalance or communication vol-
ume to reduce execution time. This model contributes
to the meta-partitioner, our ultimate aim of being able
to select and configure the optimal partitioner based
on the mesh configuration, the simulation and com-
puter characteristics. We validate the predictions of
this model by comparing them with actual measure-
ments (via traces) from five different adaptive simula-
tions. The results show that the proposed model gener-
ally captures the inherent optimization-need in SAMR
applications. We conclude that our model is a useful
contribution, since tracking and adapting for the dy-
namic behavior of such applications potentially lead to
a large decrease in execution times.

1 Introduction and Background

Significantly improving the scalability of large structured
adaptive mesh refinement (SAMR) applications requires so-
phisticated capabilities for utilizing the underlying parallel
computer’s resources in the most efficient way. The meta-
partitioner [34, 35] is a tool providing such capabilities. Pre-
vious research has offered design, proofs-of-concept and eval-
uation of major components. This paper presents a new model
for classifying SAMR application and parallel computer sys-
tem state to best provide a partitioner with information re-
quired for trade-off optimization, and validates this model by
showing its effectiveness to accurately capture the dynamic
behavior of five vastly different SAMR applications. Partic-

ular attention will be paid to dimension I in the classification
space (characterizing the relative importance of achieving a
good load-balance versus reducing the overall communica-
tion cost) and an application that simulates the Richtmyer-
Meshkov instabilities using an explicit time-stepping and a
finite volume scheme.

The presented work is part of the ongoing research project
[34, 35, 36, 10, 37] with the overall goal of engineering a
dynamically adaptive meta-partitioner for SAMR grid hier-
archies capable of selecting the most appropriate partitioning
strategy at runtime based on current system and application
state. Such a meta-partitioner can significantly reduce the ex-
ecution time of SAMR applications [13, 12, 11].

Dynamically adaptive mesh refinement (AMR) [39] meth-
ods for the numerical solution to partial differential equations
(PDE’s) [7, 8, 31] employ locally optimal approximations,
and can yield highly advantageous ratios for cost/accuracy
when compared to methods based on a static uniform mesh.
These techniques seek to improve the accuracy of the solu-
tion by dynamically refining the computational grid in regions
with large local solution error. Structured adaptive mesh re-
finement methods are based on uniform patch-based refine-
ments overlaid on a structured coarse grid, and provide an al-
ternative to the general, unstructured AMR approach. These
methods are being widely used for adaptive PDE solutions
in many domains, including computational fluid dynamics
[2, 6, 28], numerical relativity [14, 30], astrophysics [1, 9, 23],
and subsurface modeling and oil reservoir simulation [44, 25].
Methods based on SAMR can lead to computationally effi-
cient implementations as they require uniform operations on
regular arrays and exhibit structured communication patterns.
Furthermore, these methods tend to be easier to implement
and manage due to their regular structure. Distributed imple-
mentations of these methods offer the potential for accurate
solutions of physically realistic models of complex physical
phenomena. However, they also pose new challenges in dy-
namic resource allocation, data-distribution, load-balancing,

�
This paper was presented at the 4th Annual Symposium of the Los Alamos Computer Science Institute (LACSI04) and appears in the proceedings on

CD-ROM.

1

and runtime management. Critical among these is the parti-
tioning of the adaptive grid hierarchy to balance load, opti-
mize communication and synchronization, minimize data mi-
gration costs, and maximize grid quality (e.g. aspect ratio)
and available parallelism.

The primary motivation for the research presented in this
paper, as well as the research effort at large, is the observa-
tion that in the case of parallel SAMR, no single partition-
ing scheme performs the best for all types of applications and
systems. Even for a single application, the most suitable parti-
tioning technique depends on input parameters and the appli-
cation’s runtime state [29, 35]. This necessitates an adaptive
management of these dynamic applications at runtime. This
includes using application runtime state to select and config-
ure the partitioning strategy to maximize performance. The
goal of the adaptive meta-partitioner is to provide such a ca-
pability for parallel SAMR applications.

Large scale SAMR applications place vastly different re-
quirements on the partitioning strategy to enable efficient uti-
lization of computer resources and consequently good scala-
bility. In some scenarios, this means focusing on optimizing
load balance; in others, on lowering the interprocessor com-
munication costs [37]. Hence, a means to classify these re-
quirements in a way that conform to the partitioner is crucial.

The support for tuning and choosing trade-off impacts ma-
turing in graph-based partitioning techniques [17, 32, 15] for
unstructured AMR, is so far lacking in the field of structured
AMR. Whereas recent research efforts have targeted the scal-
ability of specific applications executing on specific parallel
computers [5, 45, 27], our line of research is in the oppo-
site direction; the development of a general partitioning tool
enabling good scalability for general SAMR applications ex-
ecuting on general parallel computers. As a consequence,
we carefully engineer the components of the adaptive meta-
partitioner with the basic requirement is that the components
should be able to adapt to changing requirements derived from
the monitoring of system and application state.

In this paper, we advance towards the meta-partitioner by
introducing a key component: a model for the classification
of application and system state. The key contributions are
(1) a partitioner-centric classification space, designed to con-
form to the partitioner, (2) a detailed mathematical model
for sampling and translating these samples of the given ap-
plication parameters (such as the grid hierarchy, the number
of processors and so forth) and system parameters (such as
CPU speed and communication bandwidth) into dimension I
of the partitioner-centric classification space, and (3) an exper-
imental evaluation and validation of this mathematical model
showing its effectiveness to accurately capture the dynamic
behavior of five vastly different SAMR applications.

2 SAMR and Related Work

2.1 Introduction to SAMR

In the case of SAMR methods, dynamic adaptation is
achieved by tracking regions in the domain that require higher
resolution and dynamically overlaying finer grids on these re-
gions. These techniques start with a coarse base grid with
minimum acceptable resolution that covers the entire compu-
tational domain. As the solution progresses, regions in the do-
main with large solution error, requiring additional resolution,
are identified and refined. Refinement proceeds recursively so
that the refined regions requiring higher resolution are simi-
larly tagged and even finer grids are overlaid on these regions.
The resulting grid structure is a dynamic adaptive grid hierar-
chy.

Software infrastructures for SAMR worth mentioning
are e.g. Paramesh [21, 22], a FORTRAN library for par-
allelization of and adding adaption to existing serial struc-
tured grid computations, SAMRAI [18, 45] a C++ object-
oriented framework for implementing parallel structured
adaptive mesh refinement simulations, and GrACE [26] and
CHOMBO[3], both of which are adaptive computational and
data-management engines for enabling distributed adaptive
mesh-refinement computations on structured grids.

2.2 Partitioning SAMR Grid Hierarchies

Parallel implementations of SAMR methods present in-
teresting challenges in dynamic resource allocation, data-
distribution, load-balancing, and runtime management. The
overall efficiency of parallel SAMR applications is limited by
the ability to partition the underlying grid hierarchies at run-
time to expose all inherent parallelism, minimize communica-
tion and synchronization overheads, and balance load. A crit-
ical requirement when partitioning these adaptive grid hierar-
chies is the maintenance of logical locality, both across dif-
ferent levels of the hierarchy under expansion and contraction
of the adaptive grid structure, and within partitions of grids
at all levels when they are decomposed and mapped across
processors. The former enables efficient computational ac-
cess to the grids and minimizes the parent-child (inter-level)
communication overheads, while the latter minimizes overall
communication and synchronization overheads. Furthermore,
application adaptation results in grids being dynamically cre-
ated, moved and deleted at runtime, making it necessary to
efficiently repartition the hierarchy “on the fly” so that it con-
tinues to meet these goals.

Partitioners for SAMR grid hierarchies can be classified
as patch-based, domain-based, or hybrid.1

In the case of patch-based partitioners [5, 19], distribu-
tion decisions are independently made for each newly created

1Note that this paper focuses exclusively on partitioning techniques for adaptive structured grids. Similar classification and comparative studies for
unstructured-grid/mesh partitioning and dynamic load-balancing have been investigated in the literature [41, 43].

2

grid. A grid may be kept on the local processor or entirely
moved to another processor. If the grid is too large, it may
be split. Grids may also be distributed uniformly over all pro-
cessors. The SAMR framework SAMRAI [18, 45] (based on
the LPARX [4] and KeLP [16] model) fully supports patch-
based partitioning. The distribution scheme maps the patches
at a refinement level of the AMR hierarchy across proces-
sors. The advantages are manageable load imbalance and
re-partitioning at re-griding could be avoided. Shortcomings
inherent in patch-based techniques are communication serial-
ization bottlenecks, inability to exploit available parallelism
both across grids at the same level and different levels [35].

Domain-based partitioners [24, 29, 40, 34] partition the
physical domain, rather than the grids themselves. The do-
main is partitioned along with all contained grids on all re-
finement levels. The advantages are elimination of inter-level
communication and better exploiting of all available paral-
lelism. The disadvantages are intractable load imbalance for
deep hierarchies and the occurrence of “bad cuts” leading to
increased overhead costs [35].

Hybrid partitioners [24, 40, 20] combining patch-based
and domain-based approaches, can be used for coping with
the shortcomings present in these techniques. They use a 2-
step partitioning approach. The first step uses domain-based
techniques to generate meta-partitions, which are mapped to
a group of processors. The second step uses a combination of
domain and patch based techniques to optimize the distribu-
tion of each meta-partition within its processor group.

Developed at Uppsala University, Sweden and Rutgers
University, New Jersey, USA, Nature+Fable (Natural
Regions + Fractional blocking and bi-level partitioning) [35]
aims to be the best possible tool for partitioning SAMR grid
hierarchies. It hosts a variety of hybrid partitioning options.
All involved parts are engineered to be components of the
meta-partitioner. Thus, they offer carefully designed parame-
ters to steer component behavior enabling adaptation to vary-
ing partitioning requirements. As Nature+Fable matures,
it is intended to transform it into the meta-partitioner. Hence,
the partitioning tool Nature+Fable is a step towards a
complete implementation.

Nature+Fable separates homogeneous, un-refined
(Hue) and complex, refined (Core) domains of the grid hi-
erarchy and clusters refinement levels into bi-levels [35]. The
Hues contain the portions of the grid hierarchy without refine-
ments; consequently they contain only parts of the base grid
(refinement level 0). The Cores contain the portions of the
grid where refinements are present. The Cores are separated
from the Hues in a strictly domain-based fashion, meaning
that each Core contains a portion of the base grid and all its
overlaid, refined grids. Expert blocking algorithms are used
for the Hues. The Cores are subjected to a coarse partition-
ing, creating “easy-to-block” bi-levels. Then the same expert
algorithms operating on the Hues are used for these bi-levels.

3 Previous Approaches

This section provides a problem description and a survey of
relevant previous research efforts including the octant ap-
proach [35] and the ArMADA framework [13]. While concep-
tually similar to the octant approach in that it strives to capture
the application and system state for optimizing the partition-
ing, our model is quantitative and is rigorously derived from
a set of assumptions, primarily borne out by observations in
SAMR simulations.

The PAC-triple defines the SAMR application (A), paral-
lel computer systems (C), and the partitioner (P). While the A
and C components are highly dynamic entities, the P compo-
nent, however, is usually selected once and for all. A static
P component, i.e., not exploiting the dynamic nature of the
A and C components, can seriously inhibit the scalability and
the prospect of reducing execution time. The octant approach
and the meta-partitioner are means for allowing fully dynamic
PAC:s. That is, it provides capabilities for

���������
	����������

meaning that the partitioner
�

at a particular time � should be
a function (

�
) of the application

	
and computer system

�
state at that particular time.

To illustrate the dynamic behavior of SAMR applications,
consider a static choice of P for the RM2D application (fur-
ther described in section 5) illustrated in Figure 1. This figure
exhibits load imbalance and communication amount as a func-
tion of time. Clearly, with a dynamic selection of P (a fully
dynamic PAC) appropriately reflecting the inherent dynamics
of the application, the total execution time could have been
reduced.

The octant approach is depicted in Figure 3 (left). It is
an extension of the quadrant approach [38] and constitutes an
important part in the conceptual meta-partitioner, illustrated in
Figure 2. The octant approach is a discrete classification space
and a set of rules for selecting and configuring the most appro-
priate partitioning technique, based on application and system
state. The model consists of the following: (a) classifying ap-
plication state, (b) classifying system state, (c) combining the
results in (a) and (b), (d) translating the result in (c) into an
octant, and finally (e) mapping from octant onto partitioning
technique.

This model has evolved over the years to reflect and in-
corporate our growing intuition and experience. It requires
determining the classification space, i.e., the actual axes in the
cube (of octants), and the characterization of involved parti-
tioners.

However, the model does not say how — only what and
why; it outlines what seems to be a promising concept. For
example, it does not define a “state”. It does not offer ways to
compute it, nor does it list the necessary variables. It does not
define how to translate the information regarding state into an

3

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

Time−step

P
er

ce
nt

 lo
ad

 im
ba

la
nc

e

RM2D Load Balance for 16 procs

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
RM2D Communication amount for 16 procs

A
m

ou
nt

 c
om

m
un

ic
at

io
n

Time−step

Figure 1: The dynamic behavior of the RM2D SAMR application illustrated by a static selection of partitioner (P). Clearly,
with a dynamic selection of P (a fully dynamic PAC) appropriately reflecting the inherent dynamics of the application, the total
execution time could have been reduced.

octant. The model in itself does not provide the specifics about
the mapping from octant onto partitioning technique, but such
a mapping has been derived for a set of partitioners [36].

The ArMADA framework offers a first attempt at an ac-
tual implementation of the model. ArMADA disregards the
system component and uses simple box operations like e.g.
volume to surface ratio on the grid hierarchy to determine the
corresponding octant. The classification is relative to the pre-
vious state (octant) and the mappings used were those previ-
ously derived [36] . The project provided an important proof
of concept: even with such a simple model, execution times
were reduced.

In the following, we examine each of the dimensions of
the classification space in the octant approach in detail. The
original thought was to capture the current state of the appli-
cation executing on the system, with the selection and config-
uration of the best partitioning technique determined by this
state. We show below that this space is inadequate for the
purpose.

3.1 The Refinement Pattern

The first dimension of the cube, localized — scattered, re-
flects the nature of the refinement pattern. It has been shown
for unstructured meshes that diffusion schemes are suited to
scattered patterns while scratch/re-map work well for strongly
localized patterns. Evidently, this quantity plays a role. But
how does it affect partitioning of structured grids?

Assuming a strictly domain-based partitioning technique,
the refinement pattern is crucial. A small base-grid, many pro-
cessors, and many levels of refinement cause domain-based
techniques to generate intractable amounts of load imbalance.
However, the case is better with scattered refinement, and

worsens with strongly localized refinement. Consequently, in
the case of an already stretched domain-based, badly load-
balanced scenario, refinement pattern is a crucial quantity to
sample. However, in other cases, information about the re-
finement pattern might be of little consequence.

3.2 Time Domination

The second dimension of the cube, computation dominated
— communication dominated, reflects whether run-time of an
application executed on a machine (at a given moment) is
dominated by communication or by computation. The idea
is to distinguish between scenarios where load balance should
be the target for optimization (computation dominated) and
where communication pattern/amount (communication dom-
inated) should be the main target.

This is problematic. First, the other axes in the cube (re-
finement pattern and activity dynamics) reflect the state of
the application and system independently of partitioning tech-
nique and current distribution of the hierarchy. It is impossi-
ble to determine the time domination axis without involving
assumptions about how the grid is distributed.

This dependency accounts for a “circle” in the model. We
are supposed to classify the state of the application / system to
select the partitioner. But this classification is strongly influ-
enced by the partitioner that was used to achieve the current
domain decomposition in the first place. Consequently, in the
worst case, the partitioner is classifying itself and the answer
cannot be regarded to be very general. For example, assume
the classification of the application / system is “communica-
tion dominated”, what this means is really that this particular
partitioner generated lots of communication for the applica-
tion / system. Thus this information is a classification of a

4

PInvokeP PP

Classification of
application’s
current state

Decision of
partitioning technique

and parameters

PP

P

PPPP

...

...

Database of
partitioning techniquesI II

III IV

VI

VIIIVII

V

Classification of
computer system’s
current state

C

A

P

Parallel computer system

SAMR application

Partitioning technique

partitioner
Adaptive metaDynamic PAC

approach

Octant

Figure 2: The conceptual meta-partitioner incorporating the octant approach. The most appropriate partitioner is selected and
configured, based on the current application and system state. Consequently, fully dynamic PAC:s are enabled.

PAC-triple, while the other dimensions in the cube really clas-
sify the AC-double. Moreover, the numerical algorithm has a
direct impact on where the time is spent.

Furthermore, the original idea of interpreting a computa-
tion dominated simulation as one requiring an optimizing of
load balance is flawed. A parallel SAMR application con-
sists of a series of steps separated by synchronization points.
Load imbalance among processors dictates the cost of (time
spent at) these synchronizations. But this load imbalance is
the total load imbalance, i.e. it is the sum of computational
load imbalance and communicational load imbalance. As-
sume for example a perfectly (computationally) load-balanced
application with a localized refinement. When the processors
involved with the localized refinement start communicating,
they will take more time than their counterparts working on
the non-refined parts of the hierarchy. As a consequence, there
will be lots of load imbalance (lots of time spent waiting at
synchronization points) despite a perfect computational load
balance.

To summarize the complexity of this dimension:

1. An application spending lots of time at synchronization
points is badly load balanced. Based on this informa-
tion only, there is no way of telling whether optimizing
(computational) load balance or communication would
be the best remedy.

2. Synchronization points is implemented by variants of
MPI Wait. Thus, they are part of a (global) commu-

nication. This means that a communication dominated
application might be in great need of optimizing load
balance.

We conclude that this dimension must be reformulated so
as to explicitly expose the cause of the load imbalance i.e.
whether the imbalance is due to unbalanced load distribution
or unbalanced communication schedules. There are ways to
steer the trade-off communication/load imbalance in tools like
Nature+Fable . We must find a suitable model for giving
these tools pertinent information to base their trade-offs on.

3.3 Activity Dynamics

The third dimension reflects how fast things are changing in
the solution. The idea is that high activity dynamics implies
more frequent regridding. Consequently, partitioning speed
and low data migration costs are crucial. This is not necessar-
ily true.

An SAMR application might have a very long compute
cycle, meaning that there may be minutes between synchro-
nization points and possible re-gridding. Such an application
might easily show significant activity dynamics from time-
step to time-step. However, if each time-step is computation-
ally expensive (i.e. takes minutes to perform) a fairly expen-
sive partitioner and significant data migration costs can be ac-
commodated. Thus frequent partitioning do not automatically
indicate a “cheap” partitioner - one needs to compare the par-
titioning and data migration costs with the time between suc-
cessive repartitioning.

5

4 A New Model

This section derives a new continuous classification space and
a model to characterize the “state” of a SAMR application.
The section starts by investigating the fundamental require-
ments and suitable properties of such a classification space.
Based on these requirements and properties, it proceeds with
the designing of this space. Finally, it derives the methods for
sampling application and system state and mapping this state
onto the proposed classification space.

What the Partitioner Needs

This section discusses the fundamentals of grid hierarchy par-
titioning. Independent of partitioning approach, any serious
partitioner should either (a) exhibit a strong preference for
optimizing a specific metric, or (b) have parameters which al-
low one to bias its behavior so as to better optimize a given
metric. Partitioners are generally confronted with the same
problem-specific trade-offs and merely use different algo-
rithms to achieve them. As a consequence, the classification
space should be constructed to conform to these “universal
truths” of SAMR partitioners - only then can the information
present in application and system state be fully exploited.

A sophisticated partitioning tool offers various parameters
for influencing the outcome. Most prominent is the trade-off
between communication costs and load balance. For example,
to focus on load balance in Nature+Fable we may choose
a small atomic unit, select a large Q, choose fractional block-
ing and so forth. Working with other partitioners, we might
migrate from domain-based techniques toward more elabo-
rate patch-based techniques specializing in optimizing load
balance.

Further, it is a fairly straight-forward idea to trade-off
overall outcome quality for partitioning speed. For example,
there are SAMR applications that compute for many minutes
in between synchronization and re-griding. For these applica-
tions, it would make sense to spend more than fractions of a
second to generate a more high-quality partitioning.

The third and last important trade-off occurs when there is
need to optimize the amount of data migration. As opposed
to the two trade-offs above, there is no unique or apparent
trade-off to optimizing data migration. Depending on the cur-
rent partitioning strategy and the state of the grid hierarchy,
optimizing data migration may be obtained by e.g. invoking
some kind of post mapping technique or switching methods
to a more “diffusion-like” one, or investing more time in cre-
ating a more fully ordered SFC mapping. Depending on the
circumstances, any of the metrics load imbalance, communi-
cation, speed or overall remaining quality might suffer. Note
that the optimal amount of data migration is zero, translating
to keeping all data where currently allocated. The trade-off
for inducing longer waits between re-partitioning is of course
the penalty of keeping the same partitioning during this time.
Hence, attacking data migration this way trades-off whatever

shortcomings the current partitioning is suffering from.
These are the three major and general trade-off possibili-

ties, and it is imperative that any classification model (in the
present context) should expose these fairly explicitly.

In view of the above, we propose that the partitioner-
centric classification space should host exactly these three di-
mensions: (1) Communication versus load balance, (2) Speed
versus overall quality, and (3) Data migration.

Illustrated in Figure 3 (right), this partitioner-centric clas-
sification space is obviously quite different from the octant
approach. Moreover, we propose that the classification space
is absolute and continuous, as opposed to relative and discrete
in the ARMaDA framework. Consequently, a state sampling
will generate a mapping onto a point defined in a continuous
coordinate space within the classification space and the loci of
all such points, as a simulation evolves, will be a curve in the
same space. Thus, unlike ARMaDA, one does not discretely
transition between octants, but rather follow a smooth curve.
This enables not only a coarse grained partitioner selection,
but also an extremely fine grained partitioner configuration.

The sub-sections below derive the theory for obtaining the
necessary formulas for applying the model to any SAMR ap-
plication.

4.1 Trade-off 1: Load Balance vs Communica-
tion

To best provide the partitioner with information quantifying
the relative importance of achieving a good load balance ver-
sus reducing communication, we need a strategy independent
of the partitioner currently in use. The information should
preferably be based only on the status of the grid hierarchy
(application)

	
and the system (computer)

�
.

To achieve this, we propose the following model where
two extremes are used to span the classification space.

Assume there exists a way to estimate the load imbalance
penalty ��� �
	 � � � incurred for a domain decomposition ob-
tained by invoking a simple, strictly domain-based partition-
ing strategy on the current hierarchy and system. We assume
our simple technique will generate insignificant amount of
(and only intra-level) communication. Further, assume there
exists a way to estimate the communication penalty ��� � 	 � � �
incurred by a decomposition obtained by invoking a particu-
lar patch-based partitioning strategy (described later). We as-
sume this strategy will generate insignificant load imbalance.

The patch-based technique referred to is the one where
each patch is distributed evenly across all processors. This is
known to generate perfect load balance, but a high amount of
(intra and, most importantly, inter-level) communication.

The estimations constitute two extremes and provide in-
formation of the relative suitability of optimizing for load
balance or communications. A comparison of ��� �
	 ��� � and
� � �
	 � � � places us along the first axis in the cube. This model
is not only independent of the current (or any) partitioning

6

technique — it also incorporates the fundamentals of parti-
tioning SAMR grid hierarchies.

We suggest the comparison of � � � 	 � � � and � � � 	 ��� �
should be biased with the system characteristics. These char-
acteristics are obtained once and for all for the current ma-
chine by a simple benchmark program. We represent the sys-
tem characteristics by a single number, which is the compute-
to-communicate ratio. The specifics of this procedure is yet to
be determined, but they should not present significant research
challenges.

4.1.1 Estimating the load balance penalty

For a grid hierarchy with refinement levels
�

through ������� and
grids 	 �
 � 	 � � ������ � 	 � ��� on level � , let � � be the total amount
of work, defined as � � � ��������

�����
���� � �
�� 	 �

� � � � (1)

where � 	 � denotes the number of points (size) of the grid 	
and is the refinement factor, which is assumed to be equal in
time and space.

Let the number of processors be ! and the unit work" � � �$# ! be the average (optimal) load assignment to any
processor. Then let �&% be the work for the heaviest loaded
processor. Load imbalance is normally expressed as �'% # " .
The greater the load imbalance, the poorer the parallel effi-
ciency. One way of measuring the parallel efficiency for a
SAMR application as follows. Assume a set of !)(processors
(!*(,+-+.!) are significantly overloaded so that their average
workload is / " , where /1032 . This implies a total workload
for these !*(processors of �&(� / " !*(. Now, the remaining
processors !*4 � !657!8(have to share the rest of the work�64 � � � 59�6(. The parallel efficiency due to this load im-
balance can be expressed as: � �64!�4 !� � � � � 57�6(� � !!;5<!8(

� = 2>5 �&(� �@? = 2>5 !*(! ?BA
 (2)

which, given the assumptions, is a number between zero
and one. To obtain the load balance penalty � � such that�DC � � C 2 , we suggest

:
be evaluated via Equation 2 in

key areas in the grid hierarchy and then define ��� � 2>5 : .
Let the Cores in an arbitrary grid hierarchy be denoted by�
�

for E � 2 �GF ��������H � , and let the size of
�
�

on level 0 be� �
�� � , the work for

�
�

be � �� as defined by Equation 1. Let
the optimal number of processors for

�
�

be ! �opt
� !*� �� # � �

and the maximum number of processors that can fit in
�
�

be! �max
� � �

�� � #JILK , where
I@K

is the atomic unit in M dimen-
sions. Finally, let N � � ! �opt

! �max.

We start by the case where N � C 2 for all E . The ratio N �
indicates the “tightness” of the problem. As N'OP2 , it gets
harder to balance the load.

Let
�-Q

be the Core with the largest N . From experi-
ence, we know that even for a single grid roughly half of the
processors ! Qopt will be assigned a load of

" / each, where/SRTN QBU 2 . The load imbalance is due to round-off errors
caused by integer divisions and sub optimal grid aspect ratios.
Generally, the tighter the problem (greater N) the greater the
imbalance. The efficiency for

�BQ
is according to Equation 2: Q � 2>5'N QF = 2F�?-A
 � 2>5&N Q �

Since
�-Q

is the hardest case of all Cores, it is safe to as-
sume that

:VQ
has the lowest efficiency of all

�
�
. Hence, in

this case � � � 2>5 :WQ � N Q .
As an example consider ! Qopt

�DX
and ! Qmax

�YX �
, which

gives N Q � � � 2 . For this case, we estimate that half of the pro-
cessors (2 in this case) will end up with a 10 percent overload.

Now we derive � � for the the case where at least oneN � 0Z2 . This means that there is at least one Core which
cannot be partitioned into the optimal number of processors
due to granularity constraints. Consequently, the processors
that could not be assigned to these Cores have to be assigned
elsewhere. It is the (too little) work and the (too great) number
of processors for this “elsewhere” that we focus on.

Let [� denote the sum of the work not in “elsewhere” and[! the number of processors not assigned to “elsewhere”. That
is [� � �\ �^]G_a`ab
Gc �

�
�

and [! � �\ �d]G_ ` b
Gc !
�
max

�
The efficiency for “elsewhere” is then according to Equa-

tion 2 :Ve � = 2>5 [�� � ? = 2>5 [!! ? A
 �
and consequently, � � � 2>5 : e .

In a real case scenario, � � is trivial to compute accord-
ing to the formulas above, by using the partitioning tool Na-
ture+Fable . Most of the entities occurring in the formula
above, will be computed as a part of the partitioning process.

4.1.2 Estimating the communication penalty

Let the communication penalty � � be the fraction of the total
data needed to be communicated as inter-level communica-
tion. Let �&f � be the fraction of workload residing in the Cores
and let

�
be the fraction of work within the Cores avoiding

inter-level communication. Since all inter-level communica-
tion will occur within the Cores, we get:

� � � � 2>5 � � � f � �
7

For the worst possible � � ���� � , we get:

�� � O 2 �
To compute � � in a practical case, we proceed as follows.

For an arbitrary parent-child pair
�
�
� � �

�
� ���

�
� � in 1 M , let� � �

�
�

be the fraction of the child
�
�
� covering the parent

�
�
� ,

and let
��� � �
�

�
�� ! � be the fraction of the child avoiding inter-

level communication. Then,

� � � � f � �\�� ` � 2 5 ��� � �
�
�
� � ! � � �

�
� �� �

� 2� � �\�� ` � 2>5 ��� � � �
�
�� ! � � �

�
� � � (3)

Thus, we need to derive the function
��� � � �

�
� � ! � . Assume

all grids 	 � are distributed evenly in logical rectangles, called
patches, over all ! processors and assume a linear mapping
onto processors identical for all grids. For a parent-child grid
pair

� � � � � � � ,the probability for a patch
I�� � � and a patch	 � � � ending up on the same processor goes to zero when !

goes to infinity. When
� � is relatively small compared to

� �
we go faster to zero.

Assume 1D and let

 be the size of the a parent grid� � and
 � the size of its child grid
� � . Assume we place� � so its left border align the border of

� � (not optimal) as
in Figure 4. Let � � � �
� � denote the ratio

 #
 � (conse-
quently � ��� � � 2�). If � + 2 # F , the fraction of

 where
inter-level communication is eliminated is � # ! as in the two
processor case in Figure 4 (left). If 2 # F C � + F #��

,
the fraction is � # ! U � F � 5T2 � # ! as in the two processor
case in Figure 4 (right). For

F #�� C � + �@# X
, we get� # ! U � F � 5 2 � # ! U � � � 5 F � # ! . Continuing the same pattern,

we add the term
� E � 5 � E 5 2 � � # ! for E � 2 �GF � � ������� , where

� ������� =�� 22>5 ��� 5 2 � ! ? �
The first argument to

�����
is the condition for� E � 5 � E 5 2 � � # ! CD� and the second argument (!) is needed

to limit the number of terms in the sum by the number of pro-
cessors when � approaches 1.

Then
��� � �
� �� ! � , the fraction of

� � avoiding inter-level
communication, is2! �� � �
 � E � 5 � E 5 2 � ��� 2F ! � � � ���BU 2 � 5 � ��� 5 2 � �8�

For 2D, assume
� � and

� � are squares with sides

 and

 � respectively, and let (as for the 1D case) � �

 #
 � . Fur-
ther, to obtain the ! rectangles, we assign ! processors to
each dimension. For notation purposes, let

! � � �"� � � � � ���BU 2 � 5 � ��� 5 2 �

The fraction avoiding inter-level communication is then= ! � � ��� � �F ! ? � � ! � � ��� � � �X ! �

where � � �#���$� =%� 22 5 �&� 5 2 � ! ? �
For the M dimensional case, we get

! � � ��� K � K! F K �

where � K �����$� =%� 22>5 �&� 5 2 � !(') ? �
For a realistic case, we need to allow for non-square grids.

Consequently, we define * � � � and + � � � analogously to � � � � .
In 3 dimensions, we get

� � � � � � � * � � � � + � � � � ! ���
� ! � � � � � ���-, � ! � * �
� ��"�., � ! � + � � ��"�., �! F , �

(4)

where �-, ������� = � 22>5 ��� 5 2 � ! '/ ? �

and analogously for 2 M .
Figure 5 shows the fraction of

� � avoiding inter-level com-
munication for the aligned case in 1D. Examining this plot, we
see that when � �

 #
 � is small, the fraction of

� � avoiding
inter-level communication is insignificant even for small val-
ues on ! . Even when � approach 1, the fraction goes to zero
relatively fast. Since all grids are distributed over all proces-
sors, it is obvious that the amount of inter-level communica-
tion for a large number of processors will be immense.

The overall communication penalty � � could be computed
by Equation 3 with

�
defined by Equation 4. Note that this is

a relatively inexpensive operation. The square (or cube) root
of ! is computed once at simulation startup. Then, we com-
pute

�
and

� �
, which are used in the computation of ! � � �"� � .

Consequently, the number of arithmetical operations are small
and could be applied to each parent/child grid.

4.1.3 Comparing � � and � �
A useful comparison of � � and � � can be made only after the
system characteristics have been taken into account. In the
following, we assume that this is done and our �&0� and �10�
are appropriately biased to reflect the underlying parallel com-
puter.

Using � 0� and � 0� to place us along the first dimension in
the classification space between zero and one necessitates re-
ducing a 2-dimensional input to 1-dimensional output. The
dimension disregarded in this process will be used later (dis-
cussed below).

8

For comparing � 0� and � 0� , we propose

trade-off 1
��� 2>5 � 0� # � F � 0� � if �10� 0 �10�

� 0� # � F � 0� � otherwise.
(5)

4.2 Trade-off 2: Speed vs. Overall Quality

The trade-off between speed and overall quality translates to
a comparison of two entities. They are quantifications of 1)
how much time the partitioner would like to spend to obtain
its goals, and 2) what time-slot size the application realisti-
cally can offer it.

Since both the other trade-offs (1 and 3) are derived from
two penalties each, they can both provide the present trade-
off (speed versus quality) with important information regard-
ing the quantification of 1). That is, by reducing the two-
dimensional data to one dimension for the other trade-offs,
there are “unused” data yet to exploit. For the case of trade-
off 1, � � and � � are compared by Equation 5. This equa-
tion disregard the “amplitude” of the inputs. For example,
� � � � � � � � 2 would yield the same result as � � � ��� � � � X .
But this information is of utmost importance to the present
trade-off.

As the penalties approach 1, the more prominent is the
need to optimize. Consequently, a quantification of 1) could
be obtained by taking the average of the other penalties. An
average close to one translates to the greatest request for par-
titioning time, and an average close to zero would translate to
a simple partitioning case with no particular demands on the
partitioning (any will do).

The quantification of 2) is more problematic. We need to
know how long the compute cycles are, i.e., how much time
is spent computing between global synchronization points.
Placing timing calls in the code would facilitate an easy way
of determining how much time we could afford to spend in the
partitioning process. However, timing calls are not an option,
since we strive for optimized (non-profiled) code.

The numerical algorithm can give information about how
expensive, or computational intense, a cycle is. However,
it is unclear how the partitioner would extract this infor-
mation. Most importantly, we also need to know the re-
partitioning frequency (not all synchronization points calls for
re-partitioning). Thus, we provide methods for quantifying
the importance of the partitioning, i.e., how much time the
partitioner would like to spend to obtain its goal, but only
future research will provide us with methods for quantifying
how much time the partitioner has at its disposal.

4.3 Trade-off 3: Data migration

Trade-off 3 concerns how much, i.e., the amount of perturba-
tion of the grid hierarchy since the most recent re-partitioning.

Keeping a history of grid hierarchies as a sliding window
as proposed by Sumir Chandra in ARMaDA allows for the
comparison of adaptation patterns at different time steps. By

intersecting the boxes in the hierarchy at time-step � with those
at time-step � U 2 , we get a metric indicating how much the
grid has changed during this time-step. A large intersection
means little change, and a small intersection means a large
change. Keeping a history of

H
states prevents thrashing and

over-reacting to temporary changes. This dimension in the
classification space should thus be relatively easy to deter-
mine.

5 Validation

This section explains the experimental process for validating
the proposed model, and presents the results.

5.1 Methods — Experimental Setup

A trace file (described below) from each of the five SAMR
applications (described below) is used in two different ways.
First, the trace-file is processed by a program implementing
our proposed model. This program outputs � � and � � for
each time-step. Second, the trace-file is partitioned by Na-
ture+Fable and processed by the SAMR simulator (de-
scribed below). This program outputs the actual partitioning
result in terms of load imbalance and communication amount
for each time step. The two sets of output, viz. � � vs actual
load imbalance, and � � vs actual communication amount, are
then for each application plotted in the same figure to enable
visual comparison. The idea is not that the plots should co-
incide — rather, the idea is to examine whether the model
(i.e., ��� and � �) succeeds in capturing the overall behavior of
the different applications i.e. for a static and non-optimized
partitioning setup, will the analytical model correctly capture
the difficult-to-load-balance and difficult-to-reduce communi-
cations configurations of the grid hierarchy.

5.1.1 Five SAMR Applications

A suite of 5 “real-world” SAMR application kernels taken
from varied scientific and engineering domains are used to
evaluate the effectiveness of the proposed model to capture
application behavior. These applications demonstrate differ-
ent runtime behavior and adaptation patterns. Application do-
mains include numerical relativity (Scalarwave), oil reservoir
simulations (Buckley-Leverette), and computational fluid dy-
namics (compressible turbulence - RM, and supersonic flows
- EnoAMR 2D). Finally, we also use TportAMR 2D which is
a simple benchmark kernel that solves the transport equation
in 2D and is part of the GrACE distribution. The applications
use 5 levels of factor 2 refinements in space and time. Re-
gridding and redistribution is performed every 4 time-steps on
each level. The applications are executed for 100 time-steps
and the granularity (minimum block dimension) is 2. The ap-
plication kernels are described below.

The numerical relativity application (Scalarwave/SC) is a
coupled set of partial differential equations. The equations can

9

be divided into two classes: elliptic (Laplace equation-like)
constraint equations which must be satisfied at each time, and
coupled hyperbolic (Wave equation-like) equations describing
time evolution. This kernel addresses the hyperbolic equa-
tions and is part of the Cactus numerical relativity toolkit2.

The Buckley-Leverette model is used in Oil-Water Flow
Simulation (OWFS) application for simulation of hydrocar-
bon pollution in aquifers. OWFS provides for layer-by-layer
modeling of oil-water mixture in confined aquifers with re-
gard to discharge/recharge, infiltration, interaction with sur-
face water bodies and drainage systems, discharge into springs
and leakage between layers. This kernel is taken from the
IPARS reservoir simulation toolkit developed at the Center for
Subsurface Modeling at the University of Texas at Austin3.

The RM is a compressible turbulence application solv-
ing the Richtmyer-Meshkov instability. This application
is part of the virtual test facility (VTF) developed at the
ASCI/ASAP center at the California Institute of Technology4.
The Richtmyer-Meshkov instability is a fingering instability
which occurs at a material interface accelerated by a shock
wave. This instability plays an important role in studies of
supernova and inertial confinement fusion.

EnoAMR is a computational fluid dynamics application
that addresses the forward facing step problem, describing
what happens when a step is instantaneously risen in a su-
personic flow. The application has several features including
bow shock, Mach stem, contact discontinuity, and a numeri-
cal boundary. EnoAMR is also a part of the virtual test facility
developed at the ASCI/ASAP Center at Caltech.

5.1.2 Partitioning Set-Up

All partitioning is done with Nature+Fable set-up with
static “default” values [35, 37]. The goal is not to obtain a
particularly good-quality partitioning, but rather to partition
the applications with a static “neutral” setting so that behavior
patterns in the applications are clearly visible.

5.1.3 Deriving Application Behavior

The derivation of load imbalance and communication amount
is performed using software [33] developed at Rutgers Univer-
sity in New Jersey by The Applied Software Systems Labora-
tory, that simulates the execution of the Berger-Colella SAMR
algorithm. This software is driven by an application execution
trace obtained from a single processor run. This trace captures
the state of the SAMR grid hierarchy for the application at the
regrid (refinement and coarsening) step and is independent of
any partitioning. The experimental process allows the user to
select the partitioner to be used, the partitioning parameters
(e.g. block size), and the number of processors. The trace is
then run and the performance of the partitioning configura-
tion at each regrid step is computed using a metric [35] with

the components load balance, communication, data migration,
and overheads.

Using the evaluation process described above, communi-
cation is the sum of the amount of inter-processor communi-
cation for each time-step. Load imbalance is the load of the
heaviest loaded processor divided by optimal load for each
time step.

5.1.4 Model Evaluation

To evaluate the ability of our penalties � � and � � to accurately
capture the behavior of the applications, we plotted each ap-
plication’s load imbalance as a function of time and super im-
posed � � , scaled so as to best allow for visual comparison. The
same was done for communication versus ��� . No numerical
results, e.g. in terms of error norms, were derived. The pur-
pose of this experimental process was to examine whether our
model indeed reflects the inherent and dynamic optimization-
need in the applications. This was most easily examined visu-
ally.

5.2 Results

Figure 6 through 10 display the results. Examining the plots, it
seems that the proposed model generally captures the essence
of application behavior i.e., a larger � � generally corresponds
to a greater load imbalance and a larger � � generally corre-
sponds to larger communication amount. The trends are simi-
lar, and in case of oscillatory behavior, the model captures the
time period of the oscillation. Note that the values obtained
from the simulations are governed by the domain decompo-
sition achieved by the actual (hybrid) partitioner used, while
the model predictions assume a simple purely domain-based
or purely patch-based partitioner.

Below, we discuss the results for each application.
RM2D The load imbalance was relatively static for this ap-
plication. The penalty � � successfully captured this by dis-
playing a smooth curve increasing occasionally to indicate a
general increase in load imbalance. The communication vol-
ume changed seemingly randomly and ��� followed the pattern
both on the small and large scale fairly well.
BL2D Both the load imbalance and the communication vol-
ume exhibited oscillatory behavior for this application. Both
� � and � � followed the time periods and accurately showed
the same “peaks” and “valleys”.
ENO2D This was the most static of the applications, exhibit-
ing only a few transitions. We were unsure whether this was
due to a bug in the application that generated this particular
trace. The penalty � � captured the load balance behavior fairly
well, but it failed to accurately reflect the last small transition
at time step 40. The penalty � � followed the pattern of the
communication volume fairly well.

2Cactus Computation Toolkit - http://www.cactuscode.org
3IPARS: A New Generation Framework for Petroleum Reservoir Simulation - http://www.ticam.utexas.edu/CSM/ACTI/ipars.html
4Center for Simulation of Dynamic Response of Materials - http://www.cacr.caltech.edu/ASAP/

10

SC2D This application exhibited oscillatory behavior both in
load imbalance and communication volume. Both � � and ���
followed the time periods and accurately showed the same
“peaks” and “valleys”. The penalty � � did not accurately cap-
ture the behavior of the load imbalance at a larger scale.
TP2D This application exhibited seemingly random load im-
balance and communication volume dynamics. The penalty
� � captured only some of the features of the load imbalance
on a small and a large scale. The penalty ��� reflected large
scale and small scale behavior of communication fairly accu-
rately.

6 Conclusions and Future Work

We have developed a model that, ab initio, predicts the suit-
ability of a structured adaptive mesh for purely domain-based
or patch-based decomposition. This information is used de-
termine one of the parameters used to configure a partitioner
or choose the optimal one for a given problem. The predic-
tions were validated against data obtained from five different
SAMR simulations.

From the results we draw the conclusion that our model
could be useful for decreasing execution time for large SAMR
applications. Most such applications exhibit a highly dy-
namic behavior and consequently the partitioning require-
ments change at run-time. To accurately track and adapt for
this dynamic behavior potentially lead to a large decrease of
execution times.

In the future, we will address the remaining two param-
eters that complete the set which uniquely determine the op-
timal partitioner (setting). These parameters were defined in
this paper, but not validated. Once done, this model will form
the core of the meta-partitioner, an expert system that chooses
(or configures) partitioners for optimality.

Acknowledgments

The authors thank Manish Parashar and Sumir Chandra at the
Center for Advanced Information Processing, Rutgers Univer-
sity, NJ, USA, and Michael Thuné and Jarmo Rantakokko at
Information Technology, Uppsala University, Sweden for sci-
entific collaboration. Sandia is a multiprogram laboratory op-
erated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract
DE-AC04-94-AL85000.

References

[1] The ASCI allience. http://www.llnl.gov/asci-alliences/asci-
chicago.html, University of Chicago, 2000.

[2] The ASCI/ASAP center. http://www.carc.caltech.edu/ASAP,
California Institute of Technology, 2000.

[3] CHOMBO. http://seesar.lbl.gov/anag/chombo/, NERSC,
ANAG of Lawrence Berkeley National Lab, CA, USA, 2003.

[4] Scott B. Baden, Scott R. Kohn, and S. Fink. Programming
with LPARX. Technical Report, University of California, San
Diego, 1994.

[5] Dinshaw Balsara and Charles Norton. Highly parallel struc-
tured adaptive mesh refinement using language-based ap-
proaches. Journal of parallel computing, (27):37–70, 2001.

[6] M. Berger, et al. Adaptive mesh refinement for 1-dimensional
gas dynamics. Scientific Computing, 17:43–47, 1983.

[7] M. J. Berger and P. Colella. Local adaptive mesh refinement
for shock hydrodynamics. Journal of Computational Physics,
82, 1989.

[8] Marsha J. Berger and Joseph Oliger. Adaptive mesh refinement
for hyperbolic partial differential equations. Jounal of Compu-
tational Physics, 53:484–512, 1984.

[9] G. Bryan. Fluids in the universe: Adaptive mesh refinement
in cosmology. Computing in Science and Engineering, pages
46–53, 1999.

[10] S. Chandra and M. Parashar. An evaluation of partitioners for
parallel SAMR applications. Lecture Notes in Computer Sci-
ence, 2150:171–174, 2001. Euro-Par 2001.

[11] S. Chandra, J. Steensland, and M. Parashar. An experimen-
tal study of adaptive application sensitive partitioning strategies
for SAMR appliations, 2001. Research poster presentation at
Supercomputing Conference, November 2001.

[12] S. Chandra, J. Steensland, M. Parashar, and J. Cummings. An
experimental study of adaptive application sensitive partition-
ing strategies for SAMR appliations. Santa Fe, NM, USA,
2001.

[13] Sumir Chandra. ARMaDA: a framework for adaptive
application-sensitive runtime management of dynamic applica-
tions. Master’s Thesis, Graduate School, Rutgers University,
NJ, USA, 2002.

[14] Mattew W. Choptuik. Experiences with an adaptive mesh re-
finement algorithm in numerical relativity. Frontiers in Numer-
ical Relativity, pages 206–221, 1989.

[15] Karen Devine et al. Design of dynamic load-balancing tools for
parallel applications. Technical report, Sandia national Labo-
ratories, Albuquerque, NM, USA, 2000.

[16] Stephen J. Fink, Scott B. Baden, and Scott R. Kohn. Flexi-
ble communication mechanisms for dynamic structured appli-
cations. In Proceedings of IRREGULAR ’96, 1996.

[17] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J. Sci. Com-
put., 20:359–392, 1998.

[18] Scott Kohn. SAMRAI homepage, structured adap-
tive mesh refinement applications infrastructure.
http://www.llnl.gov/CASC/SAMRAI/, 1999.

[19] Z. Lan, V. Taylor, and G. Bryan. Dynamic load balancing for
structured adaptive mesh refinement applications. In Proceed-
ings of ICPP 2001, 2001.

11

[20] Z. Lan, V. Taylor, and G. Bryan. Dynamic load balancing of
SAMR applications on distributed systems. In Proceedings of
Supercomputing 2001, 2001.

[21] Peter MacNeice. Paramesh homepage, 1999.
sdcd.gsfc.nasa.gov/ESS/macneice/paramesh/-
paramesh.html.

[22] Peter MacNeice et al. PARAMESH: A parallel adaptive mesh
refinement community toolkit. Computer physics communica-
tions, (126):330–354, 2000.

[23] M. Norman and G. Bryan. Cosmological adaptive mesh refine-
ment. Numerical Astrophysics, 1999.

[24] M. Parashar and J. C. Browne. On partitioning dynamic adap-
tive grid hierarchies. In Proceedings of the 29th Annual Hawaii
International Conference on System Sciences, 1996.

[25] M. Parashar, J.A. Wheeler, G. Pope, K.Wang, and P. Wang. A
new generation EOS compositional reservoir simulator: Part II
- framework and multiprocessing. Proceedings of the Society
of Pertroleum Engineerings Reservoir Simulation Symposium,
Dallas, TX, June 1997.

[26] Manish Parashar and James Browne. System engineering for
high performance computing software: The HDDA/DAGH in-
frastructure for implementation of parallel structured adaptive
mesh refinement. IMA Volume on Structured Adaptive Mesh
Refinement (SAMR) Grid Methods, pages 1–18, 2000.

[27] S.G. Parker. A component-based architecture for parallel multi-
physics PDE simulations. In Proceedings of ICCS 2002, num-
ber 2331, pages 719–734. Springer Verlag, 2002.

[28] R. Pember, J. Bell, P. Colella, W. Crutchfield, and M. Welcome.
Adaptive cartesian grid methods for representing geometry in
inviscid compressible flow, 1993. 11th AIAA Computational
Fluid Dynamics Conference, Orlando, FL, July 6-9.

[29] Jarmo Rantakokko. Data Partitioning Methods and Parallel
Block-Oriented PDE Solvers. PhD thesis, Uppsala University,
1998.

[30] Hawley S. and Choptuic M. Boson stars driven to the brink of
black hole formation. Physic Rev, D 62:104024, 2000.

[31] Jeffrey Saltzman. Patched based methods for adaptive mesh re-
finement solutions of partial differential equations, 1997. Lec-
ture notes.

[32] K. Schloegel, G. Karypis, and V. Kumar. A unfified algorithm
for load-balancing adaptive scientific simulations. In Proceed-
ings of Supercomputing 2000, 2000.

[33] Mausumi Shee. Evaluation and optimization of load balanc-
ing/distribution techniques for adaptive grid hierarchies. M.S.
Thesis, Graduate School, Rutgers University, NJ, 2000

http://www.caip.rutgers.edu/TASSL/Thesis/mshee-thesis.pdf,
2000.

[34] Johan Steensland. Domain-based partitioning for parallel
SAMR applications, 2001. Licentiate thesis. Uppsala Univer-
sity, IT, Dept. of scientific computing. 2001-002.

[35] Johan Steensland. Efficient partitioning of dynamic structured
grid hierarchies. PhD thesis, Uppsala University, 2002.

[36] Johan Steensland, Sumir Chandra, and Manish Parashar. An
application-centric characterization of domain-based SFC par-
titioners for parallel SAMR. IEEE Transactions on Parallel
and Distributed Systems, December:1275–1289, 2002.

[37] Johan Steensland and Jaideep Ray. A heuristic re-mapping al-
gorithm reducing inter-level communication in SAMR appli-
cations. Technical Report SAND2003-8310, Sandia National
Laboratory, Livermore, CA, USA, 2003.

[38] Johan Steensland, Stefan Söderberg, and Michael Thuné. A
comparison of partitioning schemes for blockwise parallel
SAMR applications. In Proceedings of PARA2000, Workshop
on Applied Parallel Computing, volume 1947 of LNCS, pages
160–169. Springer Verlag, 2001.

[39] Erlendur Steinthorsson and David Modiano. Advanced
methodology for simulation of complex flows using structured
grid systems. ICOMP, 28, 1995.

[40] M. Thuné. Partitioning strategies for composite grids. Parallel
Algorithms and Applications, 11:325–348, 1997.

[41] N. Touheed, P. Selwood, P. Jimack, and M. Berzins. A compar-
ison of some dynamic load-balancing algorithms for a parallel
adaptive flow solver. Journal of Parallel Computing, 26:1535–
1554, 2000.

[42] C. Walshaw and M. Cross. Multilevel mesh partitioning for het-
erogeneous communication networks. Future generation com-
puter systems, 17:601–623, 2001.

[43] C. Walshaw, M. Cross, and M. G. Everett. Parallel dynamic
graph partitioning for adaptive unstructured meshes. Journal of
Parallel and Distributed Computing, 47(2):102–108, Decem-
ber 1997.

[44] P. Wang, I. Yotov, T. Arbogast, C. Dawson, M. Parashar, and
K. Sepehrnoori. A new generation EOS compositional reser-
voir simulator: Part I - formulation and discretization. Pro-
ceedings of the Society of Pertroleum Engineerings Reservoir
Simulation Symposium, Dallas, TX, June 1997.

[45] Andrew M. Wissink et al. Large scale parallel sctructured AMR
calculations using the SAMRAI framwork. In proceedings of
Supercomputing 2001, 2001.

12

I
II

II
I

IV

V
I

V
II

I
V

IIV

M
or

e
co

m
pu

ta
tio

n

M
or

e
co

m
m

un
ic

at
io

n M
or

e
lo

ca
liz

ed
 a

da
pt

io
n

M
or

e
sc

at
te

re
d

ad
ap

ta
tio

n

L
es

s
co

m
pu

ta
tio

n

L
es

s
co

m
m

un
ic

at
io

n

H
ig

he
r

ac
tiv

ity
 d

yn
am

ic
s

L
ow

er
 a

ct
iv

ity
 d

yn
am

ic
s

Optimize
quality

Optimize
load balance

Optimize
communication

data migration
Optimize

Optimize
speed

Figure 3: Left: The octant approach. The application and system is classified with respect to (1) communication / computation
domination, (2) scattered / localized refinements, and (3) activity dynamics. Right: The absolute and continuous partitioner-
centric classification space. Note the absence of unique trade-off for data migration, as opposed to the general trade-offs
communication vs load balance and speed vs quality.

13

h1

h2

��

��

{
Level

Level

l

l

+1

{

P

P

c

p

p p

p p
1

1 2

2

h2

h1

��

��

��

��

{

Level

Level

l

l

+1P

P

c

p

p

p p
1

1

2

{

p
2

Figure 4: A part of a 1D grid hierarchy with an aligned parent-child grid pair
� � � � � � � partitioned into 2 partitions (! � F

).
Note (left) the fraction

 # ! of

� � avoiding inter-level communication, and (right) a larger
� � leading to a bigger fraction

(

 # ! U � F

 5
 � � # !) of
� � avoiding inter-level communication.

0
10

20
30

40
50

60
70

0.5

0.6

0.7

0.8

0.9

1
0

0.2

0.4

0.6

0.8

1

processors

Fraction of h1 avoiding inter−level communication

h1/h2

F
ra

ct
io

n

Figure 5: The fraction for
� ��� C � C 2 and

� +&! +
	 X of
� � that in the aligned 1D case will eliminate inter-level communica-

tion. Note steepness for small � .

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

Lo
ad

 im
ba

lan
ce

 in
 p

er
ce

nt

Time step

RM2D load imbalance for 16 processors
Load imbalance
Scaled β

l

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Am
ou

nt
 o

f c
om

m
un

ica
tio

n

Time step

RM2D communication for 16 processors
Communication
Scaled β

c

Figure 6: The ability of the penalties to predict application behavior for RM2D. Left, the actual load imbalance (in blue) and
the penalty � � (in red). Right, the actual communication volume (in blue) and the penalty � � (in red).

14

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

Lo
ad

 im
ba

lan
ce

 in
 p

er
ce

nt

Time step

BL2D load imbalance for 16 processors
Load imbalance
Scaled β

l

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

Am
ou

nt
 o

f c
om

m
un

ica
tio

n

Time step

BL2D communication for 16 processors
Communication
Scaled β

c

Figure 7: The ability of the penalties to predict application behavior for BL2D. Left, the actual load imbalance (in blue) and the
penalty � � (in red). Right, the actual communication volume (in blue) and the penalty � � (in red).

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Lo
ad

 im
ba

lan
ce

 in
 p

er
ce

nt

Time step

ENO2D load imbalance for 16 processors
Load imbalance
Scaled β

l

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

Am
ou

nt
 o

f c
om

m
un

ica
tio

n

Time step

ENO2D communication for 16 processors
Communication
Scaled β

c

Figure 8: The ability of the penalties to predict application behavior for ENO2D. Left, the actual load imbalance (in blue) and
the penalty � � (in red). Right, the actual communication volume (in blue) and the penalty � � (in red).

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

Lo
ad

 im
ba

lan
ce

 in
 p

er
ce

nt

Time step

SC2D load imbalance for 16 processors
Load imbalance
Scaled β

l

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Am
ou

nt
 o

f c
om

m
un

ica
tio

n

Time step

SC2D communication for 16 processors
Communication
Scaled β

c

Figure 9: The ability of the penalties to predict application behavior for SC2D. Left, the actual load imbalance (in blue) and the
penalty � � (in red). Right, the actual communication volume (in blue) and the penalty � � (in red).

15

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

Lo
ad

 im
ba

lan
ce

 in
 p

er
ce

nt

Time step

TP2D load imbalance for 16 processors
Load imbalance
Scaled β

l

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Am
ou

nt
 o

f c
om

m
un

ica
tio

n

Time step

TP2D communication for 16 processors
Communication
Scaled β

c

Figure 10: The ability of the penalties to predict application behavior for TP2D. Left, the actual load imbalance (in blue) and
the penalty � � (in red). Right, the actual communication volume (in blue) and the penalty � � (in red). Note only 55 time-steps
displayed for the load imbalance due to inability of Nature+Fable to cope with the remaining time-steps.

16

