
Using the Common Component Architecture to Design High Performance
Scientific Simulation Codes

Sophia Lefantzi, Jaideep Ray and Habib N. Najm
Sandia National Laboratories

PO Box 969, MS 9051, Livermore, CA, 94550�
slefant,jairay,hnnajm � @ca.sandia.gov

Abstract

We present a design and proof-of-concept implementa-
tion of a component-based scientific simulation toolkit for
hydrodynamics. We employed the Common Component Ar-
chitecture, a minimalist, low-latency component model as
our paradigm for developing a set of high-performance par-
allel components for simulating flows on structured adap-
tively refined meshes. Our findings demonstrate that the
architecture is sufficiently flexible and simple to allow an
intuitive and straightforward decomposition of a complex
monolithic code into easy-to-implement components. The
result is a set of stand-alone independent components from
which a simulation code is assembled. Our results show
that the component architecture imposes negligible over-
heads on single processor performance while scaling to
multiple processors remains unaffected.

Keywords: Common Component Architecture
(CCA), Structured Adaptive Mesh Refinement (SAMR),
component-based software, high performance computing,
hydrodynamics.

1. Introduction

Most scientific codes today are hand-tooled by a small
group, and the usual practice is to embody all numerical
and domain-specific algorithms in a monolithic simulation
code. The small group is responsible for maintaining and
developing the code, a fact that restricts the size and the
scope of parallel simulations to the abilities and expertise of
a few people. A detailed discussion of the software issues
in scientific simulations can be found in [7]. An obvious an-
swer to the problem of maintaining, reusing and exchanging
scientific code developed by experts is the creation of spe-
cialized, individual scientific modules.

The scientific community addressed the modularity is-
sue by developing individual libraries of special purpose,

widely used algorithms. Libraries like the Basic Linear Al-
gebra Library (BLAS), the Linear Algebra Package (LA-
PACK), and the Message Passing Interface (MPI) provide
very specific computing solutions and are available on all
high performance platforms. Libraries have a well defined,
standardized interface but their actual implementations are
vendor-specific. The user follows the standard; once linked,
the libraries “just work”. Another approach to modular-
ity was achieved through object-oriented programming with
the development of frameworks (e.g. POOMA [18], OVER-
TURE [12]) for parallel scientific computing. These frame-
works provide a set of data-structures and a large set of
commonly used numerical algorithms. Developing codes
using the framework’s own algorithms and data-structures
is fast and usually straightforward; however one’s codes are
tightly coupled to the framework and are no longer indepen-
dent. There are less intrusive frameworks, e.g. GrACE [23]
and Uintah[15], which only serve as data managers. They
have a data model and an interface for other codes to access
the data. Orchestration and synchronization of the work is
left to the user.

A valuable pointer for achieving modularity in scientific
computing comes from commercial practices. The business
world has implemented modularity by adopting the compo-
nent model (e.g. Visual Basic [5], CORBA [1] and Java
Beans [16]). In this model an object implements a function-
ality, which is exploited via interfaces; an object’s adher-
ence to a specification (dictated by the component model)
transforms it into a component within the framework. Com-
ponents are peers, i.e. they do not inherit from other com-
ponents, and are easily extensible since components imple-
menting an agreed-to, well defined interface can be devel-
oped in complete isolation. While component-based soft-
ware design enhances the co-operative development of ap-
plications, the commercial model is unsuitable for scien-
tific computing [7], the main drawbacks being high latency
and lack of support for parallel (not distributed) comput-
ing. The CCA (Common Component Architecture) compo-
nent model was designed [8] to meet the high performance

requirements of scientific computing; to date three CCA-
compliant framework implementations have been demon-
strated (CCAFFEINE[7], Uintah[15] and XCAT[6]). The
CCA standard is flexible; while allowing an evolutionary
path forward for new scientific applications, it is also an ef-
ficient way of “wrapping” legacy codes. An interesting dis-
cussion of the latter along with simple illustrative problems
(e.g. Laplace equation) can be found in [22].

The present work is the first comprehensive account of
how one identifies a class of significant computational sci-
entific problems (involving realistic physical models, non-
linear PDEs and a spectrum of time and length scales) and
creates a CCA-compliant component-based software infras-
tructure to solve them. This infrastructure consists of sci-
entific components, where each component has a distinct
functionality in terms of physical modeling or implemen-
tation of a numerical algorithm. In this paper we study
and lay out a formalism (the “classical” approach [14]) by
which one identifies a system and decomposes it recursively
to a component-level granularity, thus identifying the so-
lution architecture. We then create these components and
assemble them to study two very different problems; a re-
acting flow problem with two different test cases (� D igni-
tion and � D reaction-diffusion) and a shock hydrodynamics
problem. Despite the different physical nature, both prob-
lems adhere to the mathematical abstraction (system) that
the software infrastructure is expected to solve. Our domain
of interest is hydrodynamics, and the mathematical abstrac-
tion of the physical problems we target is a set of nonlin-
ear partial differential equations. We discuss the physical
model for each of the two problems, the associated com-
ponent assemblies, and present computational results high-
lighting the performance of the component-code in terms of
overhead and parallel scalability.

2. The CCA Component Model

The CCA model [8] uses the provides-uses design pat-
tern. Components provide functionalities through interfaces
that they export; they use other components’ functionalities
via interfaces. These interfaces are called Ports; thus a com-
ponent has ProvidesPorts and UsesPorts. Components are
peers and are independent. They are created and exist inside
a framework; this is where they register themselves, declare
their UsesPorts and ProvidesPorts and connect with other
components.

CCAFFEINE [7] is the CCA framework we employ for
our research. CCAFFEINE is a low latency framework
for scientific computations. Components can be written in
most languages within the framework; we develop most of
our components in C++ or as sets of F77 libraries wrapped
in C++. All CCAFFEINE components are derived from a
data-less abstract class with one deferred method called set-

Services(Services *q). All components implement the set-
Services method which is invoked by the framework at com-
ponent creation and is used by the components to register
themselves and their UsesPorts and ProvidesPorts. Compo-
nents also implement other data-less abstract classes, called
Ports, to allow access to their standard functionalities. Ev-
ery component is compiled into a shared object library, i.e.
a dynamically loadable library. Most Ports are domain-
specific and their design is left to the user community.

A CCAFFEINE code can be assembled and run through
a script or a Graphical User Interface (GUI). All compo-
nents exist on the same processor and the same address
space. Once components are instantiated and registered
with the framework, the process of connecting ports is just
the movement of (pointers to) interfaces from the provid-
ing to the using component. A method invocation on a Us-
esPort thus incurs a virtual function call overhead before
the actual implemented method is used. CCAFFEINE uses
the SCMD (Single Component Multiple Data) [7] model
of parallel computation. Identical frameworks, containing
the same components, are instantiated on all � processors.
“Parallelness” is implemented by the components via MPI
communications between the same component on all � pro-
cessors, i.e. across all � processors, � instances of a given
component � form a cohort[7] within which all message
passing is done. Thus the framework does not provide any
message-passing services. The framework adheres to the
MPI-1 standard, i.e. dynamic process creation/deletion and
a dynamically sized parallel virtual machine are not sup-
ported. This minimalist nature renders CCAFFEINE light,
simple, fast, and very unobtrusive to the components. Per-
formance is left to the component developer who is in the
best position to determine the optimal algorithms and im-
plementations for the problem at hand.

A CCAFFEINE job is generally started using mpirun (or
equivalent). “ � ” instances of the framework, run with the
same script, cause � identically configured frameworks to
load and exist on as many processors. The framework lends
out a properly scoped MPI communicator to any component
to allow access to the parallel virtual machine created by
mpirun. This conventional mode of starting a component-
based code makes job submission to a queuing system
rather easy. CCAFFEINE can also be started via a GUI. The
framework comes with an application framer which allows
the user to compose an application by dragging and drop-
ping components from an available list into an “arena” and
connecting the appropriate ports. Fig. 1 shows a small code
assembled in the arena – components are black boxes, with
ProvidesPorts on the left, UsesPorts on the right, and lines
connecting the Ports. Any action performed in the GUI is
converted to the corresponding script command action and
fed into a “multiplexer”, which reproduces the action � -
fold and issues it to each instance of the framework. The

output from the framework instances is de-multiplexed and
displayed by the GUI. The GUI-to-framework communica-
tion employing the multiplexer uses sockets.

3. Problem Specification

Our objective is the creation of a component-based soft-
ware infrastructure for computational hydrodynamics, in-
cluding chemically reacting flows. We target scientific
problems defined on simple geometries, i.e. logically rect-
angular domains. Typically a mesh of rectangular cells is
overlaid on the domain and flow quantities (density, mo-
mentum in � , � , � directions, temperature, species concen-
trations, etc.) are defined at the cell corners (henceforth
called mesh or grid points). Evolution in time of these quan-
tities is governed by PDEs which are of the general form:

���
���	��
� ����������������������������� � ���

(1)

where
�

is the vector of flow variables at a given mesh
point. Note that

�
involves variables only at a mesh point

while
 involves spatial derivatives which are computed us-
ing finite difference or finite volume schemes [17] and con-
sequently depend upon the mesh point and its close neigh-
bors. For different physical problems,

�
,
 and

�
vary. In

some cases
 or
�

may be absent.
Often

�
exhibits steep spatial variations in scattered

time-evolving regions of the domain. The dependence of

 on neighboring points requires that these steep variations
be fully resolved, usually by locally increasing the grid den-
sity. As the flowfield evolves, the regions of high gradients
move and the locally-resolved grid adapts. One of the most
common techniques of adaptive grid refinement is Struc-
tured Adaptive Mesh Refinement (SAMR) [10]. As a first
step, a uniform coarse mesh is overlaid on the domain. The
coarseness of the mesh causes errors (suitably defined) in
regions of high gradients. Based on an error threshold, grid
points in these regions are flagged, collated into rectangles,
and finer meshes are created by dividing the coarse cells
symmetrically by a constant refinement factor. This occurs
recursively, leading to a hierarchy of patches. The details
are in [23]. The patch hierarchy is periodically recreated.
The solution is passed through a filter to determine regions
needing finer meshes, whereby new patches are created and
initialized with data from the coarse meshes (provided there
does not exist a patch of the same resolution over that sub-
domain, wholly or partly). This process is called prolon-
gation. Regions which are deemed over-refined have fine
patches destroyed. Upon patch recreation the domain de-
composition on multiple processors is re-defined. An initial�

is imposed on all patches (Initial Condition) and the sys-
tem is evolved in time by integrating over time-steps. This

also resolves temporal changes in
�

. Each time-step is as-
sumed to advance in time from

� �
to

�!��#"$� � �!�&%('
.

We assume that
�

, in Eq. 1, is stiff (the ratio of the
largest and the smallest eigenvalues of

���*)+���
is large)

while
 is non-stiff. We employ an operator-splitting [28]
technique. Below, we outline the design of a CCA-
component based infrastructure that enables the solution of
equations like Eq. 1.

4. Design of Components and Interfaces

In this section we demonstrate the rationale for the re-
cursive decomposition of the solution strategy of Eq. 1 into
software subsystems and the interfaces developed. A soft-
ware subsystem is a collection of components that embodies
a physical or numerical functionality (e.g., an Explicit in-
tegration subsystem includes the time integrator, the RHS
evaluator and miscellaneous components that identify the
largest eigenvalue of the discretization matrix to enable dy-
namic time-step sizing). The software subsystems we iden-
tified are:

1. Mesh: It serves as a means of declaring and maintain-
ing patches in the mesh hierarchy. It is geometric in na-
ture, and determines and administers the child-parent-
sibling relationships and the spatio-temporal location
of patches. Load balancing and domain decomposition
functionalities are implemented here.

2. Data Object: It maintains the collection of arrays
which contain data declared on patches, 1 array per
patch. Typically a number of related variables are
stored together in a Data Object; equally typically, a
simulation would contain 2-3 Data Objects. This sub-
system implements the actual movement/copying of
data between patches and the packing/unpacking of
data before/after message passing. Currently we have
wrapped GrACE [3, 23] into a C++ component to per-
form the Data Object and the Mesh tasks.

3. Initial Condition: This subsystem consists of a set of
components that impose Initial Conditions on a Data
Object.

4. Explicit Integration subsystem: It consists of a re-
cursive time integrator that advances a set of Data Ob-
jects over a time step as well as components that eval-
uate and assemble the Right Hand Side (RHS), one
patch at a time. The evaluation of the RHS can be done
by one component or by a further subsystem of com-
ponents. This also contains components that analyze
the field to determine an approximation of the high-
est eigenvalue that the integrator will encounter. This
information is used by the integrator to dynamically
adjust the timestep.

5. Implicit Integration subsystem: This consists of an
implicit time integrator, which advances a vector of
variables, RHS component(s), and an adaptor that col-
lates data from a patch to a vector.

6. Interpolation components: These implement various
spatial and temporal interpolation operators.

7. Boundary Condition: It is applied on a patch by
patch basis. BCs are applied at each of the stages of
a multi-stage integration scheme; hence application of
the boundary conditions has to be done on a finer basis
than one Data Object at a time. Thus the granularity
will be a patch.

8. Database components: These components store cer-
tain parameters (e.g. mesh size, gas properties, etc),
that are retrieved using a key-value pair mechanism.
They are essentially maps between the (character
string) property name and a number.

9. Adaptors: Depending on the physical problem at
hand, case-specific adaptors are often used to consol-
idate and filter outputs from various physics compo-
nents.

Given the functional description above, it is clear what
types of Ports (interfaces) are needed : (a) Port(s) (pro-
vided by the mesh component) that allow (i) geometrical
manipulation of the domain, (ii) the declaration of fields
on the mesh (via Data Objects), and (iii) allow tasks like
setting/querying of domain-decomposition details. Our de-
sign for type (a) Ports is called MeshPort [4]. (b) An ab-
stract interface for the Data Object allowing manipulation
of patches and the data defined on them. (c) Ports that ac-
cept an array of Data Objects and act on them in a synchro-
nized manner. Integrators usually support these ports. (d)
Ports that accept an array from a patch. (e) Ports that accept
vectors. (f) Ports that allow setting/querying of key-value
pairs.

In this section we will show the use and reuse of
a set of components developed for solving mathemati-
cal systems like Eq. 1. These relate, physically, to a

� D/homogeneous ignition, ignition in a two-dimensional
(� D) reaction-diffusion system and a shock interacting with
a density inhomogeneity modeled using the Euler equations
(an approximation of shock-induced mixing of two gases).

4.1. Zero Dimensional Ignition Problem

The � D ignition problem is described by the system:� �
� � � � � ���

(2)

where
� ����� ��� ' �������������
	 ' � ���� , � is the gas tempera-

ture,
���

is the mass fraction of species � in the mixture, ���

is the stagnation pressure, � is the total number of species,
and

�
is the array of chemical source terms for

�
com-

puted from the heat equation, the species equations and the
conservation of mass. Eq. 2 is identical to Eq. 1, without
the spatial derivative term
 . We use a ��� –Air mechanism
with � species and ��� reversible reactions [26]. This set of
equations is a � D reduction of the low Mach number form
of the Navier-Stokes, energy, and species equations; details
about the equations can be found in [20, 21].

The solution of this system requires the following mod-
ules (a) Initial Condition (b) Stiff Integrator (c) RHS Eval-
uator and (d) Boundary Condition. These modules are im-
plemented as the (a) Initialize, (b) CvodeComponent, (c)
ThermoChemistry, (d) ProblemModeler and dPdt com-
ponents respectively. Fig. 1 shows the � D ignition code as
assembled in the CCAFFEINE framework GUI. The com-
ponent design mapping to the description in Sec. 4 is in Ta-
ble 1.

Software Subsystems Component Instance
Mesh N/A

Data Object N/A
Initial Condition Initializer

Explicit Integration N/A
Implicit Integration CvodeComponent,

ThermoChemistry
Boundary Condition problemModeler,

dPdt
Database ThermoChemistry
Adaptors problemModeler

Table 1. Component Design for the 0D ignition
code.

Component Initializer imposes the initial condition; a
vector of double precision numbers specifying the stoichio-
metric mass fractions for the species, the initial tempera-
ture (� � � � K), and the initial pressure (� atm). The Im-
plicit Integration subsystem consists of CvodeComponent
and ThermoChemistry components. CvodeComponent
is an implicit stiff/non-stiff integrator that time-advances
the system as it ignites. This is a thin wrapper around
the Cvode [13] integrator library. The ThermoChemistry
component embodies the chemical interactions; it provides
the source terms for temperature and species due to chem-
istry and is a thin C++ wrapper around Fortran 77 subrou-
tines abstracted from pre-existing codes for chemically re-
acting flows. ThermoChemistry also serves as a Database
subsystem, i.e. it holds the gas properties. Between Cvode-
Component and ThermoChemistry is the problemMod-
eler component which acts as an Adaptor, i.e. for this closed
system it adds the pressure term to the heat equation. The

pressure term depends on the boundary conditions of the
problem (rigid walls, i.e. constant mass and volume) and is
computed by the dPdt component. The code integrates up
to 1 ms and executes in 1.5 secs on a 1 GHz Pentium III Red
Hat workstation.

Figure 1. GUI shot of the � D ignition code.

4.2. 2D Reaction-Diffusion Fronts

In this example we expand the � D ignition test case to
include spatial terms to model diffusion. The equations are:

���
� � ��� ��� ��� � �������

(3)

where
� � ��� ��� ' � ������� � �
	 ' , � � '	 � '
�� � � ��������� � , � �

�� ����� ' ������������� � 	 ' , � is the reactive production of heat
and species, while � ��� ��� �����

is the diffusive transport
source term (by Fick’s Law) of the heat and the species.
is the thermal conductivity and

� �
are the diffusion coef-

ficients. The chemical production of a species is governed
by the chemical reactions it undergoes; heat production (by
chemical reactions) is governed by the summation over all
the species of the enthalpy change of each species. This
system of partial differential equations models a Reaction-
Diffusion system.

This is a reaction-diffusion flame model that includes
chemistry and the diffusion of heat and species, but no con-
vection; pressure is assumed to be constant in time and
space (i.e. burning in an open domain). The species are as-
sumed to diffuse independently into the mixture at a mesh
point, i.e. the diffusion coefficient

� �
of the ����� species is

mixture averaged. The model was developed to study the
behavior of an actual flame simulation under SAMR in a
component based infrastructure. We used the same � � –Air
mechanism we used for the � D ignition test case. The diffu-

sion of species provides a good approximation of the “pre-
dictable” part of the workload of a real flame simulation,
i.e. the compute time per mesh point at refinement level �
can be predicted and is uniformly applicable across all mesh
points. Chemistry integration in our reaction-diffusion
example is expensive mostly inside the flame, and con-
tributes tremendously to load-imbalance. Patches are col-
lated and distributed among processors to maximize load-
balance while keeping parents and children on the same pro-
cessors. Fig. 2 shows the component assembly design de-
scribed in Table 2. The InitialCondition component initial-

Software Subsystems Component Instance
Mesh GrACEComponent

Data Object GrACEComponent
Initial Condition InitialCondition

ExplicitIntegrator,
Explicit Integration DiffusionPhysics,

DRFMComponent
Implicit Integration CvodeComponent,

ThermoChemistry
Boundary Condition GrACEComponent

Database ThermoChemistry
Adaptors ImplicitIntegrator

Table 2. Component Design for the 2D
Reaction-Diffusion code.

izes a configuration with three hot-spots. The Mesh, Data
Object and Boundary Condition subsystems are accommo-
dated by GrACEComponent, which is the componetized
version [4] of the GrACE library. The Implicit Integra-
tion subsystem is identical to that of the 0D ignition code.
The ImplicitIntegrator component is an Adaptor that calls
on the Implicit Integration subsystem for all cells and all
patches. The Explicit Integration subsystem consists of
three components: a Runge-Kutta-Chebyshev integrator [9]
(ExplicitIntegrator), a component to calculate the diffu-
sion fluxes (DiffusionPhysics) and a component that calcu-
lates the mixture-averaged diffusion coefficients (DRFM-
Component). DRFMComponent is a thin C++ wrapper
around the Fortran77 DRFM [24] package. (MaxDiffCo-
effEvaluator) component is used by the explicit integrator
to evaluate the maximum diffusion coefficient over the do-
main to determine the maximum stable timestep. ErrorE-
stAndRegrid) component estimates the gradients at a cell
and flags regions for refinement/coarsening. The code runs
for 58 hours on 28 CPUs (Beowulf cluster, Red Hat 7.2, 1
GHz, 512 kB cache, Pentium III processors, 1 GB RAM per
node, 2 CPUs per node) connected by 100 bT switched fast
Ethernet.

The simulation is done within a 10 mm square domain.

CvodeComponent

DensePort

PropertiesPort

CvodePort DensePort

PropertiesPort

MeshPort

ThermoChemistry

InitCondPort MeshPort

InitialCondition

DiffusionPhysics

DiffFlux DiffCoeffs

DiffCoeffProp

DRFMComponent

DiffCoeffs

DiffCoeffProp

MeshPort

MaxDiffCoeffEvaluator

MeshPort

DiffCoeffProp

DataPort

MaxDiffCoeff

StatisticsPort MeshPort

StatisticsComponent

TimeInterpPort MeshPort

TheTimeInterpolator

RegriderPort MeshPort

ErrEstimAndRegrid

MaxDiffCoeff

DiffFlux

MeshPort

ExplicitIntegrator

ExplIntegPort

DataPort

MeshPort

InitCondPort

ExplIntegPort

StatisticsPort

RegriderPort

ImplIntegPort

GoPort

TheDriver

GrACEComponent

TimeInterpPort

MeshPort
BoundaryConds

ImplIntegPort MeshPort

PropertiesPort

CvodePort

ImplicitIntegrator

Figure 2. Reaction-Diffusion code assembly.

A 100 � 100 coarse mesh is laid on the domain. A stoichio-
metric � ��� ����� mixture is defined on the square with three
hot-spots which ignite. In Fig. 3 we plot the evolution of the
temperature. The finest structures are around � � ��� � �

	
	
mm in size; the finest grid resolution is � ��� � �

	�	
mm. The

refinement ratio is 2. The spectrum of length scales, span-
ning two orders of magnitude, is resolved using SAMR as
shown in Fig. 4.

Figure 3. Temperature field at t = 0, 0.265,
0.395 ms.

4.3. 2D Shock-Interface Interaction

In this example, we show reuse of the components men-
tioned above in the interaction of a shock with a density
interface. The system is modeled using the 2D Euler equa-
tion (inviscid Navier-Stokes); details of the equations used
and the interaction are in [27]. The governing equations
(compressible Euler equations) in conservative form are:

�
�
�� � � ��� ��� � � ��� � � (4)

where

� � � ������� � ��������� ����� �� �

Figure 4. AMR patch distribution with � �! �
mass fraction plotted on the finest mesh.

 � � � � � ��� � ��� � �#" �����$��� � ��� �#" �%�(�����&� �� �
� � � � � � ��� � ���
������� � �'" � � ��� �'"��%�������&� � �

���
is the total energy, related to the pressure

"
by

" � �)(�� � � ��� � '� � � � � �*� � � � and
�

is a interface tracking function.
We use the ideal gas law as the equation of state.

The equations are solved on a 3 level adaptive mesh, us-
ing a finite volume Godunov method [27]. The mesh is cell-
centered, i.e. the mesh divides the domain into small rect-
angular cells and fluid variables are defined and indexed at
the cell centers. The Godunov method involves construct-
ing the states on the left and right of a cell interface using
slope-limiters, upwinding and solving a Riemann problem
[27]. The construction of left and right states holds true
for most finite volume methods; solving an exact Riemann
problem could be substituted by a gas-kinetics scheme (e.g.
Equilibrium Flux Method [25]).

The code assembly of components (Fig. 5) is described
in Table 3. There is a ConicalInterfaceIC component that
sets up the problem - a shock tube with Air and Freon (den-
sity ratio 3) separated by an oblique (30 + from the verti-
cal) interface which is ruptured by a Mach 1.5 shock. The
GrACEComponent, StatisticsComponent, and ErrorE-
stAndRegrid components first utilized in the Reaction-
Diffusion simulation (Sec. 4.2, Fig. 2), are being reused.
A Runge-Kutta time integrator (ExplicitIntegratorRK2)
with an InviscidFlux component supplies the right-hand-
side of the equation, patch-by-patch. InviscidFlux compo-
nent uses a States component to set up the Riemann prob-
lem at each cell interface which is then passed to the Go-
dunovFlux component for the Riemann solution. Charac-
teristicQuantities determines the characteristic speeds and

Software Subsystems Component Instance
Mesh GrACEComponent

Data Object GrACEComponent
Initial Condition ConicalInterfaceIC

ExplicitIntegratorRK2,
Explicit Integration GodunovFlux,

States
Implicit Integration N/A
Boundary Condition BoundaryConditions

Database GasProperties
Adaptors InviscidFlux

Table 3. Component Design for the 2D Shock-
Interface Interaction.

ProlongRestrict performs the cell-centered interpolations.
The shock tube has reflecting boundary conditions above
and below and outflow on the right, which are set with the
BoundaryConditions component.

In Fig. 6 we plot the density field after the shock-
interface interaction; the thick black line indicates the in-
terface

� � � ��� . Reflected shocks are seen. Note that re-
gions of steep pressure and density gradients (shock waves
and gas-gas interface respectively) are resolved with Level
3 meshes. In Fig. 7 we plot the circulation on the interface
(� ��� ��� � � '��
	�� ��� ������� � ���

) as we increase the levels of
refinement. We note that we achieve convergence of the in-
terfacial circulation deposition since there is no appreciable
difference between the 2-level and 3-level runs. Further, the
maximum deposition, corresponding to the “knee” in the
plot, is closest to the analytical estimate of -0.592 for the
3-level run.

ErrEstimAndRegrid

RegriderPort MeshPort

MeshPortCharProperties

DataPort GasProperties

CharacteristicQuantities

ExplIntegPort

FluxProperties

DataPort

CharProperties

ConvFlux

MeshPort

ExplicitIntegratorRK2 InviscidFlux

StatesCompute

StatesProperties

FluxCompute

FluxProperties

FluxProperties

ConvFlux

GasProperties

States

StatesProperties

StatesCompute

ExplIntegPort

StatisticsPort

RegriderPort

ImplIntegPort

GoPort

HydroDriver

InitCondPort

MeshPort

GasProperties

GasProperties

ProlongRestrict

ProlongRestrict

BoundaryConds

BoundaryConditions

MeshPort

GodunovFlux

FluxCompute

FluxProperties

GasProperties

StatisticsPort MeshPort

StatisticsComponent

InitCondPort MeshPort

GasProperties

ConicalInterfacelC

GrACEComponent

BoundaryConds

ProlongRestrict

TimeInterpPort

MeshPort

Figure 5. A component assembly to simu-
late shock interactions with density inhomo-
geneities.

Figure 6. Density field at �)�� � 2.096, where
�

is the elapsed time and
�

the time needed by
the shock to traverse the oblique interface.

The Godunov method with RK2 becomes unstable for
strong shocks. The flexibility of CCA allows one to suc-
cessfully reuse the code assembly in Fig. 5 to simulate
strong shocks (Mach � 3.5) by simply replacing the Go-
dunovFlux component with EFMFlux, a component im-
plementing a more diffusive gas-kinetic scheme [25].

5. Performance of Component-Assembled
Code

In this section we examine the performance ramifications
of the CCA architecture. All C and C++ codes were com-
piled using gcc (g++) version 2.95; Fortran libraries were
compiled with Portland group’s pgf77. -O2 and -
fast were used for the GNU and PG compilers respec-
tively.

5.1. Single Processor Performance

This subsection addresses the question of serial perfor-
mance of component-based codes. Typically the imple-
mented method is called via a method in an interface, in-
curring the overhead of calling via a virtual function. This
overhead is expected to be relatively small.

We created a code identical to the one in Sec. 4.1, except
that the utilized mechanism had � species and � reactions
(as opposed to � species and ��� reactions). The problem
was solved on multiple identical cells, so that the elapsed
time could be accurately measured with getrusage().
We deliberately used a light-weight RHS, so that the virtual
function call would be a larger fraction of the computational
time. Two tests were made by changing the number of times

t

Γ i

0.5 1
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

3 levels
2 levels
1 level

Figure 7. Convergence with respect to grid
refinement of the interfacial circulation as the
mesh hierarchy is allowed to have 1, 2 and 3
levels respectively.

the ThermoChemistry component was called (done by in-
tegrating for a longer time), in an effort to rack up larger
overheads. The numbers are compared with those of a C-
code in which the integrator (Cvode) was implemented as a
library.

The codes were run on a 600 MHz AMD Athlon proces-
sor with 512 kB cache and 256 MB RAM, running RedHat
6.0. The results, in Table 4 indicate small differences in
the performance with no clear trend.

"$�
refers to the time

over which the problem was integrated, Ncells refers to the
number of mesh points. NFE=number of RHS evaluations,
i.e the number of times the ThermoChemistry component
was called per cell. Timings are in seconds. % difference is
the percentage difference in execution time. The overhead
in CCA components is in the method invocation, not in the
actual method execution. [11] shows how CCA method in-
vocations are consistently ��� times more expensive than
simple Fortran subroutine invocations; however since the
invocation overhead itself is � � � � � � � ����� � , a more ex-
pensive component method invocation is still insignificant
compared to the time spent in the method execution. Con-
sequently, even for such a light-weight mechanism, the ef-
fect of the more expensive component overhead could not
be reliably quantified. Thus, unless a design involves a very
fine-grained decomposition, components do not adversely
affect single processor performance.

5.2. Scaling To Multiple Processors

We ran the Reaction-Diffusion code (Sec. 4.3) on San-
dia’s CPlant cluster (433 MHz. EV56 Compaq Alpha pro-

"$�
Ncells NFE Comp. C-code % diff.

1 1000 150 4.93 4.98 -0.88
1 5000 150 28.78 28.66 0.42
1 10000 150 58.71 58.19 0.89

10 1000 424 13.68 13.74 -0.44
10 5000 424 77.14 78.33 -1.54
10 10000 424 165.85 164.74 0.67

Table 4. Timings for the single-processor
code. Comp. and diff. are abbreviations for
Component and difference.

cessors, 192 MB RAM). Message passing was done using
MPICH compiled for a 1 Gb/s Myrinet messaging fabric us-
ing 32-bit PCI32c cards. The code was run for 5 timesteps,
each of � � � �

	��
.

We performed constant single-processor and constant
global problem size test to determine (a) communication-
time characteristics as the machine size increases and (b)
communication cost versus computational costs. Adaptiv-
ity was turned off since it renders scalability extremely sen-
sitive to the performance of the load-balancer. Keeping the
computational load on a processor fixed, the problem was
run on up to 48 processors. Thus as the number of proces-
sors increased, so did the problem size. Each mesh point
has 9 variables on it. Runs were done for single-processor
domain sizes of � �'� � � , � � �'� � � � and �
	 �*� ��	 � . In
Fig. 8 we plot the run times for the three cases - we see
that increasing the number of processors (and the problem
size) does not make an appreciable difference. From Ta-
ble 5 we see that the run times scale as the single-processor
problem size. The problem size refers to the mesh size on
each processor. The mean, median and standard deviations
(�� ��� and � respectively) for the data in Fig. 8 show that
the machine behaves as “homogeneous”, i.e. there are no
sudden jumps in run-time as the job spreads itself across
the machine. Timings are in seconds. Thus CPlant can be
treated as a “homogeneous” machine, i.e. the communica-
tion times are not affected by machine size or the commu-
nication times are too small to be of any significance. We
address this question next.

Problem Size T̄ T̃ �
� � � � � 43.94 44.4 2.72� � � � � � � 161.7 159.6 5.81�
	 � � �
	 � 507.1 506.05 20.57

Table 5. Timings for the Reaction-Diffusion
code.

Number of Procs

T
im

e
(s

ec
)

0 10 20 30 40 50

100

200

300

400

500

50 x 50
100 x 100
175 x 175

Figure 8. Timings for constant-processor-
workload test for different single-CPU mesh
sizes.

We ran two cases where the global problem size was kept
constant while the number of processors were increased. It
was expected that at a point the single-processor problem
size would get small enough to be comparable to the com-
munication costs. Fig. 9 shows the run time versus ideal
run time for two problem sizes for up to 48 processors on
Cplant [2]. The two problems treated are � � �*� � � � and
� � ��� � � � on up to 48 nodes . The ideal curves are plot-
ted in lines (solid for � � � � � � � and dashed for � � � � � � �
meshes); individual measurements are symbols (boxes for

� � � � � � � and circles for � � � � � � � meshes). We see that
for the larger problem the measured run times follow the
ideal closely. The parallel scaling efficiency (� � ') �

� � ���
where

� ' is the single-cpu run time and
���

is the run time on
� processors) is found to be worst on a � � � � � � � grid on
48 processors - 73 %. The single-CPU problem size for this
last run was � � � � � .
6. Conclusions and Future Work

Computational science usually abstracts physical sys-
tems as systems of Partial or Ordinary Differential Equa-
tions. We have focused on a certain set of PDEs which
are common in hydrodynamics and emphasized a certain
class of solution methodologies (explicit integration of spa-
tially coupled terms, implicit integration of all other terms).
Within the boundaries set by these assumptions, we have
developed a fairly general set of components that can be as-
sembled to simulate very different kinds of flows. The CCA
architecture is shown to be sufficiently flexible and simple
to allow a straightforward design and development of com-
ponents by computational scientists. The component archi-

Number of Procs

T
im

e
(s

ec
)

0 10 20 30 40 50

50

100

150

200

250

300

350

400

450

500

200 x 200
350 x 350
Ideal 200 x 200
Ideal 350 x 350

Figure 9. Scalability of the Reaction-Diffusion
code (Fig. 2) without mesh refinement. The
worst scalability efficiency is 73 % for the
smaller problem on 48 nodes.

tecture imposes negligible overhead vis-a-vis a traditional
code and does not adversely affect parallel scalability.

Our study with CCA-based scientific components
demonstrates the following:

1. Reuse of the CvodeComponent and ThermoChem-
istry components in the � D ignition and the � D
Reaction-Diffusion simulations (instances Cvode-
Component and ThermoChemistry in Fig. 1, instances
CvodeSolver and ReactionTerms in Fig. 2).

2. Reuse of the Mesh and ErrEstAndRegrid compo-
nents in the Reaction-Diffusion and shock-interface
simulations (instances AMR Mesh and ErrE-
stAndRegrid in Fig. 2, instances AMRMesh and
ErrEstimator in Fig. 5).

3. Incorporation of a different numerical method in our
2D Shock-Interface Interaction, by replacing the Go-
dunovFlux component with the EFMFlux compo-
nent.

Recompilation/relinking of the code was not required.
The components were developed within the group in a de-
coupled manner. Interfaces (and units) were agreed to and
the components were coded to their agreed specifications.
Language “interoperability” was achieved by wrapping C
and Fortran 77 libraries into components; Decomposition of
the code into subsystems was done first coarsely along nu-
merical algorithm lines and then finely along physical mod-
els.

In the future, our thrust will be four-fold. (1) We will
continue to develop numerical and physical components

which will be used to simulate flames in SAMR. This will
also include an effort to define interfaces to load-balancers
prior to testing a number of them. (2) We will use CCA
interoperability tools for the automated wrapping of C and
Fortran libraries as components. (3) We will port our com-
ponents to other implementations of the CCA standard, as
parallel CCA frameworks become more interoperable. (4)
By using TAU [19], we intend to characterize the perfor-
mance characteristics of individual components and their
assemblies.

Acknowledgements This work was supported by the
Department of Energy, Office of Basic Energy Sciences,
SciDAC Computational Chemistry Program. The authors
would like to thank Kylene Smith for her contribution in
the development of CvodeComponent.

References

[1] CORBA component model webpage. http://www.omg.com.
Accessed July 2002.

[2] Cplant homepage. http://www.ca.sandia.gov/cacplant/.
[3] Grace homepage. http://www.caip.rutgers.edu/ parashar/TASSL/.
[4] SAMR homepage. http://www.cca-

forum.org/ � jaray/documentation.html. Last accessed
October 4, 2002.

[5] Visual basic webpage. http://msdn.microsoft.com/vbasic.
Accessed July 2002.

[6] Xcat homepage. http://www.extreme.indiana.edu/ccat/.
Also http://www.extreme.indiana.edu/xcat/; accessed July
2002.

[7] B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray, D. E.
Bernholdt, and J. A. Kohl. The CCA core specifica-
tions in a distributed memory SPMD framework. Concur-
rency: Practice and Experience, 14:323–345, 2002. Also at
http://www.cca-forum.org/ccafe03a/index.html.

[8] R. Armstrong, D. Gannon, A. Geist, K. Keahy, S. Kohn,
L. McInnes, S. Parker and B. Smolenski. Towards a com-
mon component architecture for high performance scientific
computing. In Proceedings of the

�����
International Sympo-

sium on High Performance Distributed Computing, 1999.
[9] B. P. Sommeijer, L. F. Shampine and J. G. Verwer. RKC:

an explicit solver for parabolic PDEs. J. Comp. Appl. Math.,
88:315–326, 1998.

[10] M. J. Berger and P. Collela. Local adaptive mesh refinement
for shock hydrodynamics. J. Comp. Phys., 82:64–84, 1989.

[11] D. E. Bernholdt, W. R. Elwasif, J. A. Kohl, and T. G. W.
Epperly. A component architecture for high-performance
computing. In Proceedings: Workshop in Performance Opti-
mization via High-Level Languages and Libraries, accepted.

[12] D. Brown, G. Chesshire, W. Henshaw and D. Quinlan. Over-
ture : An object-oriented software system for solving partial
differential equations in serial and parallel environments. In
Proceedings of the SIAM Parallel Conference, Minneapolis,
MN, USA, March 1997.

[13] S. D. Cohen and A. C. Hindmarsh. Cvode, a stiff/nonstiff
ODE solver in C. Computers in Physics, 10(2):138–143,
1996.

[14] I. Crnkovic. Component-based software engineering –
new challenges in software development. Software Focus,
2(4):127–133, 2002.

[15] J. D. de St. Germain, J. McCorquodale, S. G. Parker and
C. R. Johnson. Uintah : A massively parallel problem solv-
ing environment. In HPDC ’00 : Ninth IEEE International
Symposium on High Performance and Distributed Comput-
ing, August 2000.

[16] R. Englander and M. Loukides. Developing Java
Beans (Java Series). O’Reilly and Associates, 1997.
http://www.java.sun.com/products/javabeans.

[17] C. Hirsch. Numerical computation of internal and external
flows, Volumes I and II. John Wiley and Sons, 1988.

[18] S. Karmesin, J. Crotinger, J. Cummings, S. Haney,
W. Humphrey, J.Reynders, S. Smith, and T. Williams. Array
design and expression evaluation in POOMA II. In Lecture
Notes in Computer Science, volume 1505. Springer, 1998.

[19] A. Malony and S. Shende. Performance technology for
complex parallel and distributed systems. In G. Kotsis and
P.Kacsuk, editors, Distributed and Parallel Systems: From
Concepts to Applications, pages 37–46. Kluwer, Norwell,
MA, 2000.

[20] H. Najm. A Conservative Low Mach Number Projection
Method for Reacting Flow Modeling. In S. Chan, editor,
Transport Phenomena in Combustion, volume 2, pages 921–
932. Taylor and Francis, Wash. DC, 1996.

[21] H. N. Najm and P. S. Wyckoff and O. M. Knio A
Semi-Implicit Numerical Scheme for Reacting Flow. I. Stiff
Chemistry. J. Comp. Phys., 143:381–402, 1998.

[22] B. Norris, S. Balay, S. Benson, L. Freitag, P. Hovland,
L. McInnes and B. Smith. Parallel components for PDEs
and optimization: Some issues and experiences. Parallel
Computing, 28(12):1811–1831, 2002.

[23] M. Parashar and J. C. Browne. System engineering for high
performance computing software: The HDDA/DAGH in-
fratructure for implementation of parallel structured adap-
tive mesh refinement. In S. B. Baden, M. P. Chrisochoides,
D. B. Gannon and M. L. Norman, editors, Structured Adap-
tive Mesh Refinement, volume 117 of IMA. Springer-Verlag,
2000.

[24] P. H. Paul. DRFM: A New Package for the Evaluation of
Gas-Phase-Transport Properties. Sandia Report SAND98-
8203, Sandia National Laboratories, Albuquerque, New
Mexico, November 1997.

[25] D. I. Pullin. Direct simulation methods for compressible
ideal gas flow. J. Comp. Phys., 34:231–244, 1980.

[26] R. A. Yetter, F. L. Dryer and H. Rabitz. A comprehensive
reaction mechanism for carbon monoxide/hydrogen/oxygen
kinetics. Combust. Sci. and Tech., 79:97–128, 1991.

[27] R. Samtaney, J. Ray and N. J. Zabusky. Baroclinic circu-
lation generation on shock accelerated slow/fast gas inter-
faces. Phys. Fluids, 10(5):1217–1230, May 1998.

[28] G. Strang. On the construction and comparision of differ-
ence schemes. SIAM J. Numer. Anal., 5:506–517, 1968.

