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Aim of the talk 

• Aim: Interpret a physics-based linear inverse problem in terms 
of compressive sensing  
–  The inverse problem involves estimating a high-dimensional field, 

not parameters 
–  To explain why it works and the degree of inefficiency 
–  Define metrics that help quantify efficiency of reconstruction 

• Motivation 
–  Compressive Sensing (CS) and associated sparse reconstruction 

techniques are very efficient and practical means of sampling 
random fields 

•  Impose no pre-conditions (like smoothness etc.) on the field being 
sampled 

–  Since all measurements are approximate, a CS interpretations may 
allow us to 

•  Define the degree of approximation 
•  Impact on the accuracy of inversion 



Outline of the talk 

• What is compressive sensing, some basic concepts and terms 
• Explanation of the physics-based linear inverse problem 

–  Estimation of fossil-fuel CO2 (ffCO2) emissions in the US 
–  Temporally & spatially varying field 

• Demonstration of inversion using an adaptation of CS 
techniques 

• Explanation of why it worked 
–  And why it could not have worked with the adaptation 



What is compressive sensing? 

• CS – a way of measuring a signal e very efficiently and then 
reconstructing it 
–  Requires far fewer samples that Nyquist sampling 

•  If e is a signal/image of size N, and can be represented sparsely 
in some orthogonal basis set Φ	

–  e = Φ w, where on K << N elements of w are non-zero 

–  then the # of compressive samples needed is  
•  M = C K log2(N/K), C ~ 4 

• Compressive samples yobs are given by 
–  yobs = Ψ e = Ψ Φ w = G w 

–  each row ψ r,. is a random unit vector 



Sparse reconstruction 

• How does one recover e from yobs? 
–  By exploiting the fact that e is sparse representable in Φ	


• One minimizes, w.r.t. w 
–  |yobs – Ψ Φ w|2 + λ |w|1 = |yobs – Gw|2 + λ |w|1  
–  Reduces the model – observation mismatch while penalizing for 

non-zero w using |w|1 

• Alternatively, w.r.t. w 
–  min |w|1 under the constraint |yobs –Gw|2  < ε	


• Many convex optimization methods do this, not necessarily fast 
–  Basis pursuit, orthogonal matching pursuit etc. 

• Reconstruction uses no “crutch” / prior / regularization in the 
estimation problem, beyond sparsity 
–  The observations really have to be informative to do this …. 



Why is CS so efficient in sampling? 

•  yobs = Ψ e = Ψ Φ w = G w  
–  Each row ψ r,. collects 

information on all columns φ.,c 

–  If ψ r,. is random, it will be non-
aligned with all φ.,c 

• Called incoherence 

 

–  1 < µ(Ψ, Φ) < N1/2 

µ Ψ,Φ( ) = N1/2 max ψr,.φ.,c

= N1/2 max Gr,c

•  In image processing, Ψ are 
“standard” random matrices like 
Bernoulli, Toeplitz etc., or 
noiselets 

–  µ ~ 4 



Stability of sparse reconstruction 

• Given so few measurements, why is the 
sparse reconstruction stable? 
–  w = wtrue + n, both wtrue and n are K-sparse 
–  yobs = G(wtrue + n) = Gwtrue + Gn 

• For stability 
–  (1 - δ) |x|2 < |Gx|2 < (1 + δ) |x|2 

–  Called Restricted Isometry Property (RIP) 
of G = ΨΦ	


• A more conservative definition 
–  If the columns of G are nearly orthogonal to 

each other, we have RIP 
–  Alternatively, non-diagonal elements of 

GTG are far away from 1 
•  Max (GTG) is around 0.25 

Matrix Max(|GTG|) 

Gaussian 0.27 

Hadamard 0.28 

Scrambled-
block 
Hadamard 

0.489 

Circulant 0.478 

noiselets 0.3 



Using CS ideas in a physics inversion 

• Aim: Devise a method to estimate 
fossil-fuel CO2 (ff-CO2) emissions 
–  Data: measurements of ff-CO2 

concentrations at a sparse set of 
sensors 

• Motivation 
–  Monitoring emission & cap-and-trade 

treaties 
–  Updating global process-based 

inventories of ff-CO2 emissions 
• Technical challenge 

–  ff-CO2 emissions have a rough, non-
stationary spatial distribution 

•  Current smooth models (for 
estimating biogenic CO2 fluxes) don’t 
work 

Biogenic emissions: Mueller et al, JGR, 2008 

Anthropogenic emissions: Gurney et 
al, EST, 2009 



Characteristic of the ff-CO2 estimation 
problem 

•  Linear inverse problem 
–  yobs = H e(x, t), H = sensitivity matrix, e(x, t) = emissions 
–  H – determined using atmospheric dispersion models 
–  yobs – measured at a set of CO2 measurement towers  

•  e(x, t) is non-stationary and non-smooth 
–  Could be expressed with wavelets i.e. e(x, t) = Φ w(t) 
–  w(t) will be sparse; e(x, t) exists only where humans live (+ 

electricity generators) 

• Could we solve yobs = H e using CS arguments? 
–  H collects info from all emission sources / grid-cells; functions like Ψ 
–  yobs = H e = H Φ w has the same formulation as CS 

•  But what is the incoherence µ(H, Φ) ? 

–  Sparse reconstruction could work 



Posing the synthetic data inversion 

•  Aim: Estimate ff-CO2 emissions 
in US 

–  On a 1o resolution, 64 x 64 
mesh; assume zero non-US 
emissions 

–  Weekly-averaged emissions 

•  Synthetic data, CO2 
concentrations @ 35 sensors, 
every 3 hours 

–  True emissions – Vulcan 
database for US, 2002 

–  Sensor measurements 
simulated using WRF 

•  Spatial model for emissions 
–  yobs = H e = H Φ w  
–  Φ modeled with Haar wavelets 

Emissions for a week in August 2002 
(Vulcan database, 1 degree resolution) 



Dimensionality reduction 

•  A Haar wavelet model does not reduce dimensionality  
–   4096 coefficients to be estimated to model 1 week’s emissions 

•  Nightlights (DoD’s DMSP-OLS) are a good proxy for FF emissions 
–  Except emissions from electricity generation and cement production 

•  Use thresholded radiance-calibrated nightlights from 1997-98 to mask 
out unpopulated regions 

–  Reduce dimensionality from 4096 to 1031 



Introducing priors / regularization 

• CS of images is done with nothing more than sparsity priors 
–  ff-CO2 inversion failed with that 

• Original inversion :  
–  min |w|1 such that |yobs - H Φ w|2 < ε (failed) 

• Assume we have a model for emissions emodel = Φ wmodel 

–  Easily made by scaling lights-at-night with a constant to match 
annual US emissions 

–  yobs =  H Φ’ w’, Φ’ = diag(wmodel) Φ, w’ = w / wmodel 

–  min |w’|1 such that |yobs - H Φ’ w’|2 < ε  

• The normalization of w with the model ensures that the 
estimated values do not deviate very much from wmodel 

–  Unless observations say otherwise 
–  Basically, a prior or regularization 



How good is the reconstruction? 

• A week in September 2002 

True emissions Reconstructed emissions 



Can we reproduce tower observations? 

•  Tower concentration predictions with reconstructed fluxes (only 3 
weeks) 

–  Symbols : observations used in the inverse problem. 



Did sparsification work? 

• Only about half the 
wavelets could be 
estimated 

• We are probably not 
over-fitting the 
problem 
–  Data-driven 

sparsification works 



Reconstruction error in total US emission 

• We get about 3.5% error, worst case 



Is the spatial distribution correct? 

• The spatial distribution of emissions is very close to truth 
• Especially, if considering monthly fluxes 



Why did this work? 

• Meteorology is not aligned with 
Haar wavelets; H and Φ should 
be incoherent. 
–  Plot |Grc|, GH = H Φ	

–  Compare against GΨ = Ψ Φ	


• There are some large |Grc| ~ 1 
–  Sensor footprint is about 

1500km, but very affected by 
the closest 30 km 

•  Coherent with the Haar 
wavelet around the sensor 

•  But only 1 wavelet / sensor 

•  And only for sensors in the 
nightlight-bright regions 

On the whole, (H, Φ) are 
incoherent 



Impact of noise in yobs 

•  Increasing observation noise 10x 
did not lead to obvious corruption 
–  Only loss of detail & correlation 

•  Inversion seems stable – why? 



Is the inversion stable to noise? 

•  RIP implies non-diagonal elements of GTG, G = H Φ,  are small (away 
from 1) 

–  Max value for CS samplers around 0.25 

•  RIP of H matrix is weak  (max value of non-diagonal term ~ 0.99) 

• That’s why we needed a prior – sparsity-only was not sufficient 

Matrix, Ψ	
 1st percentile Median 75th percentile 99th percentile 

Gaussian 6.4e-4 3.5e-3 5.9e-2 1.3e-1 

Hadamard 0 3.3e-2 5.6e-2 1.25e-1 

Circulant 6.4e-4 3.4e-2 5.9e-2 1.3e-1 

Noiselet 0 2.1e-2 5.2e-2 1.5e-1 

H, tower # 1 0 0 0 7.0e-2 

H, tower # 21 0 0 0 1.9e-2 

Statistics of |GTG| from different sampling matrices 



Conclusions 

• CS provides a framework for interpreting physical inverse 
problems 
–  Provides metrics for the efficiency of inversion 
–  Metrics tend to be conservative 
–  Can be considered an “ideal” inversion situation 

• CS metrics, RIP and incoherence, provide a measure of 
deviation from ideal. In particular 
–  How coherent is the sampling strategy (are the measurements only 

locally informative?) 
–  How many samples needed to reconstruct fields with just a sparsity 

prior? 
–  Can the inversion go unstable because of measurement noise? 



Questions? 

Questions? 



Which parts of US are well estimated? 

• The NE has the lowest errors and best correlations 
• The NW is generally the worst estimated 


