

Coherence metric for optimal compressive sensing

J. Ray 1 , J. Lee 1 , S. Lefantzi $^1\,$ and S. A. McKenna $^2\,$

{jairay, jlee3, slefant} [at] sandia [dot] gov

¹Sandia National Laboratories, Livermore, CA ²IBM Research, Ireland

Funded by the LDRD program in Sandia National Labs SAND2013-1591C

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Aim of the talk

- Aim: Interpret a physics-based linear inverse problem in terms of compressive sensing
 - The inverse problem involves estimating a high-dimensional field, not parameters
 - To explain why it works and the degree of inefficiency
 - Define metrics that help quantify efficiency of reconstruction
- Motivation
 - Compressive Sensing (CS) and associated sparse reconstruction techniques are very efficient and practical means of sampling random fields
 - Impose no pre-conditions (like smoothness etc.) on the field being sampled
 - Since all measurements are approximate, a CS interpretations may allow us to
 - Define the degree of approximation
 - Impact on the accuracy of inversion

Outline of the talk

- What is compressive sensing, some basic concepts and terms
- Explanation of the physics-based linear inverse problem
 - Estimation of fossil-fuel CO₂ (ffCO2) emissions in the US
 - Temporally & spatially varying field
- Demonstration of inversion using an adaptation of CS techniques
- Explanation of why it worked
 - And why it could not have worked with the adaptation

What is compressive sensing?

- CS a way of measuring a signal e very efficiently and then reconstructing it
 - Requires far fewer samples that Nyquist sampling
- If **e** is a signal/image of size N, and can be represented sparsely in some orthogonal basis set Φ
 - $e = \Phi w$, where on K << N elements of w are non-zero
 - then the # of compressive samples needed is

• $M = C K \log_2(N/K), C \sim 4$

- Compressive samples yobs are given by
 - $y^{obs} = \Psi e = \Psi \Phi w = G w$
 - each row $\psi_{r_{..}}$ is a random unit vector

Sparse reconstruction

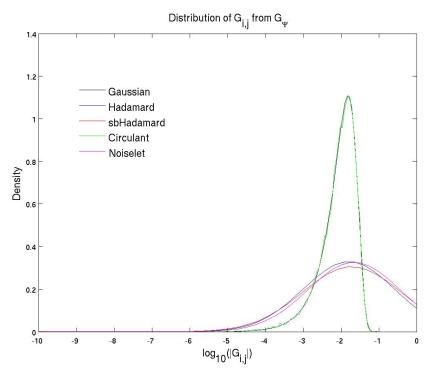
- How does one recover **e** from yobs?
 - By exploiting the fact that ${\bf e}$ is sparse representable in Φ
- One minimizes, w.r.t. w
 - $|y^{obs} \Psi \Phi w|_2 + \lambda |w|_1 = |y^{obs} Gw|_2 + \lambda |w|_1$
 - Reduces the model observation mismatch while penalizing for non-zero w using $|w|_{\rm 1}$
- Alternatively, w.r.t. w
 - min $|w|_1$ under the constraint $|y^{obs} Gw|_2 < \epsilon$
- Many convex optimization methods do this, not necessarily fast
 - Basis pursuit, orthogonal matching pursuit etc.
- Reconstruction uses no "crutch" / prior / regularization in the estimation problem, beyond sparsity
 - The observations really have to be informative to do this

Why is CS so efficient in sampling?

- $y^{obs} = \Psi e = \Psi \Phi w = G w$
 - Each row $\psi_{r,.}$ collects information on all columns $\phi_{.,c}$
 - If $\psi_{r,.}$ is random, it will be non-aligned with all $\phi_{.,c}$
- Called incoherence

$$\mu(\Psi, \Phi) = N^{1/2} \max \left| \left\langle \psi_{r, \cdot} \phi_{\cdot, c} \right\rangle \right|$$
$$= N^{1/2} \max \left| G_{r, c} \right|$$

 $-1 \le \mu(\Psi, \Phi) \le N^{1/2}$



 In image processing, Ψ are "standard" random matrices like Bernoulli, Toeplitz etc., or noiselets

Stability of sparse reconstruction

 Given so few measurements, why is the sparse reconstruction stable? 	Matrix	Max(G [⊤] G)
- $\mathbf{w} = \mathbf{w}_{true} + \mathbf{n}$, both \mathbf{w}_{true} and \mathbf{n} are K-sparse - $y^{obs} = G(\mathbf{w}_{true} + \mathbf{n}) = G\mathbf{w}_{true} + G\mathbf{n}$	Gaussian	0.27
• For stability	Hadamard	0.28
- $(1 - \delta) x _2 < Gx _2 < (1 + \delta) x _2$ - Called Restricted Isometry Property (RIP) of G = $\Psi \Phi$	Scrambled- block Hadamard	0.489
 A more conservative definition 	Circulant	0.478
 If the columns of G are nearly orthogonal to each other, we have RIP Alternatively, non-diagonal elements of 	noiselets	0.3

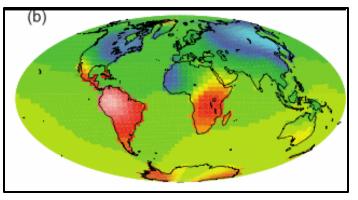
Sandia National Laboratories

• Max (G^TG) is around 0.25

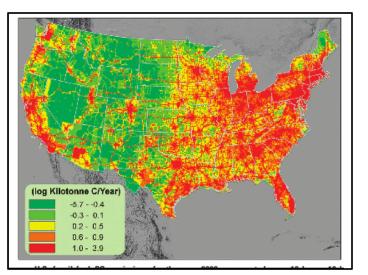
G^TG are far away from 1

Using CS ideas in a physics inversion

- Aim: Devise a method to estimate fossil-fuel CO₂ (ff-CO2) emissions
 - Data: measurements of ff-CO2 concentrations at a sparse set of sensors
- Motivation
 - Monitoring emission & cap-and-trade treaties
 - Updating global process-based inventories of ff-CO2 emissions
- Technical challenge
 - ff-CO2 emissions have a rough, nonstationary spatial distribution
 - Current smooth models (for estimating biogenic CO2 fluxes) don't work



Biogenic emissions: Mueller et al, JGR, 2008



Characteristic of the ff-CO2 estimation problem

- Linear inverse problem
 - $-y^{obs} = H e(x, t), H = sensitivity matrix, e(x, t) = emissions$
 - H determined using atmospheric dispersion models
 - y^{obs} measured at a set of CO2 measurement towers
- **e**(x, t) is non-stationary and non-smooth
 - Could be expressed with wavelets i.e. $\mathbf{e}(\mathbf{x}, t) = \Phi w(t)$
 - w(t) will be sparse; e(x, t) exists only where humans live (+ electricity generators)
- Could we solve y^{obs} = **H** e using CS arguments?
 - H collects info from all emission sources / grid-cells; functions like Ψ
 - $y^{obs} = H e = H \Phi w$ has the same formulation as CS
 - But what is the incoherence $\mu(\textbf{H}, \Phi)$?
 - Sparse reconstruction could work

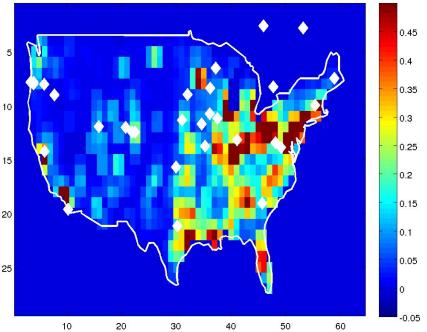
Posing the synthetic data inversion

- Aim: Estimate ff-CO2 emissions in US
 - On a 1° resolution, 64 x 64 mesh: assume zero non-US emissions
 - Weekly-averaged emissions
- Synthetic data, CO2 concentrations @ 35 sensors, every 3 hours
 - True emissions Vulcan database for US, 2002
 - Sensor measurements simulated using WRF
- Spatial model for emissions
 - $v^{obs} = H e = H \Phi w$
 - $-\Phi$ modeled with Haar wavelets

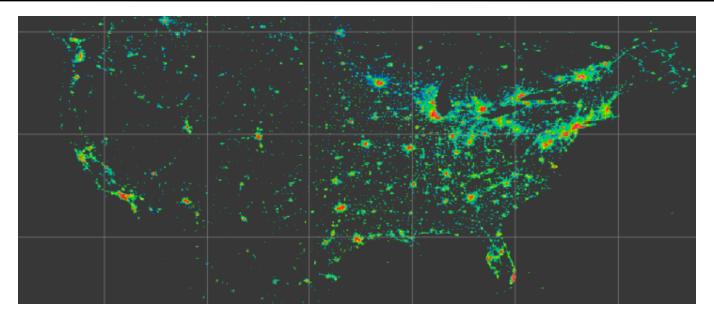
0 10 20 30 40 50 60 Emissions for a week in August 2002

(Vulcan database, 1 degree resolution)

True emissions in 8-day period 33 [microMoles/m²/sec]



Dimensionality reduction

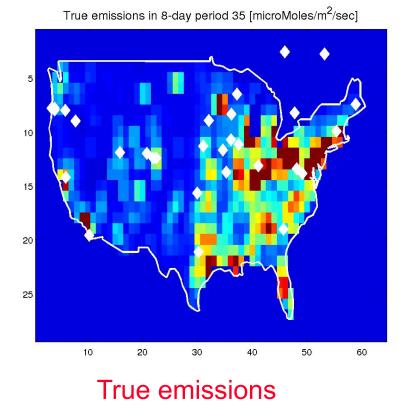


- A Haar wavelet model does not reduce dimensionality
 - 4096 coefficients to be estimated to model 1 week's emissions
- Nightlights (DoD's DMSP-OLS) are a good proxy for FF emissions
 - Except emissions from electricity generation and cement production
- Use thresholded radiance-calibrated nightlights from 1997-98 to mask out unpopulated regions
 - Reduce dimensionality from 4096 to 1031

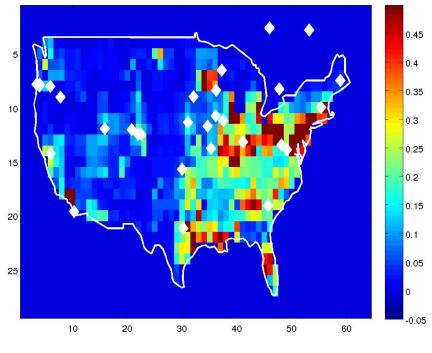
Introducing priors / regularization

- CS of images is done with nothing more than sparsity priors
 - ff-CO2 inversion failed with that
- Original inversion :
 - min $|w|_1$ such that $|y^{obs} \mathbf{H} \Phi w|_2 < \varepsilon$ (failed)
- Assume we have a model for emissions $e_{model} = \Phi w_{model}$
 - Easily made by scaling lights-at-night with a constant to match annual US emissions
 - $y^{obs} = H \Phi' w', \Phi' = diag(w_{model}) \Phi, w' = w / w_{model}$
 - min $|w'|_1$ such that $|y^{obs} \mathbf{H} \Phi' w'|_2 < \varepsilon$
- The normalization of w with the model ensures that the estimated values do not deviate very much from w_{model}
 - Unless observations say otherwise
 - Basically, a prior or regularization

How good is the reconstruction?



Reconstructed emissions in 8-day period 35 [microMoles/m²/sec]

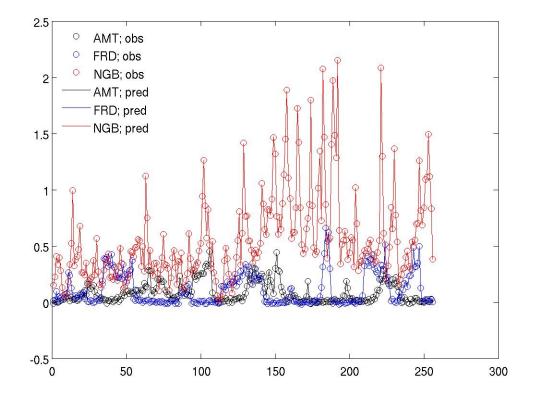


Reconstructed emissions

• A week in September 2002

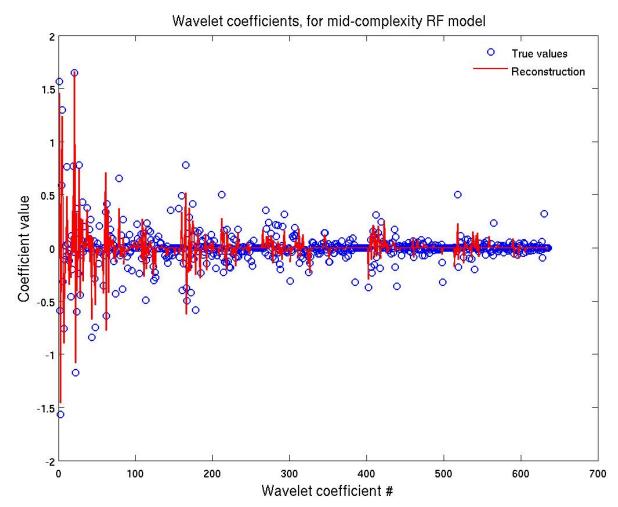
Can we reproduce tower observations?

Anthropogenic CO₂ concentrations at 3 towers (ppm) Periods 31 - 34



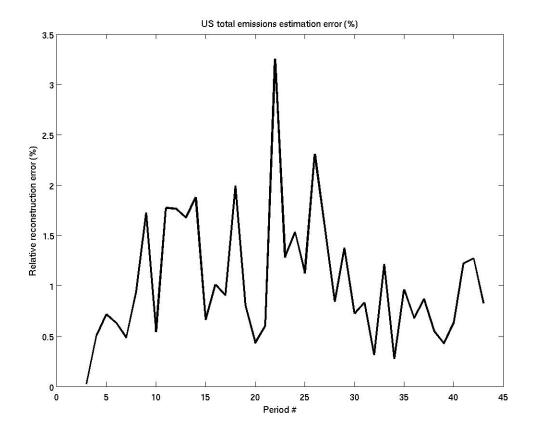
- Tower concentration predictions with reconstructed fluxes (only 3 weeks)
 - Symbols : observations used in the inverse problem.

Did sparsification work?



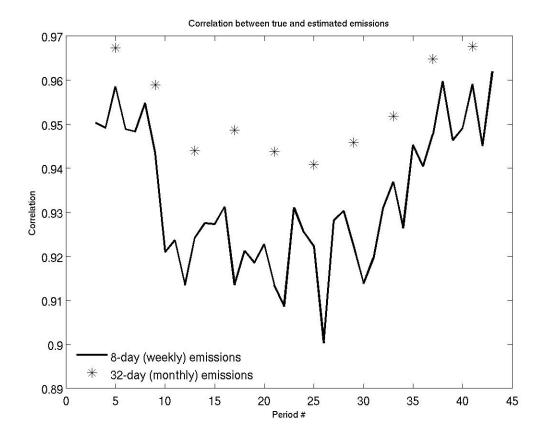
- Only about half the wavelets could be estimated
- We are probably not over-fitting the problem
 - Data-driven sparsification works

Reconstruction error in total US emission



• We get about 3.5% error, worst case

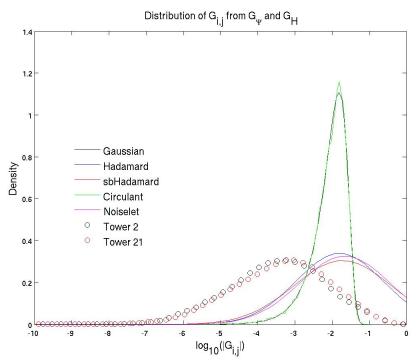
Is the spatial distribution correct?



- The spatial distribution of emissions is very close to truth
- Especially, if considering monthly fluxes

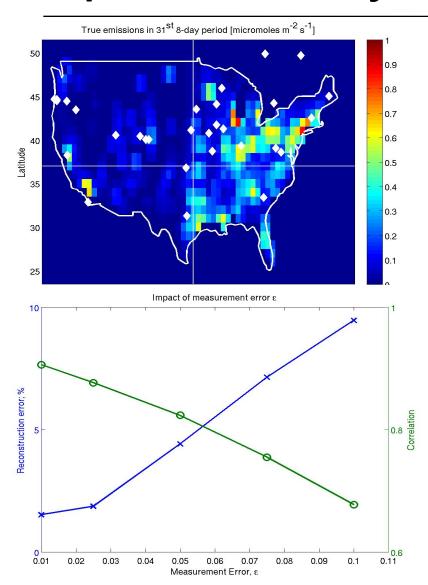
Why did this work?

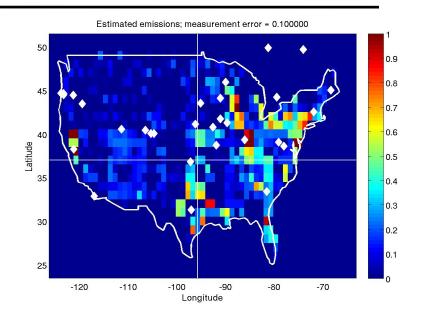
- Meteorology is not aligned with Haar wavelets; H and Φ should be incoherent.
 - Plot $|\mathbf{G}_{rc}|, \mathbf{G}_{H} = \mathbf{H} \Phi$
 - Compare against G_{Ψ} = $\Psi \, \Phi$
- There are some large $|\mathbf{G}_{rc}| \sim 1$
 - Sensor footprint is about
 1500km, but very affected by
 the closest 30 km
 - Coherent with the Haar wavelet around the sensor
 - But only 1 wavelet / sensor
 - And only for sensors in the nightlight-bright regions



On the whole, (H, Φ) are incoherent

Impact of noise in y^{obs}





- Increasing observation noise 10x did not lead to obvious corruption
 - Only loss of detail & correlation
- Inversion seems stable why?

Is the inversion stable to noise?

Matrix, Ψ	1 st percentile	Median	75 th percentile	99 th percentile
Gaussian	6.4e-4	3.5e-3	5.9e-2	1.3e-1
Hadamard	0	3.3e-2	5.6e-2	1.25e-1
Circulant	6.4e-4	3.4e-2	5.9e-2	1.3e-1
Noiselet	0	2.1e-2	5.2e-2	1.5e-1
H, tower # 1	0	0	0	7.0e-2
H, tower # 21	0	0	0	1.9e-2

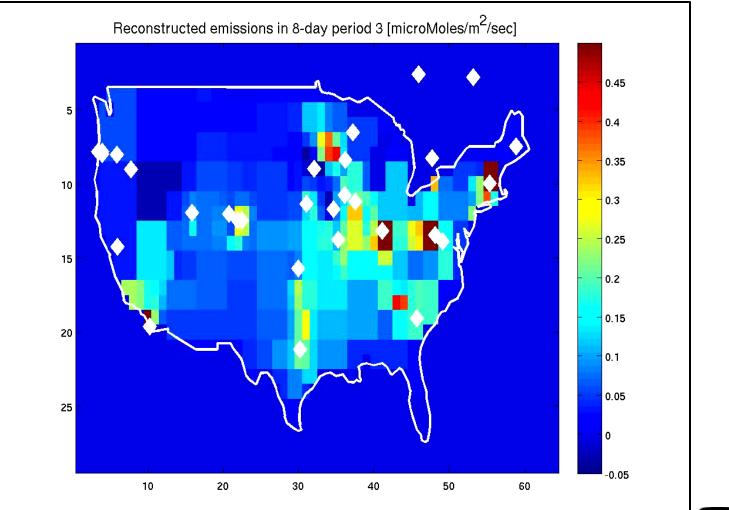
Statistics of |G^TG| from different sampling matrices

- RIP implies non-diagonal elements of G^TG, G = H Φ, are small (away from 1)
 - Max value for CS samplers around 0.25
- RIP of **H** matrix is weak (max value of non-diagonal term ~ 0.99)
- That's why we needed a prior sparsity-only was not sufficient.

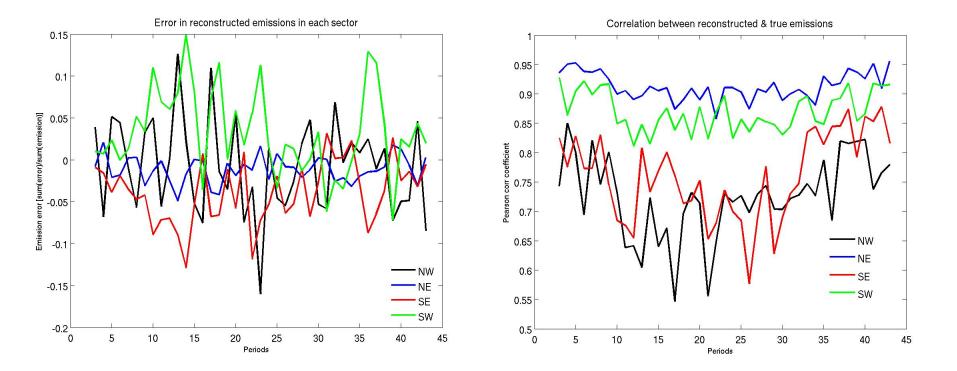
Conclusions

- CS provides a framework for interpreting physical inverse problems
 - Provides metrics for the efficiency of inversion
 - Metrics tend to be conservative
 - Can be considered an "ideal" inversion situation
- CS metrics, RIP and incoherence, provide a measure of deviation from ideal. In particular
 - How coherent is the sampling strategy (are the measurements only locally informative?)
 - How many samples needed to reconstruct fields with just a sparsity prior?
 - Can the inversion go unstable because of measurement noise?

Questions?



Which parts of US are well estimated?



- The NE has the lowest errors and best correlations
- The NW is generally the worst estimated

