
Computational frameworks for advanced
combustion simulations

J. Ray, R. Armstrong, C. Safta, B. J Debusschere, B. A. Allan and H. N. Najm

Abstract Computational frameworks can significantly assist in the construction, ex-
tension and maintenance of simulation codes. As the nature of problems addressed
by computational means has grown in complexity, such frameworks have evolved to
incorporate a commensurate degree of sophistication, bothin terms of the numeri-
cal algorithms that they accommodate as well as the softwarearchitectural discipline
they impose on their users. In this chapter, we discuss acomponent framework, the
Common Component Architecture (CCA), for developing scientific software, and
describe how it has been used to develop a toolkit for simulating reacting flows. In
particular, we will discuss why a component architecture was chosen and the philos-
ophy behind the particular software design. Using statistics drawn from the toolkit,
we will analyze the code structure and investigate to what degree the aims of the
software design were actually realized. We will explore howCCA was employed to
design a high-order simulation code on block-structured adaptive meshes, as well
as a simulation capacity for adaptive stiffness reduction in detailed chemical mod-
els. We conclude the chapter with two reacting flow studies performed using the
above-mentioned computational capabilities.

1 Introduction

Computational science has come to regarded as the third leg of science, after the-
ory and experimentation. With the advent of massively parallel computers, sim-
ulations have been used to investigate extremely challenging problems. However,
as the problems have increased in complexity, the tools usedto investigate them
computationally – numerical algorithms and their softwareimplementations – have
developed a commensurate sophistication and intricacy. Software complexity, with

J. Ray, R. Armstrong, C. Safta, B. Debusschere, B. A. Allan and H. N. Najm
Sandia National Laboratories, Livermore, CA, e-mail:[jairay,rob,csafta,bjdebus,
baallan,hnnajm]@sandia.gov

1

2 J. Ray et al

its detrimental impact on software maintainability and extensibility, is regarded as
a large drain on time and effort and computational frameworks are intended to be a
solution to this problem. One means of addressing complexity is to provide “shrink-
wrapped” functionality, in essence transferring softwareand algorithmic complexity
to the implementer of the framework from its user. A second way of addressing com-
plexity is through some form of modularization.Component frameworksfall in the
second category.

The work “framework” is an extremely overused and consequently, confusing,
term. It can refer to anarchitecture, a set of specifications that, when followed, im-
poses some standard on the software that adhere to it. By thistoken, a component
framework is a set of specifications that permit software to be constructed by mod-
ular composition. The modules are referred to ascomponents. Confusingly, “frame-
work” can also refer to a software framework that is written to such a specification
and is meant to locate, instantiate and compose components.The aim of component
frameworks is to usemodularityto divide and conquer complexity, by composing
programs out of software building blocks. Studies have shown that the capability
and complexity of a program is proportional to its size, which determines the num-
ber of software developers required to maintain the software [63, 36]. Component
frameworks can be used to design an organizing principle forthe efficient deploy-
ment of programming resources. Individual programmers have cognizance over one
or more components of the overall program, which provides a natural division of
responsibilities. It makes obvious that the interfaces between components are where
programmers must negotiate. Interfaces exported to, or imported from components
is functionality that is needed by, or provided to a programmer as part of his/her
domain of responsibility. The structure provided by component-based software en-
gineering is one of the main reasons for using it and defines the workflow in a large
software project.

In this chapter, we will limit the discussion to the Common Component Architec-
ture (CCA), a set of specifications for developing and composing component-based
scientific simulation software. We will devote some time to the CCA frameworks
used in scientific computings and provide examples of how CCAhas been used for
software for the simulation of flames.

2 Literature review of computational frameworks

Scientific computational frameworks proliferate. Some were initially designed to as-
sist in the creation of simulation codes in a certain scientific field and consequently
have been adopted/adapted rather sporadically elsewhere.Others were intended to
assist in nothing more than the implementation of a particular software design, ir-
respective of the nature/aim of the software being developed. It is impossible to
review the myriads of scientific simulation frameworks thatlie between these two
extremes and this will not be attempted here. Since this chapter describes the design
of a component-based simulation facility for reacting flowson adaptively refined

Computational frameworks for advanced combustion simulations 3

meshes, we will devote the majority of our review to frameworks that assist in com-
putations on block-structured adaptively refined meshes, and implementations of
CCA that are relevant to scientific computing. We will, however, describe a basic
categorization before proceeding with the details.

Scientific computing frameworks are application development frameworks which,
at the very least, support parallel computing and pay particular attention to high per-
formance in their design. This manifests itself in their ability to address operations
on large arrays and the elimination/reduction of overheadsthat scale with the size
of the data or with the number of processors on which the framework is expected to
run. Further, they rarely contain any support for languagesoutside FORTRAN and
C/C++, and make sparing use of remote method invocation. Within these confines,
scientific simulation frameworks can be divided into three categories.

In the first category are frameworks that were originally designed to support a
particular field of science. The Earth System Modeling Framework [30, 32] is one
such example, developed for constructing climate simulation codes; Cactus [37, 15]
is another, developed for numerical relativity studies while FLASH [31, 35], de-
veloped for astrophysical simulation, forms a third example. OpenFoam, developed
initially for finite-volume simulation of fluid flow (but now containing extensions
for solid mechanics and Direct Simulation Monte Carlo calculations as well) [80]
is in widespread use. Such application-specific frameworksoften contain numerical
schemes and “utility” scientific models that find routine use. They are modular in
design and implement many of the ideas (e.g., involving a separation of implemen-
tation from the interface of a module) that are formalized inCCA. Note that these
frameworks do not intend to impose any design patterns on theresulting simulation
code; rather one adopts the data structures and design patterns of the framework
itself and reaps the benefits of using validated solvers and models in one’s simu-
lations. These frameworks allow one to rapidly develop simulation codes as long
as the facilities provided by the framework (e.g. solvers and models) are profitably
leveraged by the simulation.

The second category of frameworks consists of those that enable the use of a
particular solution methodology e.g.. block-structured adaptive mesh refinement
(AMR) in simulation codes. These frameworks are more general that those de-
scribed in the previous paragraph – they provide data-structures and solvers (or in-
terfaces to those implemented by external libraries) that are useful while developing
simulation software. Again, they make no attempt to promoteany particular design
pattern. However, given that one makes heavy use of the framework-provided data
structures (which are usually implemented in the form of objects), the design pat-
terns employed for simulation codes bear a strong resemblance to those employed
for the framework itself. We will review a few such frameworks/packages that en-
able the use of AMR in simulation codes.

Simulations using block-structured adaptively refined meshes are generally con-
ducted where the spatial domain is rectangular/cuboid or can be logically described
as such. One begins with a Cartesian mesh with a resolution that is insufficient to
capture many of the features of the solution. Regions in the domain that require
refinement are identified and collated into rectangles/cuboids and a finer mesh (usu-

4 J. Ray et al

ally, finer by a constant factor) is overlaid on the refined part of the initial mesh. This
is performed recursively leading to amesh hierarchyof a few (usually less than 10)
levels. GrACE [67, 38], AMROC [25, 70, 5], CHOMBO [17, 69] andAmrLib [4]
are a few frameworks that implement such an adaptive meshingstrategy. These
frameworks provide the infrastructure required to manipulate such meshes as well
as data structures that allow fields to be described on them (on distributed mem-
ory computers, this involves very intricate book-keeping). The data structures also
allow the use oftime-refinement[13], a time-integration technique that allows one
to mitigate the effect of having time-steps be CFL-constrained by the finest mesh
in a mesh-hierarchy. While CHOMBO stores the data on a given level of the mesh
hierarchy in a separate data-structure, both AMROC and GrACE present a data ob-
ject that is described on the entire hierarchy. The three frameworks also largely
automate the work of refining/coarsening the mesh hierarchyperiodically (called
regridding), based on a user-calculated “error metric” andperform load-balancing
of the mesh and data after each regridding operation. While GrACE only provides
a parallel block-structured adaptive mesh and the associated data object, CHOMBO
and AMROC also provide a set of commonly used solvers.

All the three frameworks have been used for simulating reacting flows. AMROC
has its origins in the simulation of shock-laden flows [26, 66], but has been ex-
tended to shock-fluid interactions [29, 18, 28] and shock-induced combustion [27].
CHOMBO (and its predecessors) have been used for an immense variety of simula-
tions [69], including solutions of variable density formulation of the Navier-Stokes
equations [3], embedded boundary methods [20], and fourth-order-in-space dis-
cretizations [21, 9] for AMR simulations. AmrLib, which hassimilar foundations
as CHOMBO, has been used to develop algorithms for low Mach laminar flames
simulations [24] as well as for turbulent flames [10, 11]. GrACE was initially de-
veloped to investigate load-balancers for block-structured adaptive meshes [54, 55],
but has been used to develop efficient numerical schemes (e.g., extended stability
time integrators [53] and fourth-order spatial discretizations [73]) for the simulation
of flames [75]. These frameworks have been investigated for their scalability on par-
allel machines; see [61] for a discussion of scalability issues in GrACE and [78] for
CHOMBO.

Overture [65] had its beginnings in simulations using overset meshes i.e. a grid-
ding scheme, generally applied to complex geometries, where the domain is dis-
cretized using “patches” which could employ meshing schemes that were best suited
to the geometry at hand. Thus it was possible, for example, toembed a small cir-
cular patch, employing a cylindrical mesh, within a larger mesh discretized in a
Cartesian manner. It was used to develop fourth-order-in-space discretizations [39],
as well as in simulations of high-speed reactive flows [40]. It has been extended to
adaptive mesh refinement [41], multi-material flows [8] and has recently been par-
allelized and used for 3D calculations [42]. A full listing of Overture-related pub-
lications, including investigation of detonations etc. can be found on the Overture
homepage [65].

In the third category are frameworks that primarily seek to assist software de-
velopers implement a certain design pattern. CCA defines onesuch design pat-

Computational frameworks for advanced combustion simulations 5

tern; UINTAH [77] and CCAFFEINE [14, 1] are frameworks that implement it.
Thus components designed to operate in the UINTAH and CCAFFEINE frame-
works comply with the CCA architecture and bestow its advantages — modular
design, reduction of software complexity, plug-and-play experimentation and mul-
tiple language interoperability — on simulation codes thatfollow the architecture.
The framework is not required to provide any numerical or simulation capability
(which renders the framework usable in diverse scientific applications) and indeed
CCAFFEINE does not; however, UINTAH provides its users witha mesh and the
associated data structures for describing fields on a discretized domain. A detailed
discussion of CCA follows in Sect. 3.

3 The Common Component Architecture

The Common Component Architecture (CCA) specification defines a software stan-
dard allowing plug-and-playcomposition of scientific applications. Being component-
based, it is necessarily object-oriented. Its developmentwas driven by the benefits
of modularization. The competitive advantages of modularization were recognized
by the commercial establishment in the mid-1990s, which fashioned a solution
in the form of component architecture; CORBA [22], Visual Basic [85] and Java
Beans [33] are some industry-standardcomponent architectures. These architec-
tures employ certain subsets of object-oriented software design principles to realize
modularity and interoperability of modules under a large variety of conditions. How-
ever, commercial component standards are ill-suited for scientific computing [1], the
primary drawbacks being the lack of support for parallel computing. Starting from
the concepts common to most component standards, the CCA retains most of the
relevant characteristics while simultaneously allowing (but not stipulating) parallel
computing in an SPMD fashion. CCAFFEINE [1] and UINTAH [77] are CCA-
compliant frameworks that support parallel computing, while XCAT [87] does not.

Within CCA one considerscomponents, modules (or objects) that implement a
particular scientific or algorithmic functionality, and aframeworke.g. CCAFFEINE
or UINTAH, that “wires” components together into a functioning simulation code.
Components implement interfaces (Portsin CCA parlance) through which the com-
ponents provide their functionality; these ports are designed by the programmer
implementing the component. Components are peers, i.e., they do not inherit im-
plementation from other components, and are capable of being used independently.
Since components implement interfaces, they can be developed without a tight cou-
pling to a software development team. CCA stipulates that all components imple-
ment a particular interface (called theComponentinterface) through which indi-
vidual components can interact with the framework (specifically, using theServices
interface). Typically, this involves registering the Ports (interfaces/functionalities)
that they provide (these interfaces are called theProvidesPortsof the component)
as well as the Ports that they use (i.e., theUsesPortsof the component). Driven by
a user script, the framework matches theProvidesPortandUsesPortregistrations.

6 J. Ray et al

The individual components then fetch the matched-up Ports and use them by mak-
ing calls on the methods on those interfaces The Port interface is a caller-callee
boundary, not a data-flow abstraction.

3.1 Features of the Common Component Architecture

The initial development of the CCA specification took place using a compiler-
independent, simple subset of C++ syntax (pure virtual classes) as the interface
definition language. Subsequent CCA development (version 0.6 and beyond) use
the Scientific Interface Definition Language (SIDL) and its compiler Babel [23]
to enable language interoperability i.e. components written in the Babel-supported
languages (C, FORTRAN, Python, or Java) can call each other transparently, with-
out manually performing the data translations and language-bindings that such a
mixture of programming languages would entail. When using Babel, the interface
construct of the SIDL language replaces the pure virtual abstract class of C++ (of
the initial design). In addition to language translation, SIDL/Babel provides modern
software engineering functionality in each of the languages it supports e.g., pass-
ing and accessing multidimensional array data and C structsas references to pre-
serve performance, support for exceptions, object-oriented design, tunably enforced
programming-by-contract conditions when entering and leaving method calls etc.
The C++ specification continues to exist and provide interfaces equivalent to those
of the SIDL definition.

Fig. 1 Mechanics of any-to-any language calling with Babel. Client binding and interoperability
layers (solid shapes) are entirely generated code. The implementation is partially generated in the
implementor’s choice of programming language, X, chosen from among the supported languages.
The implementor fills in method bodies and private data structure definitions that are inaccessible
from the clients. Lines indicate function calls.

Computational frameworks for advanced combustion simulations 7

Language interoperability: SIDL/Babel enables language-interoperability by
interposing an Intermediate Object Representation (IOR) between components, with
an independent client-side binding to each language. This is illustrated in Fig. 1.

In order that a component, written in language X, may be called from a host of
other languages (in Fig. 1, these are various dialects of FORTRAN, C/C++, Java
and Python), the programmer first expresses/writes the interface i.e., function calls,
and their arguments (which may use the Babel-supported data-types like multi-
dimensional arrays, exceptions etc. listed above) in a language-neutral manner using
SIDL. The SIDL interface is then “compiled” using the Babel compiler to generate
equivalent interfaces in C/C++, FORTRAN etc, collectivelyreferred to as “client
bindings” in Fig. 1 (left). It also generates a wrapper, in language X, (shown in
dashed lines on the right side of Fig. 1) in which one implements one’s components.
The wrapper can also include calls to an external library, and in fact, provides a very
simple route to making a library directly callable from a multitude of programming
languages. The most significant, and intricate, piece in thecross-language orches-
tration is the IOR, shown in the middle of Fig. 1 (“C interoperability layer”). This
IOR, essentially a C struct containing a function table and data pointers, maps func-
tion calls in the various “client” languages (left side of Fig. 1) into the equivalent
functions/methods on the “server” side (the dashed structure on the right side of
Fig. 1). The need for translation of data (e.g from FORTRAN multi-dimensional
arrays on the “client” side to perhaps C on the “server”/implementation side), the
throwing of exceptions and other functionalities that might be needed to enable
cross-language operation are detected by Babel when “compiling” the SIDL inter-
face, and is encoded into the IOR. There are a substantial number (as seen in Fig. 1)
of code objects which are automatically derived from SIDL byBabel and then com-
piled. Most of the rote work needed to build and deploy SIDL-enabled applications
has been automated with the Bocca tool [2], enabling entire component application
structures to be prototyped within minutes.

Parallel computing: Since the use of parallel computing is critical to perfor-
mance, the CCA standard is carefully crafted to avoid forcing the choice of any
particular parallel programming model on the user. Component developers may use
any communication model. A survey of the impact of using CCA on application
performance is provided in Section 6 of [14]. The typical scientific application has
a single-program-multiple-data structure (SPMD). This programming model is well
supported by the CCAFFEINE framework [1] and default driver, which supports the
component-based programming model analog, the single-component-multiple-data
(SCMD) model. In the SCMD model, all components have a representative instance
on all processes. For a single component, we call the group ofparallel instances
a cohort. Message passing, by whatever means, is restrictedto exchanges within a
cohort, as one component implementation cannot make any assumptions about the
communication internals of a different component implementation. CCAFFEINE
has also been used as a library to compose MCMD (multi-component-multiple-data)
applications [46].

8 J. Ray et al

4 Computational Facility for Reacting Flow Science

The Computational Facility for Reacting Flow Science (CFRFS) is a toolkit for con-
ducting high-fidelity simulations of laboratory-scaled flames. The toolkit adheres
to the CCA specification (using C++, not SIDL/Babel as its interface language of
choice) and is typically run using the CCAFFEINE framework.The CFRFS toolkit
implements a set of novel numerical techniques, most of which were developed as
the toolkit was being constructed. In this section we describe the toolkit and its nu-
merical structure and discuss why a component architecturewas necessary for its
implementation. We conclude with an analysis, using data drawn from the toolkit,
to determine to what degree the original aims of the softwaredesign have been re-
alized.

4.1 Numerical Methods and Capabilities

The CFRFS toolkit is used to perform computations of flames using detailed chemi-
cal mechanisms. It solves the low Mach number approximationof the Navier-Stokes
(NS) equations [86], augmented with evolution equations (convective-diffusive-
reactive systems) for each of the chemical species in the chemical mechanism. It
employs fourth-order finite-difference schemes for spatial discretizations within the
context of AMR meshes [13]. It adopts an operator-split construction to enable the
use of efficient integrators when time-integrating different physical processes in
the system being solved. It uses extended-stability Runge-Kutta-Chebyshev (RKC)
time-integration [76] for time-advancing the diffusive transport terms and an adap-
tive, backward difference stiff integrator for the chemical source terms. The numer-
ical details of the high-order (spatial) methods can be found in [73] and those of
RKC on block-structured adaptive meshes in [53]. The divergence constraint in the
low Mach NS equations necessitates a projection scheme, which gives rise to a non-
constant coefficient Poisson equation; this is solved usingthe conjugate-gradient
method with a multigrid solver (employing high-order spatial stencils) as a precon-
ditioner.

The CFRFS Toolkit, then, is an integration of many advanced numerical tech-
niques. Many of them, e.g., RKC, had been demonstrated on uniform meshes [64]
but had to be augmented to enable the solution of partial differential equations
(PDEs) on AMR meshes. For example the RKC schemes had to be modified to pre-
serve its order of accuracy when used withtime refinement[53] on AMR meshes;
further tests were required to determine various “free” parameters (in the RKC
scheme) when time-advancing a convective-diffusive system [72]. The high-order
spatial discretizations required appropriate interpolation schemes, and in certain
cases, needed the solution to be filtered, to remove high-wavenumber content and
prevent Gibbs phenomenon [73]; the correct pairings of discretization, interpolation
and filter order were determined as a part of the implementation of the toolkit. The
projection scheme adapts a fourth-order finite-volume formulation [44] for use in

Computational frameworks for advanced combustion simulations 9

the context of a finite-difference approach [74]. Thus the construction of the high-
order AMR simulation capability, as implemented in the CFRFS Toolkit entailed a
significant amount of development of advanced numerical methods.

The CFRFS Toolkit makes copious use of external software. The adaptive mesh-
ing and load-balancing is currently provided by the GrACE package [38]; coupling
to CHOMBO [17] is in progress. The stiff integration capability is provided by
CVODE [19], while the elliptic solvers in Hypre [34] are usedfor the pressure
solve. Legacy codes are used to provide implementations of various constitutive
models (transport coefficients, gas-phase reaction and thermodynamics models etc).
Being able to leverage existing, validated software (e.g.,legacy codes) has saved
much implementation effort, while numerical libraries (e.g. Hypre, CHOMBO) al-
low the CFRFS toolkit to take advantage of optimized and specialized capabilities
in a facile manner.

4.2 The Need for Componentization

The goal of the CRFRS development effort was to develop a flexible, reusable
toolkit. At the very outset it was expected that many of the its advanced features
would be contributed piecemeal by experts or incorporated using legacy software
and the necessity of an extremely modular design was recognized very early.

The componentization in the CFRFS toolkit follows strictlyalong functional
lines. Each component implements a physical model, a numerical scheme, or a
computational capability like a “data object” that stores and manages domain-
decomposed fields (e.g., a temperature field) on multiple levels on an AMR mesh.
The functionality is expressed in the Port/interface design; components implement
the functionality. As there are may different ways to provide a functionality e.g.,
one may time-integrate using many different algorithms or calculate transport prop-
erties using diverse models, a single Port may find disparateimplementations. Each
component is compiled into a shared library (also known as a dynamically loadable
library); a simulation “code” is composed by loading a number of them into the CCA
framework and “wiring them together”. Fig 2 shows a wiring diagram, assembling
approximately 40 components into a low-Mach number flame simulation, whose
results are discussed in Sec. 5.1. The components in the wiring diagram implement
flow models (fourth-order discretizations for convective and diffusive fluxes, de-
tailed chemical models etc), numerical schemes (the pressure solution, sixth-order
interpolation schemes), the AMR mesh and the associated data object and miscel-
laneous components for I/O etc. The components can be approximately collated
into 3 sub-assemblies, responsible for scalar transport, momentum transport (in-
cluding the projection required for solving the low-Mach number approximation of
the Navier-Stokes equation) and for advancing reactive terms. The components are
dynamically loadable, and so, the “code” is composed at runtime. The components
and wiring connectivity are specified in an input file to the framework; components
can be exchanged simply by changing a single line in this input file.

10 J. Ray et al

The aim of componentization was the taming of complexity. One measure of
complexity is the pattern in which different components might use each other. A
good design would exhibit modularity, where connectivity between components is
sparse and connections are arranged in some regular manner e.g., if components are
collected/connected into sub-assemblies, which are hierarchically composed into
the simulation code. Fig. 2 shows 3 separate sub-assembliesconsisting of compo-
nents that address the transport of species, chemical reactions and the momentum
solve (including the pressure solution). The size of each component is a second
measure of complexity; smaller components are easier to understand and maintain.
In Fig. 3 (left), we plot a histogram of the size (lines of code) in a component; it is
clear most components are small, less than 1000 lines of code. Since components
implement Ports, this strongly suggests that individual Ports do not embody much
complexity either i.e., they have few methods that need to beimplemented. This is
shown in Fig. 3 (right) where we plot a histogram of the numberof methods in each
port. Most of the ports have 10 or fewer functions/methods. Figs 4 (left) plots the
histogram of the number of ProvidesPorts i.e, the number of Ports a given compo-
nent implements. It is clear that the bulk of the components implement less than five
ports each, which explains their small size; recall that most ports have fewer than 10
methods. Another measure of a component’s complexity or importance is the num-
ber of UsesPorts it has. Components that link disparate sub-assemblies together tend
to have many UsesPorts distributed among the sub-assemblies. In Fig. 4 (right) we
plot the number of UsesPorts per component, which is proportional to the number
of other components a given component requires to perform its functions. We see
that almost all components have less than 10 UsesPorts. Since components provide,
on an average, less than 5 ports each (see Fig. 4, left), a component is connected to
approximately 2-3 other components, leading to sparse connectivity between com-
ponents. These statistics show that a relatively sparse specification of functionalities
and interconnections may suffice for the construction of quite complex scientific
software.

5 Computational Investigations Using CCA

In the previous section we described how CCA was used to architect and imple-
ment the CFRFS toolkit whose design philosophy stressed small, simple compo-
nents, sparse connectivity between components and their hierarchical composition,
via sub-assemblies, into functioning simulation code. In this section, we demon-
strate two different ways in which the components of the the CFRFS toolkit are
used.

The CFRFS toolkit consists of two sets of components. The first set, by far the
bigger one, consists of components that address the numerical issues surrounding
the use of fourth- (and higher) order spatially accurate methods on block-structured
AMR meshes. These allow efficient resolution of fine flame structures without the
necessity of overwhelming computational resources. The second set of components

C
om

putationalfram
ew

orks
for

advanced
com

bustion
sim

ulat
ions

11

P r e s s u r e
S o l v e r

Pressu reSo lve rP r e s s u r e

P r e s s u r e R H S

AMR

T h e r m o

M y M e s h

Er ro rE

ICPor t

ICProp

Regr ide r

In i tCondProp

In i tCond

M y M e s h

E r r o r E s t
& R e g r i d d

I n i t C o n d

M y M e s h

A M R M e s h

In te rpo la t ionsGracePor t

In te rpCVXYZ
Pro longRes t r i c t

M y M e s h

P o i s s o n R H S

Po issonRHSPor t

VelCorrPort AMR

MeshCol lAdaptor

ConvTermPor t

M e s h C o l l o c
A d a p t o r

U C o n v e c t i o n

AMR

Convec t ion

T h e r m o

L N D i f f C o e f f s
DiffCoeffs

Dif fCoeffsProp

T h e r m o
C h e m

T C h e m

P r o j e c t i o n
O r c h e s t r a t o r

VelCorrProp

A B 2

AB2Port

AB2Prop

AB2Port

AB2Prop

AMR

RHS_U

U R H S

Comb inedUTerms ConvTerms

ViscTerms

U D i f f u s i o n

AMR

ViscPort

V iscPropPor t

Dens i tyPropPor t

Dens i tyPor t

ViscSTSVPort

T C h e m P r o p

Ca lcVe lCor r

VelCorrPort

VelCorrProp

B C

BCPor t

BCPor t

Bounda ryConds

T h e D r i v e r

AMR
Coup ledSo lver Coup ledSo lver

AMR

PSolvPropP r e s s P r o p

So lverProp So lverProp

AMR

BCProp

BCProp

BCPor t

Di f fPProp

DiffAndConv

dVdt

dVdtProp

DiffCoeffs

Ra teso fProd

T h e r m o P r o p

T h e r m o

Dif fCoeffProps

D e n s e
C a l c V e l S r c

AMR

In te rpo la t ion

In te rpP ropVecloci tySrcConf

Veloc i tySrcComp

In te rpP rop

I n t e g r a t o r
(R K C 2)

LMRHS

TPhi

Regr i de r

M y M e s h

LMRHSProp

T i m e I n t e r p

I n teg ra tePo r t

T i m e I n t e r p

MaxDif fCoef
M a x D i f f C o e f f

MDCInpu t

MDCProp

AMR

DiffCoeffs

Dif fCoeffsProp

D i s c r i m i n a t o r
CalcVelSrc

CalcVelSrcProp

Ca lcSca la rRHS

RHSPa tch

R H S P r o p

P h i C o m b i n e r

ConvTerms

DiffTerms

Comb inedPh i

S c a l a r
D i f f u s i o n

DiffCoeffs

Dif fCoeffProp

Dif fTermPort AMR

T h e r m o P r o p

T h e r m o

M y M e s h

Ref
R e f Q u a n t s

Ref

Veloci tySrc

RefProp

RefProp

T h e r m o

RefProp

RefProp

T h e r m o

C h e m
I n t e g r a t o r

Chemis t r y Advance M y M e s h

C v o d e
S o l v e r

CV THE_CVODE

T C h e m P r o p

D e n s e

In te rpP rop

In te rp

I n t e g D o m a i n

I n tDom In tDom

In tDomProp In tDomProp H O F i l t

HOFi l te rs

HOFi l te rs M y M e s h

In te rpP rop

M y M e s h

BCProp

T h e r m o

Momentum transport
sub-assemby

Chemical reactions
sub-assembly

Transport
sub-assembly

F
ig.2

W
iring

diagram
of

the
approxim

ately
40

com
ponents

that
are

u
sed

for
sim

ulating
reactive

flow
s

in
the

C
F

R
F

S
toolkit.T

he
com

ponents
are

show
n

in
w

hite;
different

ports
are

colored.
T

he
P

rovidesP
orts

appear
on

the
left

of
a

com
ponent;

the
U

sesP
or

ts
on

the
right.

T
he

com
ponents

are
assem

bled,
roughly,

into
3

sub-assem
blies,

responsibl
e

for
scalar

transport
(blue

dash-dotted
box),m

om
entum

transport(red
dash-dotted

box)
and

form
ode

ling
reactive

processes
(green

dash-
dotted

box).T
he

com
ponents

can
be

strictly
num

erical(e.g.
,interpolation,pressure

solver),m
odels

(detailed
chem

istry,diffusion
coefficients)

or“com
puter

science”
e.g.,the

A
M

R
M

esh
and

the
data

object.

12 J. Ray et al

Histogram of component sizes

log10(size)

F
re

qu
en

cy

2.0 2.5 3.0 3.5 4.0

0
2

4
6

8
10

Histogram of port complexity

No. of methods per port

F
re

qu
en

cy

0 10 20 30 40

0
5

10
15

20
25

Fig. 3 Left: Histograms of the logarithm (to base 10) of component sizes, measured as the total
number of lines, including comments and blank lines. The histogram clearly shows that half the
components are less than 1000 lines long, and almost all are less than about 3000 lines. Compo-
nents, therefore, are generally quite small. Right: Histogram of the number of functions/methods
per port. We see that most ports have less than 10 methods each. There are a couple of ports, re-
lated to the mesh and the data object that have approximately40 methods each. These statistics
were extracted from a population of 100 components

addresses the identification of low-dimensional manifoldsin the chemical dynam-
ics, so that chemical source terms may be tabulated and thus evaluated inexpensively
within the context of spatially resolved flame simulations.This is done using Com-
putational Singular Perturbation [51]. Many components, for example, those mod-
eling chemical reactions, thermodynamics and constitutive models find use in both
the efforts. The final goal is to replace/augment the reactive subsystem, consisting
of a stiff-integrator and the chemical source terms (as described in Sec. 4), with an
inexpensive tabulation scheme that would allow the toolkitto be used with large
(and stiff) chemical mechanisms typically associated withhigher hydrocarbons.

5.1 Fourth-order Combustion Simulations with Adaptive Mesh
Refinement

Chemically reacting flow systems based on hydrocarbon fuelstypically exhibit a
large range of characteristic spatial and temporal scales.The complexity of kinetic
models, even for simple hydrocarbon fuels, compounds this problem, making mul-
tidimensional numerical simulations difficult. This is true even for laboratory scale
configurations.

These difficulties are commonly addressed in a variety of ways. For low speed
flows, one may adopt a low Mach number approximation [58] for the momentum

Computational frameworks for advanced combustion simulations 13

Histogram of component complexity − number of ProvidesPorts

No. of ProvidesPorts per component

F
re

qu
en

cy

0 5 10 15

0
20

40
60

80

Histogram of component complexity − number of UsesPorts

No. of UsesPorts per component

F
re

qu
en

cy

0 5 10 15 20 25 30 35

0
10

20
30

40
50

Fig. 4 Left: Histogram of the number of ProvidesPorts implements by the components in the
CFRFS toolkit. We see that most of the components have 4 or fewer ProvidesPorts i.e., they im-
plement very few ports. The distribution of the number of methods in each port is plotted in Fig. 3
(right). Right: Histogram of the number of UsesPorts a component uses. This isonemeasure of
the complexity of the algorithm/functionality a componentimplements. Components that link sub-
assemblies of components also tend to have many UsesPorts. We see that most components have
less than 10 UsesPorts.

transport. This approximation assumes that acoustic wavestravel at infinite speed, a
justifiable assumption in many low-speed flows. One can also exploit the structure
of the governing equations and adopt an operator-split mechanism, performing the
transport and reactive time-advancement via specialized integrators [64]. In prob-
lems where fine structures exist only in a small fraction of the domain e.g., in lam-
inar jet flames, one may employ AMR [13] to concentrate resolution only where
needed [12, 71, 24, 6], while maintaining a coarse mesh resolution elsewhere.

The CFRFS toolkit implements a numerical model that can efficiently simulate
flames with detailed chemical mechanisms. The use of AMR is not without its chal-
lenges, beyond just programming complexity. In order to reduce the number of grid
points and the number of refinement levels in the computational mesh hierarchy we
employ high-order stencils to discretize the governing equations and to interpolate
between the computational blocks on adjacent mesh levels. Aprojection scheme is
employed for the momentum transport. Since mesh adaptivityis driven by the nar-
row flame structure rather than the velocity field, we solve the momentum transport
on the lowest level mesh in the AMR mesh hierarchy i.e., on a uniform mesh. This
further enhances the efficiency of the model since the elliptic solver required by the
pressure equation is more efficient on a uniform mesh, compared to a multilevel
one [59]. The numerical approach and results obtained for canonical configurations
are presented below.

14 J. Ray et al

5.1.1 Formulation

In the low-Mach number limit, the continuity, momentum and scalar transport equa-
tions for a chemically reacting flow system are written in compact form as

∇ ·v = −
1
ρ

Dρ
Dt

(1a)

∂v
∂ t

= −
1
ρ

∇p+CU +DU (1b)

∂T
∂ t

= CT +DT +ST (1c)

∂Yk

∂ t
= CYk +DYk +SYk k = 1,2, . . . ,Ns. (1d)

Herev is the velocity vector,ρ the density,T the temperature,Yk the mass frac-
tion of speciesk, p is the hydrodynamic pressure, andNs is the number of chemical
species. TheD

Dt operator in the continuity equation represents the material deriva-

tive, D
Dt = ∂

∂ t +v ·∇. The system of equations is closed with the equation of statefor
an ideal gas. The thermodynamic pressure spatially uniformand is constant in time
for an open domain in the low-Mach number limit. NASA polynomials are used
to compute thermodynamic properties [60]. The transport properties are based on a
mixture-averaged formulation and are evaluated using the DRFM package [68].

The equation of state is used to derive an expression for the right hand side of the
continuity equation (Eq. 1a)

DP0

Dt
= 0→

1
ρ

Dρ
Dt

= −
1
T

(DT +ST)−
Ns

∑
k=1

W̄
Wk

(

DYk +SYk

)

(2)

5.1.2 Implementation in the CCA Framework

The numerical integration of the system of equations (1a-1d) is performed in three
stages. In the first stage, a projection scheme is used to advance the velocity field
based on the equations (1a,1b). Figure 5 shows the main CCA components in-
volved in the momentum solver. TheMomentum Drivercomponent advances the
velocity field to an intermediate value based on convectionRHSconv and diffusion
RHSdi f f contributions to the right-hand-side (RHS) termVelrhs of the momentum
equation (1b). This is followed by an elliptic solve in thePressure Solvercomponent
for the dynamic pressurep. The RHS values for the elliptic pressure equation are
computed inPressureRHS. Transport and thermodynamic properties are provided by
Transport PropertiesandThermo & Chemistrycomponents, respectively. The gradi-
ent of the pressure field is used to correct (Velcorr) the intermediate velocities above
to obtain a field that satisfies both the continuity and momentum equations (1a,1b).
The components shown at the top of Fig. 5 (AMR Mesh, Boundary Conditions, In-
terpolations and Derivatives) are generic components thathandle the adaptive mesh

Computational frameworks for advanced combustion simulations 15

Fig. 5 Schematic of the momentum solver components in CFRFS.

refinement library, boundary conditions, interpolations,and derivatives. External li-
braries are shown in ellipses.

In the second stage, sketched in Fig. 6, temperature and species mass fractions are
advanced using an operator split approach that separates the convection,CT ,CYk , and
diffusion, DT ,DYk, contributions from the ones due to the chemical source terms,
RT ,RYk, in Eq. (1c,1d). Symmetric Strang splitting is employed, beginning with the
chemical source term contribution for half the time step, followed by the contribu-
tions from convection and diffusion terms for a full time step, and concluded by
the remaining contribution from the reaction term for half the time step. The scalar
advance due to the chemical source term is handled byChemistry Integrator. The
convection (Scalarconv) and diffusion (Scalarconv) contributions are combined by
ScalarRHScomponent and provided toRKC2 Integratorwhich uses a Runge-Kutta-
Chebyshev (RKC) algorithm [84] for time advancement. ASwitchboardcomponent
is used to ensure that velocities are available at intermediate times during the multi-
stage RKC integration.

The third stage repeats the projection algorithm from the first stage using the
updated scalar fields from second stage. The overall algorithm is 4th-order accurate
in space and 2nd-order in time.
Adaptive mesh refinementWe employ an AMR approach where the computational
domain is split into rectangular blocks. The advancement intime of the AMR solu-
tion is based on Berger-Colella time refinement [13, 53]. Figure 7 shows a schematic
of this recursive time integration algorithm. Consider thesolutions on levelsL and
L + 1 at timetn. Level L is first advanced totn + ∆ t, then the solution onL + 1 is
advanced in two half steps,∆ t/2 to ensure numerical stability on the finer grid. Dur-
ing time advancement onL+1, boundary conditions are computed by interpolation
using the solution onL. At tn + ∆ t the solution onL+1 is interpolated down to the

16 J. Ray et al

Fig. 6 Schematic of the scalar solver components in CFRFS.

corresponding regions on levelL. In order to preserve the 4th-order spatial conver-
gence of the numerical scheme, the interpolations between adjacent grid levels use
6th-order spatial stencils [73].

L+1

t/2t +n

tn ∆tt +n

Φn+
L+1

1Φn+
L+1

1/2

Φn
L Φn+

L
1

Φn

Level (L)

Level (L+1)

∆

Fig. 7 Schematic of the time refinement in the context of AMR.

5.1.3 Application to Flame-Vortex Interaction

A canonical vortex-flame configuration [64] was chosen to explore the performance
of the numerical construction. The computational domain is1.5cm×0.75cm. The
velocity field corresponding to a periodic row of counter-rotating Lamb-Oseen vor-
tices is superimposed over the premixed 1D flame solution discussed above. A rel-
atively coarse mesh was used for the base mesh, with a cell size of 50µm in each
direction. Additional, finer, mesh levels were added in the flame region during the
simulation.

Computational frameworks for advanced combustion simulations 17

A one-step, irreversible Arrhenius global reaction model is used in addition to a
C1 kinetic model to study the vortex-flame interaction. Figure 8 shows freeze frames
of the vorticity and heat release rate fields. The vortex pairis initially located 2mm
upstream of the flame and propagates with approximately 10m/s towards it. As the
vortex pair impinges into the flame, the flame intensity decreases on the centerline
for the C1 model while the one-step solution shows little change in the interaction
region. Similarly, at locations off-centerline the flame intensity for the C1 model
decreases significantly as it stretched and rolled around the vortex pair. The last
frames show a significantly contorted flame, and the relativeincrease in the overall
burning rate is about about 50% more for the one-step reaction simulation compared
to the simulation using the C1 model .

hrr

0.95
0.85
0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.05

x [m]

y
[m

]

0.006 0.008 0.01 0.012 0.014
0

0.002

0.004

0.006

x [m]

y
[m

]

0.006 0.008 0.01 0.012 0.014
0

0.002

0.004

0.006

x [m]

y
[m

]

0.006 0.008 0.01 0.012 0.014
0

0.002

0.004

0.006

Fig. 8 Vorticity (white solid contours) and normalized heat release rate (hrr, shaded contours) for
simulations using the one-step reaction model (upper row) and a C1 kinetic model consisting of 16
species and 46 reactions (lower row).

5.2 Computational Singular Perturbation and Tabulation

In the previous section, we described our experience with simulating flames using
one-step and C1 chemical mechanisms. The primary challengein going from sim-
ple one-step chemistry to a C1 mechanism was the steep increase in the stiffness of
the dynamical system composed of the reactive processes; its main effect was to re-
duce the size of the time-step one could take without unacceptable splitting errors.
Matters are further compounded when one considers C2 (or even more detailed)
chemical mechanisms. This stiffness of detailed chemical mechanisms is due to the
wide range of time scales that they model. It leads to considerable difficulties when
time-advancing them in an efficient manner. Chemical model simplification and re-
duction strategies typically target these challenges by reducing the number of reac-

18 J. Ray et al

tions and/or species in the model, with associated reduction in model complexity.
When done properly, this strategy also reduces the system stiffness. Alternatively,
the Computational Singular Perturbation (CSP)-based timeintegration construction
of [83] uses CSP analysis to project out the fast time scales from the detailed chem-
ical source term, thereby rendering the equations non-stiff. The promise of this ap-
proach is that explicit time integrators can be used for large-time step integration
of the resulting non-stiff source terms, and could potentially eliminate the need for
operator-split time integration of reaction-diffusion source terms.

The key challenge with this time integration approach, however, is the large
computational cost of solving for the requisite CSP information and the resulting
projection matrices. An approach to mitigate this computational cost is tabulation.
By adaptively storing and reusing the CSP information, the significant CSP over-
head can be drastically reduced (by amortization), leadingto an efficient overall
implementation. Such a tabulation strategy has been explored for elementary model
problems [51, 49]. This section describes the implementation of a CSP tabulation
approach, relying onkd-trees [7] to efficiently store and retrieve CSP information
along manifolds in the chemical configuration space.

In the following, the CSP time integration and tabulation approach is formulated,
followed by a discussion of its implementation in the CCA framework for react-
ing flow simulation. Next, the approach is illustrated on thesimulation of H2 – air
ignition.

5.2.1 Formulation and Implementation

Consider the chemical system described by dyyy/dt = ggg(yyy), whereyyy∈ IRN, andggg(yyy) is
the chemical source term. The CSP basis vectors{aaak}

N
k=1 and covectors{bbbk}N

k=1, all
in IRN, enable the decoupling of the fast and slow processes, and the identification
of low dimensional slow invariant manifolds (SIMs) [48]. Thus, we have

dyyy
dt

= ggg = gggfast+gggslow = aaa1 f 1 +aaa2 f 2 + · · ·+aaaN f N (3)

where f i = bbbi ·ggg, for i = 1,2, . . . ,N. In this equation,gggfast corresponds to the modes
with fast transients, which are rapidly exhausted. After relaxation of fast transients,
with M modes exhausted,gggfast = ∑M

r=1aaar f r ≈ 0 andgggslow = ∑N
s=M+1aaas f s = (I −

∑M
r=1aaarbbb

r)ggg = PPPggg. In practice, the number of exhausted modes is determined asthe
maximumM for whichτM+1 ∑M

r=1aaar f r is less than a user-specified threshold, where
τM+1 is the time scale corresponding to the(M +1)st mode.

The CSP integrator [83] proceeds in each time step by first integrating the slow
dynamics of the system, followed by a homogeneous correction (HC) to correct for
the fast time scales:

Computational frameworks for advanced combustion simulations 19

ỹyy(t + ∆ t) = yyy(t)+

∫ t+∆ t

t
PPPgggdt ′ (4)

yyy(t + ∆ t) = ỹyy(t + ∆ t)−
M

∑
m,n=1

aaamτm
n |t f̂ n (5)

f̂ n = bbbn ·ggg[ỹyy(t + ∆ t)] (6)

whereτm
n is the inverse ofλ m

n , given by

λ m
n =

(

dbbbm

dt
+bbbmJJJ

)

aaan (7)

andJJJ is the Jacobian ofggg. The matrixτm
n is diagonal with entries the time scales

{τk}
N
k=1 when the CSP basis vectors are chosen to be the eigenvectors of JJJ and the

curvature of the SIM is neglected,i.e.dbbbm/dt = 0.
The procedure outlined above separates the fast, exhaustedmodes from the slow

modes that drive the evolution of the system along the SIMs. As discussed in [47],
CSP also identifies the species that are associated with these fast modes asCSP
radicals. (These are the species whose concentration can be determined from the
algebraic equations resulting from settingf i = 0, i = 1, . . . ,M.) Accordingly, the
species space can be separated into the CSP radicals and non-CSP radicals.

To improve the efficiency of the CSP integrator, a tabulationapproach has been
developed to enable reuse of the essential CSP quantities: the M fast CSP vectors
and covectors, as well as theM + 1 fastest time scales, which are sufficient to as-
semble the slow-manifold projectorPPP needed for the HC and CSP integration, and
to select the time step along the slow manifold. As the CSP vectors, covectors and
time scales can be modeled as functions of the non-CSP radical species only, it is
sufficient to tabulate these quantities in anN−M dimensional table, rather than
having to cover the fullN-dimensional state space.

In the work presented here, a table with manifold conditionsis constructed off-
line, by performing full CSP analysis on a number ofdesign pointsin state space.
We first randomly sample a set of initial conditions over a range of initial tempera-
tures, equivalence ratios and N2 dilution factors (extra mole of N2 per mole of air)
and integrate them forward, with CVODE [19], using detailedreaction kinetics. A
set of design points is constructed from the system states encountered during those
simulations. For each of these design points, a CSP analysisis performed to iden-
tify associated SIMs. If a design point has exhausted modes,then successive HCs
are applied to project that design point onto the corresponding SIM. Each SIM is
characterized by a unique value ofM and the associated CSP radicals.

For each identified SIM, the tabulation of the associated CSPinformation relies
on a nonparametric regression approach. For this purpose, the CSP information is
stored inkd-tree data structures over the theN−M dimensional space of the non-
CSP radical species. Note that, in order to give equal weightto all dimensions of the
state vector in the computation of distance measures, all coordinates of the manifold
points are first rescaled and shifted to range between 0 and 1 before being stored
in the kd-trees. During time integration, the manifold that best corresponds to the

20 J. Ray et al

current condition in the chemical configuration space is determined by finding the
nearest neighbor, as measured by the Euclidean distance measure, in all of the man-
ifolds in the table. If the manifold point that is closest to the current condition over
all manifolds is within a maximum allowable distanced, then the associated man-
ifold is assumed to be the one that is currently being followed by the system. The
CSP information at the current condition is then approximated with the correspond-
ing values at the nearest neighbor point in the table, which amounts to a 0th-order
interpolation. Higher order interpolations, relying on interpolation between nearest
neighbors or on polynomial response surfaces [50, 81], are the subject of ongoing
work. In case none of the nearest neighbors in the tabulated manifolds are within the
maximum allowable distance, then a full CSP analysis is performed on the current
condition instead.

To implement the CSP integration approach, extensive use was made of existing
components in the CCA framework. For example, the evaluation of the chemical
kinetics source term and its Jacobian rely on the “AMR” set ofcomponents from
CFRFS toolkit discussed in Sect. 4. Time integration relieson a CVODE compo-
nent, part of the CFRFS toolkit. New components were developed to perform the
CSP analysis as well as the table construction and interpolation for the tabulation
approach. These components were joined together through the use of driver compo-
nents that organize the overall algorithmic sequence of operations.

5.2.2 Application toH2–air Ignition System

The CSP integration method outlined in the previous sectionwas applied to the sim-
ulation of ignition of a stoichiometric homogeneous H2–air mixture at a temperature
of T = 1000 K. The system is modeled using a 9 species reaction mechanism, result-
ing in a total state space dimension ofN = 10 (9 species + temperature) [88]. Fig. 9
compares the predicted temperature evolution obtained by integrating the detailed
reaction kinetics (with the implicit solver CVODE), to the solution obtained with
the CSP integrator (using the explicit fourth order Runge-Kutta (RK4) integration
scheme), and with the CSP + tabulation approach .

For the tabulation approach a CSP table was constructed by sampling 100 ini-
tial conditions with Latin Hypercube Sampling over a range of equivalence ratios
between 0.9 and 1, initial temperatures between 980 and 1020K, and dilution fac-
tors between -0.005 and 0.005. From the design points extracted from these runs,
close to 1 million states were identified on 9 different manifolds, with a number of
exhausted modes ranging from 1 to 5.

The CSP integrated solution, both with and without tabulation is in good agree-
ment with the full solution, except for a small difference inthe ignition time delay,
as is shown in detail in Fig. 9(c) and 9(d).

Note that, as the reaction progresses, the number of exhausted modesM, and
the associated CSP radicals change according to the reaction dynamics. Fig. 9(b)
indicates that the system initially has two exhausted modes, followed by a time win-
dow during ignition where all modes are active, after whichM gradually increases

Computational frameworks for advanced combustion simulations 21

0 0.001 0.002 0.003 0.004
time [s]

1000

1500

2000

2500

3000

T
 [K

]
Detailed
CSP
CSP + Tab (Max d = 0.001)

(a) Temperature Profile

0 0.001 0.002 0.003 0.004
time [s]

0

1

2

3

4

5

M

(b) Exhausted Modes

0.0001 0.0002 0.0003 0.0004 0.0005
time [s]

1000

1500

2000

2500

3000

T
 [K

]

Detailed
CSP
CSP + Tab (Max d = 0.001)

(c) Temperature Detail

0.0001 0.0002 0.0003 0.0004 0.0005
time [s]

0.0

5.0×10
-5

1.0×10
-4

Y
H

O
2

Detailed
CSP
CSP + Tab (Max d = 0.001)

(d) HO2 Detail

Fig. 9 a) Evolution of temperature in an igniting stoichiometric H2–air system, simulated using
the detailed reaction mechanism, the CSP solver, and the CSPsolver with tabulation. b) Evolution
of the number of exhausted modes,M, as obtained by CSP analysis. All approaches are in good
agreement, except for minor differences in the ignition time delay, as shown in the close-up of the
ignition zone for c) temperature and d) one of the trace species, HO2. The initial conditions were:
T = 1000 K,YH2 = 0.0285,YO2 = 0.2264 andYN2 = 0.7451.

up to five at late time, as more and more modes become inactive.Accordingly, as
the number of exhausted modes increases, the tabulation approach becomes more
efficient in terms of storage and lookup times as the CSP information for each mani-
fold is tabulated inN−M dimensionalkd-trees. For example, for the H2–air system
studied here, tabulation in a 5-dimensional table is sufficient for the section(s) of the
10-dimensional state space where 5 modes are exhausted (seeFig. 9(b)).

In terms of efficiency of the table usage, Fig. 10 shows the number of success-
ful table hits as a fraction of the total number of table lookups. As a table lookup
is performed in every time step, this number indicates how efficient the tabulation
approach is at avoiding full CSP analyzes by providing tabulated CSP information
instead. For the current table and initial condition, the table lookup success rate
increases from 25 % to about 65 % as the maximum allowed nearest-neighbor dis-
tance is increased from 0.001 to 0.03, while the accuracy of the integration does
not noticeably change (not shown here). Other numerical experiments indicate that
this table hit success rate and the accuracy of the tabulation assisted simulations
also depends on the density of the table in state space. A quantitative relationship
between the table density, the maximum allowed distance in the nearest neighbor

22 J. Ray et al

0 0.005 0.01 0.015 0.02 0.025 0.03
Max d

0.2

0.3

0.4

0.5

0.6

0.7

T
ab

le
 H

its
 /

T
ab

le
 L

oo
ku

ps

Fig. 10 The number of table hits, as a fraction of the total number of table lookups, increases as the
maximum allowed distance to the nearest neighbor on a manifold is increased, resulting in more
efficient usage of the tabulated data.

table lookup, and the accuracy of the CSP tabulation approach is the subject of on-
going work.

A comprehensive evaluation of the overall numerical performance of the CSP
integration scheme with tabulation, as a function of table size, system and manifold
dimensionality, degree of stiffness, and desired accuracy, is currently in progress.
However, preliminary performance measurements show the CSP tabulation scheme
to be competitive with direct CVODE integration for the cases studied in this paper.

To aummarize, CCA provides a flexible framework for the implementation of
several components for the integration of stiff chemical kinetics. The modularity of
the framework allows easy reuse of components that were developed elsewhere in
the project for operations such as time integration, or the evaluation of source terms
or Jacobian. This flexibility allows the rapid development of codes to test various
integration approaches and easy switching between them formethod comparison
and validation.

6 Research Topics in Computational Frameworks

The previous sections have described and demonstrated how modularity, obtained as
a result of adopting a component-based design, may be used tomitigate the effects
of software complexity. They have also shown the sophistication of the scientific
software that can be designed using a component-based approach. However, the
experience with CFRFS, as well as other componentization efforts [45, 46], have
revealed a number of difficulties, Some solutions have recently been crafted, which
we discuss below.

The Learning Curve: A significant challenge in adopting CCA has been the
learning curve associated with using SIDL/Babel. While this was not encountered
when developing the CFRFS toolkit (which uses the original C++-interface ap-
proach, not SIDL/Babel), it was observed in other componentization efforts [45, 46].

Computational frameworks for advanced combustion simulations 23

The process of generating client- and server-side code, as described in Sec. 3.1, is
prone to error if performed manually, but can be automated. An integrated develop-
ment environment, called Bocca [2], has been developed (see[16] for Bocca tutori-
als) for this purpose. Given the interfaces that a componentuses and provides, Bocca
automatically invokes Babel, creates the client- and server-side auto-generated code
and constructs a build system to compile the resulting component skeleton. It min-
imizes what a CCA developer has to learn, enabling him/her tofocus on more pro-
ductive tasks.

Reluctance to Abandoning Working Software:The process of componentiza-
tion could be significantly simplified if one could automatically derivecomponents
out of a non-component codebase. A concept, called OnRamp [43], is being inves-
tigated by CCA researchers to enable such an automated derivation of components.
OnRamp is driven by annotations which are inserted into the codebase (indicat-
ing interfaces, code-blocks that will reside in componentsetc.), from which is it
possible, under certain restrictions, to automatically generate components and its
associated build system. This preserves the original code and most of the software
development practices that the programmer is familiar with, while bestowing the
benefits of componentization on the software in question.

Components also confer benefits beyond the fundamental requirement of con-
straining software complexity. Since components are a black box regarding imple-
mentation but adhere to a specified convention for communicating with the outside
world, they are ideal for automating computation at a high level; CCA has focused
on performance improvements as the aim of automation. Below, we mention some
of the recent advances in this arena.

Automatic Proxy Generation.The collection of performance characteristics on
a method-call basis is a required, but laborious task in performance modeling. In
a component environment, this can be achieved quite easily by exploiting the fact
that components publish the interfaces that they use and provide. The collection of
performance data can be done by interposing a proxy component between an inter-
face provider component and an interface using component. The proxy component
serves to trap calls between components and switch-on/terminate the collection of
performance metrics (elapsed time, cache misses, page faults etc) by a performance
measurement tool e.g. TAU [79]. Such “performance-measurement” proxies can be
generated automatically [82]. They can be used to collect performance data and
identify bottlenecks; they can also be used tomonitoran executing simulation and
optimizeit during runtime. This is described below.

Computational Quality of Service: Since the framework has a holistic view of
the entire application, and proxy components can monitor the performance of indi-
vidual components, it becomes possible to manipulate theirbehavior, with a view
to ensuring robustness, celerity of computation etc. This is commonly referred to as
“Computational Quality of Service” [62]. The manipulationof components may be
performed by changing parameters that a component may provide or by replacing
entire components [56, 57]. See [62] for how this may be performed without modify-
ing any components; a working example, using a shock-hydrodynamics simulations
in CCAFFEINE, can be found in [56].

24 J. Ray et al

7 Conclusion

In this chapter, we have investigated how a component architecture may be used
to design and implement scientific simulation software. TheCommon Component
Architecture was chosen because of its ability to accommodate parallel computing.
Unlike many computational frameworks, a component framework does not require
one to “marry into” a prescribed set of data and code structures; in many cases, such
“marriages” lead to one’s dependence on the framework for the integration of ex-
ternal libraries and/or legacy software. The peer nature ofcomponents (whereby all
components are independent) prevent such dependencies from arising. However, it
is to be noted that a software architecture merely lays down afew software devel-
opment principles; their judicious use is a matter of software design. The design, in
turn, is dictated by where one starts from (i.e., whether onestarts with atabula rasa,
which was our case, or whether one starts componentizing a legacy code) and what
one wishes to achieve with the particular design. Any lack ofclarity regarding the
second aspect invariably leads to an unsatisfactory end.

In Sect. 4 we described the particular ends that wished to achieve with our
component-baseddesign, particularly maintainabiliy andreduction in software com-
plexity; the statistics drawn from the 100 components in ourtoolkit provide some
confidence that we have largely succeeded. In Sect. 5 we showed how the toolkit
is used, including a few example of component reuse. Though not described here,
some of the AMR components used in Sect. 5.1 have also been used to simulate
problems in shock-hydrodynamics [52]. Thus there is some evidence to indicate that
the plug-and-play promise of component software, widely realized in non-scientific
software, may be replicated in our field too.

This chapter has drawn examples from the CFRFS effort, whichemphasized
small, manageable components designed without any constraints imposed legacy
software. There are other efforts where legacy software hasdictated both the aims
and the course of componentization (see [45] and referenceswithin), and still oth-
ers, usually involving the componentization of libraries,where users played a role
(see Sect. 11 in [14]). Component-based design, and CCA in particular, is a versa-
tile methodology for designing and developing maintainable software, and is most
profitably used when one has a clear idea ofwhyone wishes to use it. Unlike many
frameworks developed to enable therapid prototyingof codes, its attractiveness lies
in the long term.

Acknowledgements: The work documented in this chapter was funded by the
Department of Energy, under its Scientific Discovery through Advanced Comput-
ing (SciDAC) program. Some of the computations were performed at the National
Energy Research Supercomputing Center (NERSC) in Oakland,CA. The work was
performed in Sandia National Laboratories, CA. Sandia is a multiprogram labora-
tory operated by Sandia Corporation, a Lockheed Martin company, for the United
States Department of Energy’s National Nuclear Security Administration under
Contract DE-AC04-94-AL85000.

Computational frameworks for advanced combustion simulations 25

References

[1] Allan BA, Armstrong RC, Wolfe AP, Ray J, Bernholdt DE, Kohl JA
(2002) The CCA Core Specifications in a Distributed Memory SPMD
Framework. Concurrency-Pract Ex 14:323–345, also at http://www.cca-
forum.org/ccafe03a/index.html

[2] Allan BA, Norris B, Elwasif WR, Armstrong RC (2008) Managing Scientific
Software Complexity with Bocca and CCA. Sci Program 16(4):315–327, DOI
10.3233/SPR-2008-0270

[3] Almgren A, Bell J, Colella P, Howell L, Welcome M (1998) A Conservative
Adaptive Projection Method for the Variable Density Incompressible Navier-
Stokes Equations. J Comput Phys 142:1–46

[4] AmrLib Homepage (Accessed October 2009) URLhttps://ccse.lbl.
gov/Software/index.html

[5] AMROC Homepage (Accessed October 2009) URLhttp://amroc.
sourceforge.net/

[6] Anthonissen MJH, Bennett BAV, Smooke MD (2005) An Adaptive Multilevel
Local Defect Correction Technique with Application to Combustion. Combust
Theory Modelling 9(2):273–299

[7] Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY (1998) An optimal
algorithm for approximate nearest neighbor searching in fixed dimensions. J
Assoc Comput Mach 45(6):891–923

[8] Banks JW, Schwendeman DW, Kapila AK, Henshaw WD (2007) A High-
Resolution Godunov Method for Compressible Multi-Material Flow on Over-
lapping Grids. J Comput Phys 223:262–297

[9] Barad M, Colella P (2005) A Fourth-Order Accurate Local Refinement
Method for Poisson’s Equation. J Comput Phys 209:1–18

[10] Bell JB, Day MS, Shepherd IG, Johnson M, Cheng RK, Grcar JF, Beckner VE,
Lijewski MJ (2005) Numerical Simulation of a Laboratory-Scale Turbulent V-
flame. Proc Natl Acad Sci USA 102(29):10,006–10,011

[11] Bell JB, Day MS, Grcar JF, Lijewski MJ, Driscoll JF, Filatyev SF (2007) Nu-
merical Simulation of a Laboratory-Scale Turbulent Slot Flame. Proc Combust
Inst 31:1299–1307

[12] Bennett BAV, Smooke MD (1998) Local Rectangular Refinement with Appli-
cation to Axisymmetric Laminar Flames. Combust Theory Modelling 2:221–
258

[13] Berger M, Colella P (1989) Local Adaptive Mesh Refinement for Shock Hy-
drodynamics. J Comput Phys 82:64–84

[14] Bernholdt DE, Allan BA, Armstrong R, Bertrand F, Chiu K,Dahlgren TL,
Damevski K, Elwasif WR, Epperly TGW, Govindaraju M, Katz DS,Kohl
JA, Krishnan M, Kumfert G, Larson JW, Lefantzi S, Lewis MJ, Malony AD,
McInnes LC, Nieplocha J, Norris B, Parker SG, Ray J, Shende S,Windus TL,
Zhou S (2006) A Component Architecture for High-Performance Scientific
Computing. Intl J High-Perf Computing Appl 20:162–202

26 J. Ray et al

[15] Cactus Homepage (Accessed October 2009) URLhttp://en.
wikipedia.org/wiki/Cactus Framework

[16] CCA Tutorials Hands-On Guide (Accessed October 2009) URL http://
www.cca-forum.org/tutorials/

[17] CHOMBO – Infrastructure for Adaptive Mesh Refinement (Accessed October
2009) http://seesar.lbl.gov/anag/chombo/

[18] Cirak F, Deiterding R, Mauch SP (2006) Large-Scale Fluid-Structure Interac-
tion Simulation of Viscoplastic and Fracturing Thin ShellsSubjected to Shocks
and Detonations. Comput Struct 85(11-14):1049–1065

[19] Cohen SD, Hindmarsh AC (1996) CVODE, a Stiff/Nonstiff ODE Solver in C.
Comput Phys 10(2):138–143

[20] Colella P, Graves DT, Keen BJ, Modiano D (2006) A Cartesian Grid Em-
bedded Boundary Method for Hyperbolic Conservation Laws. JComput Phys
211:347–366

[21] Colella P, Dorr M, Hittinger J, Martin DF, McCorquodaleP (2009) High-Order
Finite-Volume Adaptive Methods on Locally Rectangular Grids. J Phy: Conf
Ser 180:012,010 (5pp), URLhttp://stacks.iop.org/1742-6596/
180/012010

[22] CORBA Component Model Webpage (Accessed October 2009)
http://www.omg.org

[23] Dahlgren T, Epperly T, Kumfert G, Leek J (2005) Babel User’s
Guide. CASC, Lawrence Livermore National Laboratory, Livermore, CA,
babel-0.11.0 edn, URLhttp://www.llnl.gov/CASC/components/
docs/users guide.pdf

[24] Day MS, Bell JB (2000) Numerical Simulation of Laminar Reacting Flows
with Complex Chemistry. Combust Theory Modelling 4:535–556

[25] Deiterding R (2000) Object-Oriented Design of an AMR Algorithm for Dis-
tributed Memory Computers. In: 8th Int. Conf. on HyperbolicProblems,
Magdeburg

[26] Deiterding R (2005) Detonation Structure Simulation with AMROC. In: Yang
LT (ed) High Performance Computing and Communications, no.3726 in Lec-
ture Notes in Computer Science, Springer, Berlin Heidelberg, pp 916–927

[27] Deiterding R (2009) A Parallel Adaptive Method for Simulating Shock-
Induced Combustion with Detailed Chemical Kinetics in Complex Domains.
Comput Struct 87:769–783

[28] Deiterding R, Radovitzky R, Mauch SP, Noels L, CummingsJC, Meiron DI
(2006) A Virtual Test Facility for the Efficient Simulation of Solid Material
Response Under Strong Shock and Detonation Wave Loading. Eng Comput
22(3–4):325–347

[29] Deiterding R, Cirak F, Mauch S, Meiron D (2007) A VirtualTest Facility for
Simulating Detonation- and Shock-Induced Deformation andFracture of Thin
Flexible Shells. Int J Multiscale Computational Engineering 5(1):47–63

[30] Drake JB, Jones PW, Carr J George R (2005) Overview of theSoftware De-
sign of the Community Climate System Model. Intl J High-PerfComput-
ing Appl 19(3):177–186, DOI 10.1177/1094342005056094, URL http://

Computational frameworks for advanced combustion simulations 27

hpc.sagepub.com/cgi/content/abstract/19/3/177, http:
//hpc.sagepub.com/cgi/reprint/19/3/177.pdf

[31] Dubey A, Antypas K, Ganapathy MK, Reid LB, Riley K, Sheeler D, Siegel
A, Weide K (2009) Extensible Component Based Architecture for FLASH, A
Massively Parallel, Multiphysics Simulation Code. Parallel Comput Submit-
ted, preprint at http://arxiv.org/pdf/0903.4875

[32] Earth Systems Modeling Framework Homepage (Accessed October 2009)
URL http://www.esmf.ucar.edu/

[33] Englander R, Loukides M (1997) Developing Java Beans (Java Series).
O’Reilly and Associates, http://www.java.sun.com/products/javabeans

[34] Falgout R, Yang U (2002) Hypre: a Library of High Performance Precondition-
ers, in Computational Science. In: Sloot PMA, Tan C, Dongarra JJ, Hoekstra
AG (eds) Lecture Notes in Computer Science, vol 2331, Springer-Verlag, pp
632–641

[35] Fryxell B, Olson K, Ricker P, Timmes FX, Zingale M, Lamb DQ, MacNe-
ice P, Rosner R, Truran JW, Tufo H (2000) FLASH: An Adaptive Mesh Hy-
drodynamics Code for Modeling Astrophysical Thermonuclear Flashes. Ap J
Supplement Series 131:273–334

[36] Godfrey MW, Tu Q (2000) Evolution in Open Source Software: A Case Study.
In: Proceedings of the International Conference on Software Maintenance, pp
131–142, URLhttp://citeseer.nj.nec.com/300079.html

[37] Goodale T, Allen G, Lanfermann G, Mass J, Radke T, Seide E, Shalf J (2002)
The Cactus Framework and Toolkit: Design and Applications.In: Proceedings
of Vector and Parallel Processing - VECPAR 2002

[38] GrACE Homepage (Accessed October 2009)
http://www.caip.rutgers.edu/TASSL/

[39] Henshaw WD (1994) A Fourth-Order Accurate Methods for the Incompress-
ible Navier-Stokes Equations on Overlapping Grids. J Comput Phys 113:13–
25

[40] Henshaw WD, Schwendeman DW (2003) An Adaptive Numerical Scheme for
High-Speed Reactive Flow on Overlapping Grids. J Comput Phys 191:420–
447

[41] Henshaw WD, Schwendeman DW (2006) Moving Overlapping Grids with
Adaptive Mesh Refinement for High-Speed Reactive and Non-reactive Flow.
J Comput Phys 216:744–779

[42] Henshaw WD, Schwendeman DW (2008) Parallel Computation of Three-
Dimensional Flows using Overlapping Grids with Adaptive Mesh Refinement.
J Comput Phys 227:7469–7502

[43] Huelette GC, Sottile MJ, Armstrong R, Allan B (2009) OnRamp: En-
abling a New Component-Based Development Paradigm. In: Proceedings of
Component-Based High Performance Computing

[44] Kadioglu S, Klein R, Minion M (2008) A Fourth-Order Auxiliary Variable
Projection Method for Zero-Mach Number Gas Dynamics. J Comput Phys
227:2012–2043

28 J. Ray et al

[45] Kenny JP, Janssen CL, Valeev EF, Windus TL (2008) Components for Integral
Evaluation in Quantum Chemistry. J Comput Chem 29(4):562–577

[46] Krishnan M, Alexeev Y, Windus TL, Nieplocha J (2005) Multilevel Paral-
lelism in Computational Chemistry using Common Component Architecture
and Global Arrays. In: SC ’05: Proceedings of the 2005 ACM/IEEE Confer-
ence on Supercomputing, IEEE Computer Society, Washington, DC, USA,
p 23, DOI http://dx.doi.org/10.1109/SC.2005.46

[47] Lam S (1993) Using CSP to Understand Complex Chemical Kinetics. Com-
bust Sci Technol 89:375–404

[48] Lam S, Goussis D (1988) Understanding complex chemicalkinetics with com-
putational singular perturbation. Proc Combust Inst 22:931–941

[49] Lee J, Najm H, Lefantzi S, Ray J, Goussis D (2005) On ChainBranching and
its Role in Homogeneous Ignition and Premixed Flame Propagation. In: Bathe
K (ed) Computational Fluid and Solid Mechanics 2005, Elsevier Science, pp
717–720

[50] Lee J, Najm H, Lefantzi S, Ray J, Frenklach M, Valorani M,Goussis D (2007)
A CSP and Tabulation Based Adaptive Chemistry Model. Combustion Theory
and Modeling 11(1):73–102

[51] Lee JC, Najm HN, Lefantzi S, Ray J, Frenklach M, ValoraniM, Goussis D
(2007) A CSP and Tabulation Based Adaptive Chemistry Model.Combust
Theory Modelling 11(1):73–102

[52] Lefantzi S, Ray J, Najm HN (2003) Using the Common Component Archi-
tecture to Design High Performance Scientific Simulation Codes. In: Proceed-
ings of the International Parallel and Distributed Processing Symposium, Nice,
France

[53] Lefantzi S, Ray J, Kennedy CA, Najm HN (2005) A Component-based Toolkit
for Reacting Flows with High Order Spatial Discretizationson Structured
Adaptively Refined Meshes. Prog Comput Fluid Dy 5(6):298–315

[54] Li X, Parashar M (2004) Hierarchical Partitioning Techniques for Structured
Adaptive Mesh Refinement Applications. J Supercomput 28(3):265–278

[55] Li X, Parashar M (2007) Hybrid Runtime Management of Space-Time Het-
erogeneity for Parallel Structured Adaptive Applications. IEEE Transactions
on Parallel and Distributed Systems 18(9):1202–1214

[56] Liu H, Parashar M (2005) Enabling Self-management of Component-
based High-Performance Scientific Applications. In: Proceedings of the 14th
IEEE International Symposium on High Performance Distributed Computing
(HPDC-14), Research Triangle Park, NC

[57] Liu H, Parashar M (2006) Accord: A Programming Framework for Autonomic
Applications. IEEE Transaction on Systems, Man, and Cybernetics 36(3):341–
352, special issue on Engineering Autonomic Systems, Editors: R. Sterritt and
T. Bapty

[58] Majda A, Sethian J (1985) The Derivation and Numerical Solution of
the Equations for Zero Mach Number Combustion. Comb Sci Technology
42:185–205

Computational frameworks for advanced combustion simulations 29

[59] Martin DF, Colella P (2000) A Cell-Centered Adaptive Projection Method for
the Incompressible Euler Equations. J Comput Phys 163:271–312

[60] McBride BJ, Gordon S, Reno M (1993) Coefficients for Calculating Thermo-
dynamic and Transport Properties of Individual Species. Tech. Rep. TM-4513,
NASA

[61] McInnes LC, Allan BA, Armstrong R, Benson SJ, BernholdtDE, Dahlgren
TL, Diachin LF, Krishnan M, Kohl JA, Larson JW, Lefantzi S, Nieplocha
J, Norris B, Parker SG, Ray J, Zhou S (2006) Parallel PDE-Based Simu-
lations Using the Common Component Architecture. In: Numerical Solu-
tion of Partial Differential Equations on Parallel Computers, Springer, pp
327–384, also available as ANL/MCS-P1179-0704 viahttp://www.mcs.
anl.gov/cca/publications/p1179.pdf

[62] McInnes LC, Ray J, Armstrong R, Dahlgren TL, Malony A, Norris B,
Shende S, Kenny JP, Steensland J (2006) Computational Quality of Service
for Scientific CCA Applications: Composition, Substitution, and Reconfig-
uration. Tech. Rep. ANL/MCS-P1326-0206, Argonne NationalLaboratory,
URL ftp://info.mcs.anl.gov/pub/tech reports/reports/
P1326.pdf

[63] Meir ”Manny” Lehman’s FEAST project (Accessed October2009) URL
http://www.doc.ic.ac.uk/∼mml/feast

[64] Najm H, Knio O (2005) Modeling Low Mach Number Reacting Flow with
Detailed Chemistry and Transport. J Sci Comp 25(1):263–287

[65] Overture Homepage (Accessed October 2009) URLhttps:
//computation.llnl.gov/casc/Overture/

[66] Pantano C, Deiterding R, Hill DJ, Pullin DI (2007) A Low Numerical Dissi-
pation Patch-Based Adaptive Mesh Refinement Method for Large-Eddy Sim-
ulation of Compressible Flows. J Comput Phys 221(1):63–87

[67] Parashar M, Browne JC (2000) System Engineering for High Performance
Computing Software: The HDDA/DAGH Infrastructure for Implementation
of Parallel Structured Adaptive Mesh Refinement. In: S B Baden DBG
M P Chrisochoides, Norman ML (eds) Structured Adaptive MeshRefinement,
IMA, vol 117, Springer-Verlag

[68] Paul PH (1997) DRFM: A New Package for the Evaluation of Gas-Phase-
Transport Properties. Sandia Report SAND98-8203, Sandia National Labora-
tories, Albuquerque, New Mexico

[69] Publications from the Applied Numerical Algorithms Group (Accessed Oc-
tober 2009) URLhttp://seesar.lbl.gov/anag/publication.
html

[70] Publications Using AMROC and Virtual Test Facility (Accessed October
2009) URLhttp://www.csm.ornl.gov/∼r2v/html/pub.htm

[71] Ray J, Najm HN, Milne RB, Devine KD, Kempka S (2000) Triple Flame
Structure and Dynamics at the Stabilization Point of an Unsteady Lifted Jet
Diffusion Flame. Proc Combust Inst 28:219–226

30 J. Ray et al

[72] Ray J, Kennedy C, Steensland J, Najm HN (2005) Advanced Algorithms for
Computations on Block-Structured Adaptively Refined Meshes. J Phys: Conf
Ser 16:113–118

[73] Ray J, Kennedy CA, Lefantzi S, Najm HN (2007) Using High-Order Methods
on Adaptively Refined Block-Structured Meshes - Derivatives, Interpolations,
and Filters. SIAM J Sci Comp 29(1):139–181

[74] Safta C (2009) Personal Communication
[75] Safta C, Ray J, Najm H (2009) A High-Order Projection Scheme for AMR

Computations of Chemically Reacting Flows. In: Proceedings of the 2009 Fall
Meeting of the Western States Section of the Combustion Institute, Irvine, CA,
URL http://www.caip.rutgers.edu/∼jaray/

[76] Sommeijer BP, Shampine LF, Verwer JG (1998) RKC: An Explicit Solver for
Parabolic PDEs. J Comp Appl Math 88:315–326

[77] de St Germain JD, McCorquodale J, Parker SG, Johnson CR (2000) UINTAH:
A Massively Parallel Problem Solving Environment. In: HPDC’00 : Ninth
IEEE International Symposium on High Performance and Distributed Com-
puting

[78] van Straalen B, Shalf J, Ligocki T, Keen N, Yang WS (2009)Scalability Chal-
lenges for Massively Parallel AMR Applications. In: Proceedings of the 23rd
IEEE International Symposium on Parallel and Distributed Processing, URL
https://seesar.lbl.gov/ANAG/publication.html

[79] TAU: Tuning and Analysis Utilities (Accessed November2009)
Http://www.cs.uoregon.edu/research/paracomp/tau/

[80] The OpenFOAM Homepage (Accessed October 2009) URLhttp://www.
opencfd.co.uk/openfoam/

[81] Tonse S, Moriarty N, Brown N, Frenklach M (1999) PRISM: Piecewise
Reusable Implementation of Solution Mapping. An economical strategy for
chemical kinetics. Israel Journal of Chemistry 39:97–106

[82] Trebon N, Morris A, Ray J, Shende S, Malony AD (2007) Performance Mod-
eling Using Component Assemblies. Concurr Comp-Pract E 19(5):685–696

[83] Valorani M, Goussis D (2001) Explicit Time-Scale Splitting Algorithm For
Stiff Problems: Auto-Ignition Of Gaseous-Mixtures BehindA Steady Shock.
J Comput Phys 169:44–79

[84] Verwer JG, Sommeijer BP, Hundsdorfer W (2004) RKC Time-stepping for
Advection-Diffusion-Reaction Problems. J Comput Phys 201(1):61–79, DOI
http://dx.doi.org/10.1016/j.jcp.2004.05.002

[85] Visual Basic Webpage (Accessed October 2009)
http://msdn.microsoft.com/en-us/vbasic/default.aspx

[86] Williams F (1985) Combustion Theory, 2nd edn. Addison-Wesley, New York
[87] XCAT Homepage (Accessed October 2009)

http://www.extreme.indiana.edu/xcat/
[88] Yetter R, Dryer F, Rabitz H (1991) A Comprehensive Reaction Mechanism for

Carbon Monoxide/Hydrogen/Oxygen Kinetics. Combust Sci Technol 79:97

