Computational frameworks for advanced
combustion simulations

J. Ray, R. Armstrong, C. Safta, B. J Debusschere, B. A. Altahtd. N. Najm

Abstract Computational frameworks can significantly assist in thestauction, ex-
tension and maintenance of simulation codes. As the nafyrmblems addressed
by computational means has grown in complexity, such fraonkshave evolved to
incorporate a commensurate degree of sophistication,ibddrms of the numeri-
cal algorithms that they accommodate as well as the softaratetectural discipline
they impose on their users. In this chapter, we discusmaponent frameworkhe
Common Component Architecture (CCA), for developing stifensoftware, and
describe how it has been used to develop a toolkit for sirmgatacting flows. In
particular, we will discuss why a component architecturs alaosen and the philos-
ophy behind the particular software design. Using stasstirawn from the toolkit,
we will analyze the code structure and investigate to whgteethe aims of the
software design were actually realized. We will explore HO@A was employed to
design a high-order simulation code on block-structureap#side meshes, as well
as a simulation capacity for adaptive stiffness reductiodetailed chemical mod-
els. We conclude the chapter with two reacting flow studie$op@ed using the
above-mentioned computational capabilities.

1 Introduction

Computational science has come to regarded as the thirdf Isgence, after the-
ory and experimentation. With the advent of massively pelralomputers, sim-
ulations have been used to investigate extremely chatengioblems. However,
as the problems have increased in complexity, the tools tséuvestigate them
computationally — numerical algorithms and their softwianplementations — have
developed a commensurate sophistication and intricadyw&ee complexity, with

J. Ray, R. Armstrong, C. Safta, B. Debusschere, B. A. AllathtdnN. Najm
Sandia National Laboratories, Livermore, CA, e-mdij:ai r ay, r ob, csaft a, bj debus,
baal | an, hnnaj M @andi a. gov

2 J. Ray et al

its detrimental impact on software maintainability andemsibility, is regarded as
a large drain on time and effort and computational framewaiie intended to be a
solution to this problem. One means of addressing complexib provide “shrink-
wrapped” functionality, in essence transferring softwame algorithmic complexity
to the implementer of the framework from its user. A secong efeaddressing com-
plexity is through some form of modularizatioBomponent frameworKall in the
second category.

The work “framework” is an extremely overused and consetlyeconfusing,
term. It can refer to aarchitecture a set of specifications that, when followed, im-
poses some standard on the software that adhere to it. Bjo#tés, a component
framework is a set of specifications that permit softwared¢abnstructed by mod-
ular composition. The modules are referred t@asiponentsConfusingly, “frame-
work” can also refer to a software framework that is writterstich a specification
and is meant to locate, instantiate and compose compoiidsim of component
frameworks is to usenodularityto divide and conquer complexity, by composing
programs out of software building blocks. Studies have shtivat the capability
and complexity of a program is proportional to its size, whitetermines the num-
ber of software developers required to maintain the sofwéB, 36]. Component
frameworks can be used to design an organizing principl¢hferefficient deploy-
ment of programming resources. Individual programmergltagnizance over one
or more components of the overall program, which providesi@nal division of
responsibilities. It makes obvious that the interfaces/benh components are where
programmers must negotiate. Interfaces exported to, oolited from components
is functionality that is needed by, or provided to a prograenmms part of his/her
domain of responsibility. The structure provided by comgionbased software en-
gineering is one of the main reasons for using it and definesvtirkflow in a large
software project.

In this chapter, we will limit the discussion to the Commom@mnent Architec-
ture (CCA), a set of specifications for developing and conm@psomponent-based
scientific simulation software. We will devote some time lte CCA frameworks
used in scientific computings and provide examples of how @@#ébeen used for
software for the simulation of flames.

2 Literature review of computational frameworks

Scientific computational frameworks proliferate. Someaneaitially designed to as-
sist in the creation of simulation codes in a certain sciierfield and consequently
have been adopted/adapted rather sporadically elsew@trers were intended to
assist in nothing more than the implementation of a pasicsbftware design, ir-
respective of the nature/aim of the software being develofieis impossible to
review the myriads of scientific simulation frameworks thatbetween these two
extremes and this will not be attempted here. Since thistehdpscribes the design
of a component-based simulation facility for reacting floovs adaptively refined

Computational frameworks for advanced combustion sirmriat 3

meshes, we will devote the majority of our review to framekgthat assist in com-
putations on block-structured adaptively refined meshed,implementations of
CCA that are relevant to scientific computing. We will, howewescribe a basic
categorization before proceeding with the details.

Scientific computing frameworks are application developtfimmeworks which,
at the very least, support parallel computing and pay pagrattention to high per-
formance in their design. This manifests itself in theiri&pto address operations
on large arrays and the elimination/reduction of overhaghdsscale with the size
of the data or with the number of processors on which the freonleis expected to
run. Further, they rarely contain any support for languagéside FORTRAN and
C/C++, and make sparing use of remote method invocatiorhitMihese confines,
scientific simulation frameworks can be divided into thrategories.

In the first category are frameworks that were originallyigesd to support a
particular field of science. The Earth System Modeling Fraor& [30, 32] is one
such example, developed for constructing climate simaatodes; Cactus [37, 15]
is another, developed for numerical relativity studies leliLASH [31, 35], de-
veloped for astrophysical simulation, forms a third exaen@penFoam, developed
initially for finite-volume simulation of fluid flow (but nowantaining extensions
for solid mechanics and Direct Simulation Monte Carlo ckltons as well) [80]
is in widespread use. Such application-specific framewofte contain numerical
schemes and “utility” scientific models that find routine uSkey are modular in
design and implement many of the ideas (e.g., involving asgn of implemen-
tation from the interface of a module) that are formalizei@A. Note that these
frameworks do not intend to impose any design patterns orethdting simulation
code; rather one adopts the data structures and desigmrsatiethe framework
itself and reaps the benefits of using validated solvers andefs in one’s simu-
lations. These frameworks allow one to rapidly develop $ation codes as long
as the facilities provided by the framework (e.g. solverd erodels) are profitably
leveraged by the simulation.

The second category of frameworks consists of those thdileriae use of a
particular solution methodology e.g.. block-structurethjgtive mesh refinement
(AMR) in simulation codes. These frameworks are more gérteet those de-
scribed in the previous paragraph — they provide data-stres and solvers (or in-
terfaces to those implemented by external libraries) treatiaeful while developing
simulation software. Again, they make no attempt to pronaoitg particular design
pattern. However, given that one makes heavy use of the Wwankeprovided data
structures (which are usually implemented in the form ofects), the design pat-
terns employed for simulation codes bear a strong reserodlEnthose employed
for the framework itself. We will review a few such framewsfgackages that en-
able the use of AMR in simulation codes.

Simulations using block-structured adaptively refined nessare generally con-
ducted where the spatial domain is rectangular/cuboidwbedogically described
as such. One begins with a Cartesian mesh with a resolutairigtinsufficient to
capture many of the features of the solution. Regions in tmaain that require
refinement are identified and collated into rectangles/iigoand a finer mesh (usu-

4 J. Ray et al

ally, finer by a constant factor) is overlaid on the refined pathe initial mesh. This
is performed recursively leading tonaesh hierarchyf a few (usually less than 10)
levels. GrACE [67, 38], AMROC [25, 70, 5], CHOMBO [17, 69] a/dnrLib [4]
are a few frameworks that implement such an adaptive mesitiategy. These
frameworks provide the infrastructure required to margpellsuch meshes as well
as data structures that allow fields to be described on thendigributed mem-
ory computers, this involves very intricate book-keeping)e data structures also
allow the use otime-refinemenfl 3], a time-integration technique that allows one
to mitigate the effect of having time-steps be CFL-conagdiby the finest mesh
in a mesh-hierarchy. While CHOMBO stores the data on a gigeel lof the mesh
hierarchy in a separate data-structure, both AMROC and G&Af@sent a data ob-
ject that is described on the entire hierarchy. The thremémmorks also largely
automate the work of refining/coarsening the mesh hierapdamodically (called
regridding), based on a user-calculated “error metric” padorm load-balancing
of the mesh and data after each regridding operation. WhifeO& only provides
a parallel block-structured adaptive mesh and the assabitgta object, CHOMBO
and AMROC also provide a set of commonly used solvers.

All the three frameworks have been used for simulating regdtows. AMROC
has its origins in the simulation of shock-laden flows [26], Gt has been ex-
tended to shock-fluid interactions [29, 18, 28] and shockioed combustion [27].
CHOMBO (and its predecessors) have been used for an immarisgaof simula-
tions [69], including solutions of variable density formatibn of the Navier-Stokes
equations [3], embedded boundary methods [20], and faondlef-in-space dis-
cretizations [21, 9] for AMR simulations. AmrLib, which hagmilar foundations
as CHOMBO, has been used to develop algorithms for low Magtinar flames
simulations [24] as well as for turbulent flames [10, 11]. GEAwas initially de-
veloped to investigate load-balancers for block-struediadaptive meshes [54, 55],
but has been used to develop efficient numerical schemes égtgnded stability
time integrators [53] and fourth-order spatial discreti@as [73]) for the simulation
of flames [75]. These frameworks have been investigatedh&r scalability on par-
allel machines; see [61] for a discussion of scalabilityéssin GrACE and [78] for
CHOMBO.

Overture [65] had its beginnings in simulations using ogerseshes i.e. a grid-
ding scheme, generally applied to complex geometries, evtieg domain is dis-
cretized using “patches” which could employ meshing scleetimat were best suited
to the geometry at hand. Thus it was possible, for exampleptbed a small cir-
cular patch, employing a cylindrical mesh, within a largeegh discretized in a
Cartesian manner. It was used to develop fourth-ordepats discretizations [39],
as well as in simulations of high-speed reactive flows [4i0hals been extended to
adaptive mesh refinement [41], multi-material flows [8] ar=d hecently been par-
allelized and used for 3D calculations [42]. A full listind Overture-related pub-
lications, including investigation of detonations etcndse found on the Overture
homepage [65].

In the third category are frameworks that primarily seek $sist software de-
velopers implement a certain design pattern. CCA definessoicd design pat-

Computational frameworks for advanced combustion sirmriat 5

tern; UINTAH [77] and CCAFFEINE [14, 1] are frameworks thamplement it.

Thus components designed to operate in the UINTAH and CCAREHErame-

works comply with the CCA architecture and bestow its adages — modular
design, reduction of software complexity, plug-and-plagerimentation and mul-
tiple language interoperability — on simulation codes tiodlbw the architecture.
The framework is not required to provide any numerical orwdation capability

(which renders the framework usable in diverse scientifigliaptions) and indeed
CCAFFEINE does not; however, UINTAH provides its users vdtinesh and the
associated data structures for describing fields on a dizgecedomain. A detailed
discussion of CCA follows in Sect. 3.

3 The Common Component Architecture

The Common Component Architecture (CCA) specification @sfsoftware stan-
dard allowing plug-and-play composition of scientific apations. Being component-
based, it is necessarily object-oriented. Its developmestdriven by the benefits
of modularization. The competitive advantages of modméidn were recognized
by the commercial establishment in the mid-1990s, whictiased a solution
in the form of component architecture; CORBA [22], Visualdga[85] and Java
Beans [33] are some industry-standaa@mponent architecture§ hese architec-
tures employ certain subsets of object-oriented softwassgeh principles to realize
modularity and interoperability of modules under a largeets of conditions. How-
ever, commercial component standards are ill-suited fensific computing [1], the
primary drawbacks being the lack of support for parallel potng. Starting from
the concepts common to most component standards, the C@kgenost of the
relevant characteristics while simultaneously allowibgt(not stipulating) parallel
computing in an SPMD fashion. CCAFFEINE [1] and UINTAH [7/eaCCA-
compliant frameworks that support parallel computing,l&/XCAT [87] does not.
Within CCA one considersomponentsmodules (or objects) that implement a
particular scientific or algorithmic functionality, andrameworke.g. CCAFFEINE
or UINTAH, that “wires” components together into a functiog simulation code.
Components implement interfacéftsin CCA parlance) through which the com-
ponents provide their functionality; these ports are desijby the programmer
implementing the component. Components are peers, iy, db not inherit im-
plementation from other components, and are capable ofheiad independently.
Since components implement interfaces, they can be dex@hlthout a tight cou-
pling to a software development team. CCA stipulates tHatahponents imple-
ment a particular interface (called tf@mponeninterface) through which indi-
vidual components can interact with the framework (speddificusing theServices
interface). Typically, this involves registering the Pofinterfaces/functionalities)
that they provide (these interfaces are calledRinevidesPortf the component)
as well as the Ports that they use (i.e., theesPortof the component). Driven by
a user script, the framework matches fPi@videsPortand UsesPortregistrations.

6 J. Ray et al

The individual components then fetch the matched-up Podsuae them by mak-
ing calls on the methods on those interfaces The Port irterig a caller-callee
boundary, not a data-flow abstraction.

3.1 Features of the Common Component Architecture

The initial development of the CCA specification took placgng a compiler-
independent, simple subset of C++ syntax (pure virtualselgs as the interface
definition language. Subsequent CCA development (versi6rafd beyond) use
the Scientific Interface Definition Language (SIDL) and itsnpiler Babel [23]
to enable language interoperability i.e. components amith the Babel-supported
languages (C, FORTRAN, Python, or Java) can call each athesparently, with-
out manually performing the data translations and langtmgeéings that such a
mixture of programming languages would entail. When usia@pd, the interface
construct of the SIDL language replaces the pure virtualrabisclass of C++ (of
the initial design). In addition to language translatiolDlSBabel provides modern
software engineering functionality in each of the langwsageupports e.g., pass-
ing and accessing multidimensional array data and C stagteferences to pre-
serve performance, support for exceptions, object-cedesign, tunably enforced
programming-by-contract conditions when entering anditeamethod calls etc.
The C++ specification continues to exist and provide intar$eequivalent to those
of the SIDL definition.

Fortran 95
Fortran 2003 IOR
(©)
Fortran 77
C —_— e — =
++ | _ |
¢ = tI(I)inX Partially generated |
Java caling wrapper code
skeleton
Python r
Client bindings C interoperability Implementation

layer in language X

Fig. 1 Mechanics of any-to-any language calling with Babel. Qliginding and interoperability
layers (solid shapes) are entirely generated code. Thesimgaitation is partially generated in the
implementor’s choice of programming language, X, chosemfamong the supported languages.
The implementor fills in method bodies and private data smecdefinitions that are inaccessible
from the clients. Lines indicate function calls.

Computational frameworks for advanced combustion sirmriat 7

Language interoperability: SIDL/Babel enables language-interoperability by
interposing an Intermediate Object Representation (I@Ryben components, with
an independent client-side binding to each language. $hiisistrated in Fig. 1.

In order that a component, written in language X, may be ddliem a host of
other languages (in Fig. 1, these are various dialects of R, C/C++, Java
and Python), the programmer first expresses/writes thefauei.e., function calls,
and their arguments (which may use the Babel-supportedtgaés like multi-
dimensional arrays, exceptions etc. listed above) in alagg-neutral manner using
SIDL. The SIDL interface is then “compiled” using the Babehtpiler to generate
equivalent interfaces in C/C++, FORTRAN etc, collectivedferred to as “client
bindings” in Fig. 1 (left). It also generates a wrapper, indaage X, (shown in
dashed lines on the right side of Fig. 1) in which one impletmene’s components.
The wrapper can also include calls to an external librargiariact, provides a very
simple route to making a library directly callable from a ttitulde of programming
languages. The most significant, and intricate, piece irctbhses-language orches-
tration is the IOR, shown in the middle of Fig. 1 (“C interogbility layer”). This
IOR, essentially a C struct containing a function table aaiz ghointers, maps func-
tion calls in the various “client” languages (left side ofjFL) into the equivalent
functions/methods on the “server” side (the dashed streatn the right side of
Fig. 1). The need for translation of data (e.g from FORTRANItirdimensional
arrays on the “client” side to perhaps C on the “server”/iempéntation side), the
throwing of exceptions and other functionalities that ntipke needed to enable
cross-language operation are detected by Babel when “diogipihe SIDL inter-
face, and is encoded into the IOR. There are a substantidb@ufas seen in Fig. 1)
of code objects which are automatically derived from SIDLBapel and then com-
piled. Most of the rote work needed to build and deploy SiDiafgled applications
has been automated with the Bocca tool [2], enabling entineponent application
structures to be prototyped within minutes.

Parallel computing: Since the use of parallel computing is critical to perfor-
mance, the CCA standard is carefully crafted to avoid faydime choice of any
particular parallel programming model on the user. Compodevelopers may use
any communication model. A survey of the impact of using CGAapplication
performance is provided in Section 6 of [14]. The typicakstific application has
a single-program-multiple-data structure (SPMD). Thisggamming model is well
supported by the CCAFFEINE framework [1] and default drivérich supports the
component-based programming model analog, the singlgzonent-multiple-data
(SCMD) model. In the SCMD model, all components have a regmtadive instance
on all processes. For a single component, we call the groygaddllel instances
a cohort. Message passing, by whatever means, is restt@wedhanges within a
cohort, as one component implementation cannot make anyngs®ns about the
communication internals of a different component impletagan. CCAFFEINE
has also been used as a library to compose MCMD (multi-coeypemultiple-data)
applications [46].

8 J. Ray et al

4 Computational Facility for Reacting Flow Science

The Computational Facility for Reacting Flow Science (CBREE a toolkit for con-
ducting high-fidelity simulations of laboratory-scalednfles. The toolkit adheres
to the CCA specification (using C++, not SIDL/Babel as iteiface language of
choice) and is typically run using the CCAFFEINE framewadrke CFRFS toolkit
implements a set of novel numerical techniques, most of lvhiere developed as
the toolkit was being constructed. In this section we désctie toolkit and its nu-
merical structure and discuss why a component architegtagenecessary for its
implementation. We conclude with an analysis, using daasvdrfrom the toolkit,
to determine to what degree the original aims of the softwd@sign have been re-
alized.

4.1 Numerical Methods and Capabilities

The CFRFS toolkit is used to perform computations of flamésgdetailed chemi-
cal mechanisms. It solves the low Mach number approximatitime Navier-Stokes
(NS) equations [86], augmented with evolution equatioreyective-diffusive-
reactive systems) for each of the chemical species in theiclaé mechanism. It
employs fourth-order finite-difference schemes for spaaligcretizations within the
context of AMR meshes [13]. It adopts an operator-split émtsion to enable the
use of efficient integrators when time-integrating differ@hysical processes in
the system being solved. It uses extended-stability Ruigea-Chebyshev (RKC)
time-integration [76] for time-advancing the diffusivaisport terms and an adap-
tive, backward difference stiff integrator for the chentisaurce terms. The numer-
ical details of the high-order (spatial) methods can be ¢bimn[73] and those of
RKC on block-structured adaptive meshes in [53]. The digrog constraint in the
low Mach NS equations necessitates a projection schemehwhies rise to a non-
constant coefficient Poisson equation; this is solved usliegconjugate-gradient
method with a multigrid solver (employing high-order spastencils) as a precon-
ditioner.

The CFRFS Toolkit, then, is an integration of many advanaeerical tech-
nigues. Many of them, e.g., RKC, had been demonstrated doromimeshes [64]
but had to be augmented to enable the solution of partiabrdifftial equations
(PDEs) on AMR meshes. For example the RKC schemes had to hiéeddd pre-
serve its order of accuracy when used withe refinemenf53] on AMR meshes;
further tests were required to determine various “free”apaeters (in the RKC
scheme) when time-advancing a convective-diffusive syg#2]. The high-order
spatial discretizations required appropriate interpofaischemes, and in certain
cases, needed the solution to be filtered, to remove higlemwmber content and
prevent Gibbs phenomenon [73]; the correct pairings ofrdiszation, interpolation
and filter order were determined as a part of the implementatf the toolkit. The
projection scheme adapts a fourth-order finite-volume fdation [44] for use in

Computational frameworks for advanced combustion sirmriat 9

the context of a finite-difference approach [74]. Thus thestauction of the high-
order AMR simulation capability, as implemented in the CERFoolkit entailed a
significant amount of development of advanced numericahous.

The CFRFS Toolkit makes copious use of external software.alaptive mesh-
ing and load-balancing is currently provided by the GrACEkzye [38]; coupling
to CHOMBO [17] is in progress. The stiff integration capdlilis provided by
CVODE [19], while the elliptic solvers in Hypre [34] are uséat the pressure
solve. Legacy codes are used to provide implementationsiebws constitutive
models (transport coefficients, gas-phase reaction amohtiy/namics models etc).
Being able to leverage existing, validated software (degacy codes) has saved
much implementation effort, while numerical librariesgeHypre, CHOMBO) al-
low the CFRFS toolkit to take advantage of optimized and istieed capabilities
in a facile manner.

4.2 The Need for Componentization

The goal of the CRFRS development effort was to develop abflexreusable
toolkit. At the very outset it was expected that many of tlseativanced features
would be contributed piecemeal by experts or incorporatdgilegacy software
and the necessity of an extremely modular design was rezednery early.

The componentization in the CFRFS toolkit follows stricliong functional
lines. Each component implements a physical model, a ngalescheme, or a
computational capability like a “data object” that storesd ananages domain-
decomposed fields (e.g., a temperature field) on multiplel$eon an AMR mesh.
The functionality is expressed in the Port/interface desapmponents implement
the functionality. As there are may different ways to previa functionality e.g.,
one may time-integrate using many different algorithmsadcwalate transport prop-
erties using diverse models, a single Port may find dispargikzmentations. Each
componentis compiled into a shared library (also known agnanchically loadable
library); a simulation “code” is composed by loading a numddfehem into the CCA
framework and “wiring them together”. Fig 2 shows a wiringigiam, assembling
approximately 40 components into a low-Mach number flameukition, whose
results are discussed in Sec. 5.1. The components in thegudiagram implement
flow models (fourth-order discretizations for convectivedadiffusive fluxes, de-
tailed chemical models etc), numerical schemes (the pressilution, sixth-order
interpolation schemes), the AMR mesh and the associatedotigect and miscel-
laneous components for 1/0O etc. The components can be apmatety collated
into 3 sub-assemblies, responsible for scalar transpastnemtum transport (in-
cluding the projection required for solving the low-Machnmber approximation of
the Navier-Stokes equation) and for advancing reactivegehe components are
dynamically loadable, and so, the “code” is composed aimetThe components
and wiring connectivity are specified in an input file to thenfrework; components
can be exchanged simply by changing a single line in thistifijgu

10 J. Ray et al

The aim of componentization was the taming of complexitye @measure of
complexity is the pattern in which different components imigse each other. A
good design would exhibit modularity, where connectivigtweeen components is
sparse and connections are arranged in some regular magnéf@mponents are
collected/connected into sub-assemblies, which are foigically composed into
the simulation code. Fig. 2 shows 3 separate sub-assenebliesssting of compo-
nents that address the transport of species, chemicalara@nd the momentum
solve (including the pressure solution). The size of eaalnpmnent is a second
measure of complexity; smaller components are easier terstahd and maintain.
In Fig. 3 (left), we plot a histogram of the size (lines of chitea component; it is
clear most components are small, less than 1000 lines of &dee components
implement Ports, this strongly suggests that individuat$do not embody much
complexity either i.e., they have few methods that need toripéemented. This is
shown in Fig. 3 (right) where we plot a histogram of the nunmdfenethods in each
port. Most of the ports have 10 or fewer functions/methodgs B (left) plots the
histogram of the number of ProvidesPorts i.e, the numbeioofsRa given compo-
nentimplements. Itis clear that the bulk of the componentdeément less than five
ports each, which explains their small size; recall thattposts have fewer than 10
methods. Another measure of a component’s complexity opitapce is the num-
ber of UsesPorts it has. Components that link disparateassbmblies together tend
to have many UsesPorts distributed among the sub-assemibliEig. 4 (right) we
plot the number of UsesPorts per component, which is propaat to the number
of other components a given component requires to perfarfuiictions. We see
that almost all components have less than 10 UsesPorte Simsponents provide,
on an average, less than 5 ports each (see Fig. 4, left), acmwnpis connected to
approximately 2-3 other components, leading to sparseexdivity between com-
ponents. These statistics show that a relatively sparsgfiagion of functionalities
and interconnections may suffice for the construction oteqaomplex scientific
software.

5 Computational Investigations Using CCA

In the previous section we described how CCA was used to tacthend imple-
ment the CFRFS toolkit whose design philosophy stressed,ssiraple compo-
nents, sparse connectivity between components and tkearbhical composition,
via sub-assemblies, into functioning simulation code.His section, we demon-
strate two different ways in which the components of the tléRES toolkit are
used.

The CFRFS toolkit consists of two sets of components. Thedeas by far the
bigger one, consists of components that address the nuah&scies surrounding
the use of fourth- (and higher) order spatially accuratehmés$ on block-structured
AMR meshes. These allow efficient resolution of fine flamecitmes without the
necessity of overwhelming computational resources. Thersset of components

"103lqo

BIRp Y] pue YsaN HINY @y ‘6 oouatasndwo9, 1o (SIUaldi}209 uoisnyip ‘Ansiwuayd pajelap)

-ysep uaaib) sassasold aAnoeaw 10} pue (Xogq panop-ysep pal) uodsuel) wnjuawow ‘(xoq
panop-ysep anjq) uodsuen refeoggEuedsal ‘saljquiasse-gns € oul ‘Alybnos ‘pajquiasse ale

s|apow ‘(1aAjos ainssald ‘uonejodidiw) [easwinu AjjoLs ag ued sjusuodwod ay] “(xoq panop

siuauodwod ayl ybu ayuogsasn ay) ‘uauodwod e Jo Ya| ayl uo readde spodsapinoid

3y "Ppal0j0d ale spod JUBISEMDM Ul UMOYS e Sjuauodwod ayl IM|00) SH4H-4D Syl ul SMoj)

aAnoeal Buite|nwis lonpa® 1ey] sijuauodwod Op Ajerewixoldde ayl Jo weibelp Bulipy 2 Bi4

PR

Errore

Fegraer

Initcond

ErrorEst
& Regridd

(O
nterpCVXYZ

AMRMes hFETEORS

Momentum transport
sub-assemby

/

RerPran

TheDriver

VT

URHS

calevelcorr
Ve

Pressure
Solver

=ePopPaT]

UDiffusion [VisePar

sy opP

Noiticoetts

Projection
lorchestrator

il

Integrator
(RKC2)

RefQuants

R o L

chem
Integrator

Terse)

Transport
sub-assembly

GiTermran]

|,
cvode

Solver

HOFilt

Chemical reactions

sub-assembly

JBYOLIS UOINSNQUI0D PaduRApPR IO} SyIoMmawel) [euoneindwo)d

1

12 J. Ray et al

Histogram of component sizes Histogram of port complexity

Frequency
Frequency

r T T T 1
0 10 20 30 40

:HHW | lhoo JL T —

20 25 34

log10(size) No. of methods per port

Fig. 3 Left: Histograms of the logarithm (to base 10) of componén¢s measured as the total

number of lines, including comments and blank lines. Théoimm clearly shows that half the

components are less than 1000 lines long, and almost alessetthan about 3000 lines. Compo-
nents, therefore, are generally quite small. Right: Histogof the number of functions/methods
per port. We see that most ports have less than 10 methods Haste are a couple of ports, re-

lated to the mesh and the data object that have approximéfleiethods each. These statistics
were extracted from a population of 100 components

addresses the identification of low-dimensional manifahdghe chemical dynam-

ics, so that chemical source terms may be tabulated andvhlisaged inexpensively
within the context of spatially resolved flame simulatiofkis is done using Com-
putational Singular Perturbation [51]. Many componerus gkample, those mod-
eling chemical reactions, thermodynamics and constiutiodels find use in both
the efforts. The final goal is to replace/augment the reacivbsystem, consisting
of a stiff-integrator and the chemical source terms (asnitesd in Sec. 4), with an

inexpensive tabulation scheme that would allow the todtkibe used with large

(and stiff) chemical mechanisms typically associated witther hydrocarbons.

5.1 Fourth-order Combustion Simulations with Adaptive Mes
Refinement

Chemically reacting flow systems based on hydrocarbon fiygisally exhibit a
large range of characteristic spatial and temporal scales.complexity of kinetic
models, even for simple hydrocarbon fuels, compounds ttublpm, making mul-
tidimensional numerical simulations difficult. This is ¢r@ven for laboratory scale
configurations.

These difficulties are commonly addressed in a variety ofsw&pr low speed
flows, one may adopt a low Mach number approximation [58] figr mnomentum

Computational frameworks for advanced combustion sirmriat 13

Histogram of component complexity — number of ProvidesPorts Histogram of component complexity — number of UsesPorts

60 80
I |
0
I

Frequency
Frequency

40
I

20

=

E}

o —
r T T 1 r T T T T T T 1
0 5 10 15 0 5 10 15 20 25 30 35

No. of ProvidesPorts per component No. of UsesPorts per component

Fig. 4 Left: Histogram of the number of ProvidesPorts implementstiie components in the
CFRFS toolkit. We see that most of the components have 4 @rfBwovidesPorts i.e., they im-
plement very few ports. The distribution of the number of hoels in each port is plotted in Fig. 3
(right). Right: Histogram of the number of UsesPorts a congmb uses. This isnemeasure of
the complexity of the algorithm/functionality a compon@nplements. Components that link sub-
assemblies of components also tend to have many UsesP@atse&\that most components have
less than 10 UsesPorts.

transport. This approximation assumes that acoustic waaesl at infinite speed, a
justifiable assumption in many low-speed flows. One can alptoé the structure
of the governing equations and adopt an operator-split am@sh, performing the
transport and reactive time-advancement via specialiajiators [64]. In prob-
lems where fine structures exist only in a small fraction &f domain e.g., in lam-
inar jet flames, one may employ AMR [13] to concentrate resmiuonly where
needed [12, 71, 24, 6], while maintaining a coarse meshu#salelsewhere.

The CFRFS toolkit implements a numerical model that canieffity simulate
flames with detailed chemical mechanisms. The use of AMRtisvithout its chal-
lenges, beyond just programming complexity. In order taimdthe number of grid
points and the number of refinement levels in the computatimesh hierarchy we
employ high-order stencils to discretize the governingatigms and to interpolate
between the computational blocks on adjacent mesh levagtsojction scheme is
employed for the momentum transport. Since mesh adapts/ityiven by the nar-
row flame structure rather than the velocity field, we sohertiomentum transport
on the lowest level mesh in the AMR mesh hierarchy i.e., oniform mesh. This
further enhances the efficiency of the model since the @lgailver required by the
pressure equation is more efficient on a uniform mesh, coetptr a multilevel
one [59]. The numerical approach and results obtained foomi@al configurations
are presented below.

14 J. Ray et al
5.1.1 Formulation

In the low-Mach number limit, the continuity, momentum awélar transport equa-
tions for a chemically reacting flow system are written in qact form as

_ 1Dp

V=T oD -
ov 1
ot ——EDp—i—Cu-l-Du (1b)
oT
S =Cr+Drsr (1c)
aY,
ﬁtk =Gy +Dy,+S, k=12,...,Ns (1d)

Herev is the velocity vectorp the densityT the temperaturer, the mass frac-
tion of specie, p is the hydrodynamic pressure, aNglis the number of chemical
species. Th% operator in the continuity equation represents the mateeeva-
tive, % = % +Vv-[. The system of equations is closed with the equation of &ate
an ideal gas. The thermodynamic pressure spatially uniordhis constant in time
for an open domain in the low-Mach number limit. NASA polyniale are used
to compute thermodynamic properties [60]. The transpapeprties are based on a
mixture-averaged formulation and are evaluated using tREND package [68].

The equation of state is used to derive an expression foighehrand side of the
continuity equation (Eq. 1a)

Ns
DF’o_O 1%— (DT+ST)—ZV%<(DYK+S¢) (2)
K=1

1
bR _y_,1Dp_ 1
Dt pDt T

5.1.2 Implementation in the CCA Framework

The numerical integration of the system of equations (Daislgderformed in three
stages. In the first stage, a projection scheme is used tomeelthe velocity field
based on the equations (1a,1b). Figure 5 shows the main CG#pauents in-
volved in the momentum solver. THdomentum Driverrcomponent advances the
velocity field to an intermediate value based on conved®bt&on and diffusion
RHSis¢ contributions to the right-hand-side (RHS) tekfal,s of the momentum
equation (1b). This is followed by an elliptic solve in tReessure Solvesomponent
for the dynamic pressurp. The RHS values for the elliptic pressure equation are
computed irPressurgys Transport and thermodynamic properties are provided by
Transport PropertieandThermo & Chemistrgomponents, respectively. The gradi-
ent of the pressure field is used to corraélf,) the intermediate velocities above
to obtain a field that satisfies both the continuity and monmargquations (1a,1b).
The components shown at the top of Fig. 5 (AMR Mesh, Boundamydgions, In-
terpolations and Derivatives) are generic componentdidadlie the adaptive mesh

Computational frameworks for advanced combustion sirmriat 15

AMR Mesh Boundary Interpolations Derivatives
Conditions

VelRHs RHSconv J
Transport
Properties
Thermo. &
Chemistry

Momentum

Velmrr] RHSdlff

Pressure

Pressuregys |-

Fig. 5 Schematic of the momentum solver components in CFRFS.

refinement library, boundary conditions, interpolaticaus¢ derivatives. External li-
braries are shown in ellipses.

Inthe second stage, sketched in Fig. 6, temperature antbspeass fractions are
advanced using an operator split approach that separatestirectionCr,Cy, , and
diffusion, D1, Dy,, contributions from the ones due to the chemical sourcegerm
Rr,Ry,, in Eqg. (1c,1d). Symmetric Strang splitting is employedjibaing with the
chemical source term contribution for half the time stefipfeed by the contribu-
tions from convection and diffusion terms for a full time [gtend concluded by
the remaining contribution from the reaction term for h&k time step. The scalar
advance due to the chemical source term is handle@Ghmmistry IntegratarThe
convection Scalagon) and diffusion Scalagon,) contributions are combined by
Scalakyscomponent and provided ®KC2 Integratomwhich uses a Runge-Kutta-
Chebyshev (RKC) algorithm [84] for time advancemenBwitchboarccomponent
is used to ensure that velocities are available at interatedimes during the multi-
stage RKC integration.

The third stage repeats the projection algorithm from th&t Stage using the
updated scalar fields from second stage. The overall algoris 4"-order accurate
in space and®-order in time.

Adaptive mesh refinementWe employ an AMR approach where the computational
domain is split into rectangular blocks. The advancemetitiie of the AMR solu-
tion is based on Berger-Colella time refinement [13, 53]uFég’ shows a schematic
of this recursive time integration algorithm. Consider fidutions on level& and
L+ 1 at timet,. LevelL is first advanced td, + At, then the solution oh + 1 is
advanced in two half stepAt /2 to ensure numerical stability on the finer grid. Dur-
ing time advancement dn+ 1, boundary conditions are computed by interpolation
using the solution oh. At t, 4+ At the solution orlL 4 1 is interpolated down to the

16 J. Ray et al

Boundary : S

Chemistry
Integrator

Switchboard CalcVelSrc

Scalareom

Scalau‘dl-ff

Transport
Properties

Thermo. &

Scalargys

RKC2
Integrator

Chemistry

Fig. 6 Schematic of the scalar solver components in CFRFS.

corresponding regions on level In order to preserve thé™order spatial conver-
gence of the numerical scheme, the interpolations betwegcent grid levels use
6"-order spatial stencils [73].

n n+1/2 n+1
cl)L+1 ¢L+l CDL+1
level(v) CF 3 — 1T+ — 11

n n+1
CDL q)L

Level) [C— —
th t+At

Fig. 7 Schematic of the time refinement in the context of AMR.

5.1.3 Application to Flame-Vortex Interaction

A canonical vortex-flame configuration [64] was chosen td@gathe performance
of the numerical construction. The computational domaih%&mx 0.75cm. The
velocity field corresponding to a periodic row of countetating Lamb-Oseen vor-
tices is superimposed over the premixed 1D flame solutiocudsed above. A rel-
atively coarse mesh was used for the base mesh, with a celbs&Qum in each
direction. Additional, finer, mesh levels were added in tleni region during the
simulation.

Computational frameworks for advanced combustion sirmriat 17

A one-step, irreversible Arrhenius global reaction modelsed in addition to a
C1 kinetic model to study the vortex-flame interaction. F&8 shows freeze frames
of the vorticity and heat release rate fields. The vortex jsamitially located 2mm
upstream of the flame and propagates with approximately 4 @w/ards it. As the
vortex pair impinges into the flame, the flame intensity dases on the centerline
for the C1 model while the one-step solution shows littlercd&in the interaction
region. Similarly, at locations off-centerline the flameeinsity for the C1 model
decreases significantly as it stretched and rolled arouadstitex pair. The last
frames show a significantly contorted flame, and the relatigezase in the overall
burning rate is about about 50% more for the one-step reastinulation compared
to the simulation using the C1 model .

Fig. 8 Vorticity (white solid contours) and normalized heat releaate (hrr, shaded contours) for
simulations using the one-step reaction model (upper rod)aaC1 kinetic model consisting of 16
species and 46 reactions (lower row).

5.2 Computational Singular Perturbation and Tabulation

In the previous section, we described our experience witlukiting flames using
one-step and C1 chemical mechanisms. The primary chalieng@ing from sim-
ple one-step chemistry to a C1 mechanism was the steep secirethe stiffness of
the dynamical system composed of the reactive processesain effect was to re-
duce the size of the time-step one could take without unaabépsplitting errors.
Matters are further compounded when one considers C2 (or enge detailed)
chemical mechanisms. This stiffness of detailed chemiealranisms is due to the
wide range of time scales that they model. It leads to conaside difficulties when
time-advancing them in an efficient manner. Chemical moidgpkfication and re-
duction strategies typically target these challenges Huemg the number of reac-

18 J. Ray et al

tions and/or species in the model, with associated reduationodel complexity.
When done properly, this strategy also reduces the syst#fmess. Alternatively,
the Computational Singular Perturbation (CSP)-based itwegration construction
of [83] uses CSP analysis to project out the fast time scades the detailed chem-
ical source term, thereby rendering the equations nof-$tie promise of this ap-
proach is that explicit time integrators can be used fordatige step integration
of the resulting non-stiff source terms, and could potdigteliminate the need for
operator-split time integration of reaction-diffusiorusoe terms.

The key challenge with this time integration approach, hmxeis the large
computational cost of solving for the requisite CSP infotioraand the resulting
projection matrices. An approach to mitigate this compatet! cost is tabulation.
By adaptively storing and reusing the CSP information, tlgaicant CSP over-
head can be drastically reduced (by amortization), leattingn efficient overall
implementation. Such a tabulation strategy has been exgbfor elementary model
problems [51, 49]. This section describes the implemematif a CSP tabulation
approach, relying okd-trees [7] to efficiently store and retrieve CSP informatio
along manifolds in the chemical configuration space.

In the following, the CSP time integration and tabulatiopayach is formulated,
followed by a discussion of its implementation in the CCAnfiework for react-
ing flow simulation. Next, the approach is illustrated on $iraulation of i — air
ignition.

5.2.1 Formulation and Implementation

Consider the chemical system described pydi = g(y), wherey € RN, andg(y) is
the chemical source term. The CSP basis vedtag$)_, and covectorgb 1N ., all
in RN, enable the decoupling of the fast and slow processes, anidéhtification
of low dimensional slow invariant manifolds (SIMs) [48]. 0%, we have
g —aflyapf?+... fN 3

dt—g—gfast+gslow—al +at™+---+an ()
wherefi =b'-g, fori = 1,2 ...,N. In this equationgy, corresponds to the modes
with fast transients, which are rapidly exhausted. Aftéaxation of fast transients,
with M modes exhausted.s; = Y™ 1 a f" ~ 0 andggoy = SN . 1asfS= (1 —
zp"zlarbr)g = Pg. In practice, the number of exhausted modes is determinttas
maximumM for which 7y 1 zﬁﬂzlar f' is less than a user-specified threshold, where
Twm, 1 is the time scale corresponding to tf + 1)S mode.

The CSP integrator [83] proceeds in each time step by firegiating the slow
dynamics of the system, followed by a homogeneous corme¢Hc) to correct for
the fast time scales:

Computational frameworks for advanced combustion sirmriat 19

t+At
§(t+At) :y(t)+_/t Pgdt’ @)
M
yt+At) =t +at) — 5 anty) f" (5)
mn=1
f" = b"- gyt +At)] 6)

wheret"is the inverse oA, given by

m

A= <£+bm.]) an (7)
dt

andJ is the Jacobian of. The matrixz" is diagonal with entries the time scales

{t}}_; when the CSP basis vectors are chosen to be the eigenvettbesd the

curvature of the SIM is neglecteie. db™/dt = 0.

The procedure outlined above separates the fast, exhausidels from the slow
modes that drive the evolution of the system along the SIMsdi&cussed in [47],
CSP also identifies the species that are associated with faessmodes a€SP
radicals (These are the species whose concentration can be deg¢erfnom the
algebraic equations resulting from settifig=0, i=1,...,M.) Accordingly, the
species space can be separated into the CSP radicals afzBforadicals.

To improve the efficiency of the CSP integrator, a tabulaépproach has been
developed to enable reuse of the essential CSP quanthiel fast CSP vectors
and covectors, as well as tiv+ 1 fastest time scales, which are sufficient to as-
semble the slow-manifold project®needed for the HC and CSP integration, and
to select the time step along the slow manifold. As the CSRovgccovectors and
time scales can be modeled as functions of the non-CSP Fagieeies only, it is
sufficient to tabulate these quantities in ldn- M dimensional table, rather than
having to cover the fulN-dimensional state space.

In the work presented here, a table with manifold conditisnsonstructed off-
line, by performing full CSP analysis on a numberdefsign pointsn state space.
We first randomly sample a set of initial conditions over ageuwof initial tempera-
tures, equivalence ratios ang Milution factors (extra mole of Nper mole of air)
and integrate them forward, with CVODE [19], using detaitedction kinetics. A
set of design points is constructed from the system statesuertered during those
simulations. For each of these design points, a CSP anayg&formed to iden-
tify associated SIMs. If a design point has exhausted mdbes, successive HCs
are applied to project that design point onto the correspan8IM. Each SIM is
characterized by a unique valueMfand the associated CSP radicals.

For each identified SIM, the tabulation of the associated D&®Pmation relies
on a nonparametric regression approach. For this purploee; 8P information is
stored inkd-tree data structures over the tRe- M dimensional space of the non-
CSP radical species. Note that, in order to give equal wedggall dimensions of the
state vector in the computation of distance measures, attiarates of the manifold
points are first rescaled and shifted to range between 0 arelatebbeing stored
in the kd-trees. During time integration, the manifold that bestregponds to the

20 J. Ray et al

current condition in the chemical configuration space i®dweined by finding the
nearest neighbor, as measured by the Euclidean distansireem all of the man-
ifolds in the table. If the manifold point that is closest e tcurrent condition over
all manifolds is within a maximum allowable distandethen the associated man-
ifold is assumed to be the one that is currently being folldWg the system. The
CSP information at the current condition is then approxedatith the correspond-
ing values at the nearest neighbor point in the table, whinbunts to a &-order
interpolation. Higher order interpolations, relying onerpolation between nearest
neighbors or on polynomial response surfaces [50, 81],teestibject of ongoing
work. In case none of the nearest neighbors in the tabulasetfatds are within the
maximum allowable distance, then a full CSP analysis isqueréd on the current
condition instead.

To implement the CSP integration approach, extensive useweale of existing
components in the CCA framework. For example, the evalnatiothe chemical
kinetics source term and its Jacobian rely on the “AMR” set@fponents from
CFRFS toolkit discussed in Sect. 4. Time integration reliesa CVODE compo-
nent, part of the CFRFS toolkit. New components were dewldp perform the
CSP analysis as well as the table construction and inteifpoléor the tabulation
approach. These components were joined together throeglsthof driver compo-
nents that organize the overall algorithmic sequence ofatjoss.

5.2.2 Application to Hp—air Ignition System

The CSP integration method outlined in the previous seatiasapplied to the sim-
ulation of ignition of a stoichiometric homogeneougtdir mixture at a temperature
of T =1000 K. The system is modeled using a 9 species reaction misahaesult-
ing in a total state space dimensiombE 10 (9 species + temperature) [88]. Fig. 9
compares the predicted temperature evolution obtaineategiating the detailed
reaction kinetics (with the implicit solver CVODE), to thelstion obtained with
the CSP integrator (using the explicit fourth order Runget& (RK4) integration
scheme), and with the CSP + tabulation approach .

For the tabulation approach a CSP table was constructedrbglisey 100 ini-
tial conditions with Latin Hypercube Sampling over a randeguivalence ratios
between 0.9 and 1, initial temperatures between 980 and KQa6ad dilution fac-
tors between -0.005 and 0.005. From the design points egttdoom these runs,
close to 1 million states were identified on 9 different maki§, with a number of
exhausted modes ranging from 1 to 5.

The CSP integrated solution, both with and without tabatats in good agree-
ment with the full solution, except for a small differencetlive ignition time delay,
as is shown in detail in Fig. 9(c) and 9(d).

Note that, as the reaction progresses, the number of exdthosddedv, and
the associated CSP radicals change according to the neabtiamics. Fig. 9(b)
indicates that the system initially has two exhausted mddéswed by a time win-
dow during ignition where all modes are active, after whidlgradually increases

Computational frameworks for advanced combustion sirmriat

300

2500~ —

21

0.004

< 2000+ E
L — Detailed
-+ CSP 1 B
—. CSP + Tab (Max d = 0.00{1
1500
1000 L L L 0 L L L
0 0.001 .0.002 0.003 0 0 0.001 0.002 0.003
time [s] time [s]

(a) Temperature Profile

300

2500

X 2000

YHOZ

1500

1000
0.0001

L I
0.0003 0.0004 0.000¢

time [s]

(c) Temperature Detail

I
0.0002

(b) Exhausted Modes

1.0<10°F

5.0¢10°

t
It
]
I !
I
t

— Detailed
.-+ CSP B
—- CSP + Tab (Max d = 0.00[1

%. 001

L
70.0003
time [s]

(d) HO, Detail

I
0.0002

I
0.0004 0.0005

Fig. 9 a) Evolution of temperature in an igniting stoichiometrig-Hir system, simulated using
the detailed reaction mechanism, the CSP solver, and thesGI8& with tabulation. b) Evolution
of the number of exhausted mod@4, as obtained by CSP analysis. All approaches are in good
agreement, except for minor differences in the ignitionetidelay, as shown in the close-up of the
ignition zone for ¢) temperature and d) one of the trace g3e¢iQ. The initial conditions were:

T =1000 K,Y4, = 0.0285,Yp, = 0.2264 andvy, = 0.7451.

up to five at late time, as more and more modes become inaéteardingly, as
the number of exhausted modes increases, the tabulationagpbecomes more
efficientin terms of storage and lookup times as the CSPrimdtion for each mani-
fold is tabulated irlN — M dimensionakd-trees. For example, for the,Hair system
studied here, tabulation in a 5-dimensional table is sefficior the section(s) of the
10-dimensional state space where 5 modes are exhaustdegso¢o)).

In terms of efficiency of the table usage, Fig. 10 shows thebmrof success-
ful table hits as a fraction of the total number of table lop&uAs a table lookup
is performed in every time step, this number indicates hdigient the tabulation
approach is at avoiding full CSP analyzes by providing tatad CSP information
instead. For the current table and initial condition, thielédookup success rate
increases from 25 % to about 65 % as the maximum allowed ne@egghbor dis-
tance is increased from 0.001 to 0.03, while the accurachefitegration does
not noticeably change (not shown here). Other numericatgxents indicate that
this table hit success rate and the accuracy of the tabnlassisted simulations
also depends on the density of the table in state space. Aitpiae relationship
between the table density, the maximum allowed distanckemearest neighbor

22 J. Ray et al

o

°© o o
sy ()] (o2}

Table Hits / Table Lookups
o
w

| | | | |
0.005 0.01 0.015 002 0025 0.03
Max d

o
H—

Fig. 10 The number of table hits, as a fraction of the total numbeablet lookups, increases as the
maximum allowed distance to the nearest neighbor on a mdngancreased, resulting in more
efficient usage of the tabulated data.

table lookup, and the accuracy of the CSP tabulation apprisate subject of on-
going work.

A comprehensive evaluation of the overall numerical perfance of the CSP
integration scheme with tabulation, as a function of tabde,system and manifold
dimensionality, degree of stiffness, and desired accuiaayurrently in progress.
However, preliminary performance measurements show thiet@Bulation scheme
to be competitive with direct CVODE integration for the caséudied in this paper.

To aummarize, CCA provides a flexible framework for the inmpéantation of
several components for the integration of stiff chemicakkics. The modularity of
the framework allows easy reuse of components that werelajg® elsewhere in
the project for operations such as time integration, or tlauation of source terms
or Jacobian. This flexibility allows the rapid developmehtodes to test various
integration approaches and easy switching between themnéthhod comparison
and validation.

6 Research Topics in Computational Frameworks

The previous sections have described and demonstrated bdwlamity, obtained as
a result of adopting a component-based design, may be useitigate the effects
of software complexity. They have also shown the sophistineof the scientific
software that can be designed using a component-basedampprdowever, the
experience with CFRFS, as well as other componentizatifmtef[45, 46], have
revealed a number of difficulties, Some solutions have rébeen crafted, which
we discuss below.

The Learning Curve: A significant challenge in adopting CCA has been the
learning curve associated with using SIDL/Babel. Whiles tivas not encountered
when developing the CFRFS toolkit (which uses the originat-&hterface ap-
proach, not SIDL/Babel), it was observed in other compomation efforts [45, 46].

Computational frameworks for advanced combustion sirmriat 23

The process of generating client- and server-side codegswitied in Sec. 3.1, is
prone to error if performed manually, but can be automatedindegrated develop-
ment environment, called Bocca [2], has been developed{§¢éor Bocca tutori-
als) for this purpose. Given the interfaces that a compoussd and provides, Bocca
automatically invokes Babel, creates the client- and seside auto-generated code
and constructs a build system to compile the resulting carapbskeleton. It min-
imizes what a CCA developer has to learn, enabling him/h&das on more pro-
ductive tasks.

Reluctance to Abandoning Working Software:The process of componentiza-
tion could be significantly simplified if one could automatly derivecomponents
out of a non-component codebase. A concept, called OnRagjpi$dbeing inves-
tigated by CCA researchers to enable such an automateatien\of components.
OnRamp is driven by annotations which are inserted into tiiebase (indicat-
ing interfaces, code-blocks that will reside in componesits), from which is it
possible, under certain restrictions, to automaticallpegzate components and its
associated build system. This preserves the original coderest of the software
development practices that the programmer is familiar withile bestowing the
benefits of componentization on the software in question.

Components also confer benefits beyond the fundamentaireagent of con-
straining software complexity. Since components are akiitax regarding imple-
mentation but adhere to a specified convention for commtingaith the outside
world, they are ideal for automating computation at a higkeleCCA has focused
on performance improvements as the aim of automation. Bel@amention some
of the recent advances in this arena.

Automatic Proxy Generation. The collection of performance characteristics on
a method-call basis is a required, but laborious task ingoerdnce modeling. In
a component environment, this can be achieved quite eagigxploiting the fact
that components publish the interfaces that they use anddaror he collection of
performance data can be done by interposing a proxy compbegneen an inter-
face provider component and an interface using componéetpfoxy component
serves to trap calls between components and switch-oriftatenthe collection of
performance metrics (elapsed time, cache misses, pads &ici) by a performance
measurement tool e.g. TAU [79]. Such “performance-measard” proxies can be
generated automatically [82]. They can be used to colledopaance data and
identify bottlenecks; they can also be usedhrtonitoran executing simulation and
optimizeit during runtime. This is described below.

Computational Quality of Service: Since the framework has a holistic view of
the entire application, and proxy components can moni@pirformance of indi-
vidual components, it becomes possible to manipulate thehiavior, with a view
to ensuring robustness, celerity of computation etc. Themmonly referred to as
“Computational Quality of Service” [62]. The manipulatiohcomponents may be
performed by changing parameters that a component maydeariby replacing
entire components[56, 57]. See [62] for how this may be peréal without modify-
ing any components; a working example, using a shock-hyadrachics simulations
in CCAFFEINE, can be found in [56].

24 J. Ray et al

7 Conclusion

In this chapter, we have investigated how a component &atoite may be used
to design and implement scientific simulation software. Toenmon Component
Architecture was chosen because of its ability to accomiteopiarallel computing.
Unlike many computational frameworks, a component frant&woes not require
one to “marry into” a prescribed set of data and code strasiuin many cases, such
“marriages” lead to one’s dependence on the framework feiintegration of ex-
ternal libraries and/or legacy software. The peer natuaiponents (whereby all
components are independent) prevent such dependenaiesifising. However, it
is to be noted that a software architecture merely lays dofawasoftware devel-
opment principles; their judicious use is a matter of sofendesign. The design, in
turn, is dictated by where one starts from (i.e., whethersiags with gabula rasa
which was our case, or whether one starts componentizinggacyecode) and what
one wishes to achieve with the particular design. Any lacklafity regarding the
second aspect invariably leads to an unsatisfactory end.

In Sect. 4 we described the particular ends that wished téeeetwith our
component-based design, particularly maintainabiliyr@aaiction in software com-
plexity; the statistics drawn from the 100 components in tootkit provide some
confidence that we have largely succeeded. In Sect. 5 we shioowe the toolkit
is used, including a few example of component reuse. Thowgllescribed here,
some of the AMR components used in Sect. 5.1 have also beéntaistmulate
problems in shock-hydrodynamics[52]. Thus there is sondesce to indicate that
the plug-and-play promise of component software, widealired in non-scientific
software, may be replicated in our field too.

This chapter has drawn examples from the CFRFS effort, whitiphasized
small, manageable components designed without any caristiemposed legacy
software. There are other efforts where legacy softwarediated both the aims
and the course of componentization (see [45] and referemite), and still oth-
ers, usually involving the componentization of librariedere users played a role
(see Sect. 11 in [14]). Component-based design, and CCArticplar, is a versa-
tile methodology for designing and developing maintaieaaftware, and is most
profitably used when one has a clear ideavbf/one wishes to use it. Unlike many
frameworks developed to enable ttagid prototyingof codes, its attractiveness lies
in the long term.

Acknowledgements: The work documented in this chapter was funded by the
Department of Energy, under its Scientific Discovery thiodglvanced Comput-
ing (SciDAC) program. Some of the computations were pertatrat the National
Energy Research Supercomputing Center (NERSC) in Oak@@AdThe work was
performed in Sandia National Laboratories, CA. Sandia isu#tiprogram labora-
tory operated by Sandia Corporation, a Lockheed Martin aomgpfor the United
States Department of Energy’s National Nuclear Securityniustration under
Contract DE-AC04-94-AL85000.

Computational frameworks for advanced combustion sirmriat 25

References

[1] Allan BA, Armstrong RC, Wolfe AP, Ray J, Bernholdt DE, KiolA
(2002) The CCA Core Specifications in a Distributed MemoryMEP
Framework. Concurrency-Pract Ex 14:323-345, also at /hitpw.cca-
forum.org/ccafe03a/index.html

[2] Allan BA, Norris B, Elwasif WR, Armstrong RC (2008) Manaxy Scientific
Software Complexity with Bocca and CCA. Sci Program 16(#%:3327, DOI
10.3233/SPR-2008-0270

[3] Almgren A, Bell J, Colella P, Howell L, Welcome M (1998) AdDservative
Adaptive Projection Method for the Variable Density Incaessible Navier-
Stokes Equations. J Comput Phys 142:1-46

[4] AmrLib Homepage (Accessed October 2009) URLLt ps: // ccse. | bl .
gov/ Sof t war e/ i ndex. ht m

[5] AMROC Homepage (Accessed October 2009) URLt p:// anroc.
sour cef or ge. net/

[6] Anthonissen MJH, Bennett BAV, Smooke MD (2005) An AdaptMultilevel
Local Defect Correction Technique with Application to Camstion. Combust
Theory Modelling 9(2):273-299

[7] Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY (1998) Aptimal
algorithm for approximate nearest neighbor searching iedfigimensions. J
Assoc Comput Mach 45(6):891-923

[8] Banks JW, Schwendeman DW, Kapila AK, Henshaw WD (2007) ighH
Resolution Godunov Method for Compressible Multi-MateFBw on Over-
lapping Grids. J Comput Phys 223:262-297

[9] Barad M, Colella P (2005) A Fourth-Order Accurate LocakfRement
Method for Poisson’s Equation. J Comput Phys 209:1-18

[10] Bell JB, Day MS, Shepherd IG, Johnson M, Cheng RK, GrEaBé&ckner VE,
Lijewski MJ (2005) Numerical Simulation of a Laboratory&$e Turbulent V-
flame. Proc Natl Acad Sci USA 102(29):10,006-10,011

[11] Bell JB, Day MS, Grcar JF, Lijewski MJ, Driscoll JF, Rijeev SF (2007) Nu-
merical Simulation of a Laboratory-Scale Turbulent Sl@re. Proc Combust
Inst 31:1299-1307

[12] Bennett BAV, Smooke MD (1998) Local Rectangular Refiratrwith Appli-
cation to Axisymmetric Laminar Flames. Combust Theory Mblg 2:221—
258

[13] Berger M, Colella P (1989) Local Adaptive Mesh Refinetrfen Shock Hy-
drodynamics. J Comput Phys 82:64—-84

[14] Bernholdt DE, Allan BA, Armstrong R, Bertrand F, Chiu Bahlgren TL,
Damevski K, Elwasif WR, Epperly TGW, Govindaraju M, Katz Di&ohl
JA, Krishnan M, Kumfert G, Larson JW, Lefantzi S, Lewis MJ, Istay AD,
Mclnnes LC, Nieplocha J, Norris B, Parker SG, Ray J, Shendgisgus TL,
Zhou S (2006) A Component Architecture for High-PerformaiBcientific
Computing. Intl 3 High-Perf Computing Appl 20:162-202

26 J. Ray et al

[15] Cactus Homepage (Accessed October 2009) URIttp://en.
wi ki pedi a. org/ wi ki / Cact us_Fr amewor k

[16] CCA Tutorials Hands-On Guide (Accessed October 200BL Wt t p: //
www. cca- forum org/tutorial s/

[17] CHOMBO - Infrastructure for Adaptive Mesh Refinement¢&ssed October
20009) http://seesar.lbl.gov/anag/chombo/

[18] Cirak F, Deiterding R, Mauch SP (2006) Large-ScaledH8tructure Interac-
tion Simulation of Viscoplastic and Fracturing Thin Shé&lsbjected to Shocks
and Detonations. Comput Struct 85(11-14):1049-1065

[19] Cohen SD, Hindmarsh AC (1996) CVODE, a Stiff/Nonstifb@ Solver in C.
Comput Phys 10(2):138-143

[20] Colella P, Graves DT, Keen BJ, Modiano D (2006) A CagrsGrid Em-
bedded Boundary Method for Hyperbolic Conservation Lawdotput Phys
211:347-366

[21] Colella P, Dorr M, Hittinger J, Martin DF, McCorquoddhe(2009) High-Order
Finite-Volume Adaptive Methods on Locally RectangulardstiJ Phy: Conf
Ser 180:012,010 (5pp), URNt t p: / / st acks. i op. org/ 1742- 6596/
180/ 012010

[22] CORBA Component Model Webpage (Accessed October 2009)
http://www.omg.org

[23] Dahlgren T, Epperly T, Kumfert G, Leek J (2005) Babel Utse
Guide. CASC, Lawrence Livermore National Laboratory, kivere, CA,
babel-0.11.0 edn, URht t p: // ww. | | nl . gov/ CASC/ conponent s/
docs/ user s_gui de. pdf

[24] Day MS, Bell JB (2000) Numerical Simulation of Laminae#&tting Flows
with Complex Chemistry. Combust Theory Modelling 4:535655

[25] Deiterding R (2000) Object-Oriented Design of an AMRyAtithm for Dis-
tributed Memory Computers. In: 8th Int. Conf. on HyperboRcoblems,
Magdeburg

[26] Deiterding R (2005) Detonation Structure SimulatioithWAMROC. In: Yang
LT (ed) High Performance Computing and Communications3@@6 in Lec-
ture Notes in Computer Science, Springer, Berlin Heidg/bpp 916-927

[27] Deiterding R (2009) A Parallel Adaptive Method for Sitating Shock-
Induced Combustion with Detailed Chemical Kinetics in Céemomains.
Comput Struct 87:769-783

[28] Deiterding R, Radovitzky R, Mauch SP, Noels L, Cummid@s Meiron DI
(2006) A Virtual Test Facility for the Efficient Simulatiorf &olid Material
Response Under Strong Shock and Detonation Wave LoadirgCemput
22(3-4):325-347

[29] Deiterding R, Cirak F, Mauch S, Meiron D (2007) A Virtugést Facility for
Simulating Detonation- and Shock-Induced Deformationfradture of Thin
Flexible Shells. Int J Multiscale Computational Enginagrb(1):47—-63

[30] Drake JB, Jones PW, Carr J George R (2005) Overview oSibfeware De-
sign of the Community Climate System Model. Intl J High-PEdmput-
ing Appl 19(3):177-186, DOI 10.1177/1094342005056094| Ut p: / /

Computational frameworks for advanced combustion sirmriat 27

hpc. sagepub. com cgi / content/abstract/ 19/ 3/ 177, http:
/I hpc. sagepub. conf cgi/reprint/19/3/177. pdf

[31] Dubey A, Antypas K, Ganapathy MK, Reid LB, Riley K, ShaeD, Siegel
A, Weide K (2009) Extensible Component Based Architectard=LASH, A
Massively Parallel, Multiphysics Simulation Code. Paalomput Submit-
ted, preprint at http://arxiv.org/pdf/0903.4875

[32] Earth Systems Modeling Framework Homepage (Accesseb@r 2009)
URL htt p: // ww. esnf . ucar. edu/

[33] Englander R, Loukides M (1997) Developing Java Beara/gJSeries).
O’Reilly and Associates, http://www.java.sun.com/protljavabeans

[34] FalgoutR, Yang U (2002) Hypre: a Library of High Perfante Precondition-
ers, in Computational Science. In: Sloot PMA, Tan C, Dorgdd, Hoekstra
AG (eds) Lecture Notes in Computer Science, vol 2331, Serivgrlag, pp
632-641

[35] Fryxell B, Olson K, Ricker P, Timmes FX, Zingale M, Lamb@ MacNe-
ice P, Rosner R, Truran JW, Tufo H (2000) FLASH: An Adaptivedidey-
drodynamics Code for Modeling Astrophysical Thermonuckashes. Ap J
Supplement Series 131:273-334

[36] Godfrey MW, Tu Q (2000) Evolution in Open Source Softeiah Case Study.
In: Proceedings of the International Conference on Sofiviaintenance, pp
131-142,URLht t p: // ci t eseer. nj . nec. com 300079. ht m

[37] Goodale T, Allen G, Lanfermann G, Mass J, Radke T, SeidgHalf J (2002)
The Cactus Framework and Toolkit: Design and ApplicatibmsProceedings
of Vector and Parallel Processing - VECPAR 2002

[38] GrACE Homepage (Accessed October 2009)
http://www.caip.rutgers.edu/TASSL/

[39] Henshaw WD (1994) A Fourth-Order Accurate Methods foe thcompress-
ible Navier-Stokes Equations on Overlapping Grids. J Canfjtys 113:13—
25

[40] Henshaw WD, Schwendeman DW (2003) An Adaptive NuméBcheme for
High-Speed Reactive Flow on Overlapping Grids. J ComputsPi91:420—
447

[41] Henshaw WD, Schwendeman DW (2006) Moving Overlappingi$with
Adaptive Mesh Refinement for High-Speed Reactive and Nantres Flow.
J Comput Phys 216:744-779

[42] Henshaw WD, Schwendeman DW (2008) Parallel Computatib Three-
Dimensional Flows using Overlapping Grids with Adaptivesfidrefinement.
J Comput Phys 227:7469-7502

[43] Huelette GC, Sottile MJ, Armstrong R, Allan B (2009) CaRp: En-
abling a New Component-Based Development Paradigm. Ircgeaings of
Component-Based High Performance Computing

[44] Kadioglu S, Klein R, Minion M (2008) A Fourth-Order Auiary Variable
Projection Method for Zero-Mach Number Gas Dynamics. J Qanighys
227:2012-2043

28 J. Ray et al

[45] Kenny JP, Janssen CL, Valeev EF, Windus TL (2008) Coreptator Integral
Evaluation in Quantum Chemistry. J Comput Chem 29(4):562-5

[46] Krishnan M, Alexeev Y, Windus TL, Nieplocha J (2005) Nildvel Paral-
lelism in Computational Chemistry using Common Componemthiecture
and Global Arrays. In: SC '05: Proceedings of the 2005 ACNEEEConfer-
ence on Supercomputing, IEEE Computer Society, Washindd@) USA,
p 23, DOI http://dx.doi.org/10.1109/SC.2005.46

[47] Lam S (1993) Using CSP to Understand Complex Chemicak#gs. Com-
bust Sci Technol 89:375-404

[48] Lam S, Goussis D (1988) Understanding complex cherkioatics with com-
putational singular perturbation. Proc Combust Inst 22:8811

[49] Lee J, Najm H, Lefantzi S, Ray J, Goussis D (2005) On CBaanching and
its Role in Homogeneous Ignition and Premixed Flame Prajpamgdn: Bathe
K (ed) Computational Fluid and Solid Mechanics 2005, Elsefcience, pp
717-720

[50] Lee J, Najm H, Lefantzi S, Ray J, Frenklach M, Valorani®ussis D (2007)
A CSP and Tabulation Based Adaptive Chemistry Model. Contitoud heory
and Modeling 11(1):73-102

[51] Lee JC, Najm HN, Lefantzi S, Ray J, Frenklach M, Valor&hi Goussis D
(2007) A CSP and Tabulation Based Adaptive Chemistry Mo@eimbust
Theory Modelling 11(1):73-102

[52] Lefantzi S, Ray J, Najm HN (2003) Using the Common CongarArchi-
tecture to Design High Performance Scientific Simulation€ In: Proceed-
ings of the International Parallel and Distributed ProcesSymposium, Nice,
France

[53] Lefantzi S, Ray J, Kennedy CA, Najm HN (2005) A Componrbkased Toolkit
for Reacting Flows with High Order Spatial Discretizatioms Structured
Adaptively Refined Meshes. Prog Comput Fluid Dy 5(6):29%-31

[54] Li X, Parashar M (2004) Hierarchical Partitioning Tetues for Structured
Adaptive Mesh Refinement Applications. J Supercomput 2865)-278

[55] Li X, Parashar M (2007) Hybrid Runtime Management of &pdime Het-
erogeneity for Parallel Structured Adaptive ApplicatioHSEE Transactions
on Parallel and Distributed Systems 18(9):1202-1214

[56] Liu H, Parashar M (2005) Enabling Self-management ofm@onent-
based High-Performance Scientific Applications. In: Pealiegs of the 14th
IEEE International Symposium on High Performance DistélduComputing
(HPDC-14), Research Triangle Park, NC

[57] LiuH, Parashar M (2006) Accord: A Programming Framekimr Autonomic
Applications. IEEE Transaction on Systems, Man, and Cydtes36(3):341—
352, special issue on Engineering Autonomic Systems, Edi Sterritt and
T. Bapty

[58] Majda A, Sethian J (1985) The Derivation and NumericaluBon of
the Equations for Zero Mach Number Combustion. Comb Sci fieldyy
42:185-205

Computational frameworks for advanced combustion sirmriat 29

[59] Martin DF, Colella P (2000) A Cell-Centered Adaptiveoferiction Method for
the Incompressible Euler Equations. J Comput Phys 1632172 —

[60] McBride BJ, Gordon S, Reno M (1993) Coefficients for Cddting Thermo-
dynamic and Transport Properties of Individual SpecieshTRep. TM-4513,
NASA

[61] Mclnnes LC, Allan BA, Armstrong R, Benson SJ, BernhdE, Dahlgren
TL, Diachin LF, Krishnan M, Kohl JA, Larson JW, Lefantzi S, épilocha
J, Norris B, Parker SG, Ray J, Zhou S (2006) Parallel PDE-B&ienu-
lations Using the Common Component Architecture. In: NuoarSolu-
tion of Partial Differential Equations on Parallel CompsteSpringer, pp
327-384, also available as ANL/MCS-P1179-0704hti&a p: / / www. ntTs.
anl . gov/ ccal/ publications/ pll79. pdf

[62] Mclnnes LC, Ray J, Armstrong R, Dahlgren TL, Malony A, e B,
Shende S, Kenny JP, Steensland J (2006) Computationaltatservice
for Scientific CCA Applications: Composition, Substituticand Reconfig-
uration. Tech. Rep. ANL/MCS-P1326-0206, Argonne Natiobaboratory,
URL ftp://info.nts.anl.gov/pub/techreports/reports/
P1326. pdf

[63] Meir "Manny” Lehman’s FEAST project (Accessed Octohizd09) URL
http://ww. doc.ic.ac. uk/~mi /f east

[64] Najm H, Knio O (2005) Modeling Low Mach Number ReactintpWw with
Detailed Chemistry and Transport. J Sci Comp 25(1):263-287

[65] Overture Homepage (Accessed October 2009) URMhtt ps:
[l conputation.|lnl.gov/casc/Overture/

[66] Pantano C, Deiterding R, Hill DJ, Pullin DI (2007) A Lowuxherical Dissi-
pation Patch-Based Adaptive Mesh Refinement Method ford-&ddy Sim-
ulation of Compressible Flows. J Comput Phys 221(1):63-87

[67] Parashar M, Browne JC (2000) System Engineering forhHgrformance
Computing Software: The HDDA/DAGH Infrastructure for Ingphentation
of Parallel Structured Adaptive Mesh Refinement. In: S B Ba@BG
M P Chrisochoides, Norman ML (eds) Structured Adaptive MResfinement,
IMA, vol 117, Springer-Verlag

[68] Paul PH (1997) DRFM: A New Package for the Evaluation @sé&’hase-
Transport Properties. Sandia Report SAND98-8203, Sandteohil Labora-
tories, Albugquerque, New Mexico

[69] Publications from the Applied Numerical Algorithms @ip (Accessed Oc-
tober 2009) URLhtt p:// seesar. | bl . gov/ anag/ publ i cati on.
ht m

[70] Publications Using AMROC and Virtual Test Facility (éessed October
2009) URLht t p: // www. csm or nl . gov/ ~r 2v/ ht ml / pub. ht m

[71] Ray J, Najm HN, Milne RB, Devine KD, Kempka S (2000) TepFlame
Structure and Dynamics at the Stabilization Point of an Eady Lifted Jet
Diffusion Flame. Proc Combust Inst 28:219-226

30 J. Ray et al

[72] Ray J, Kennedy C, Steensland J, Najm HN (2005) Advandgdrihms for
Computations on Block-Structured Adaptively Refined MeasildePhys: Conf
Ser 16:113-118

[73] Ray J, Kennedy CA, Lefantzi S, Najm HN (2007) Using Hi@hder Methods
on Adaptively Refined Block-Structured Meshes - DerivagjMaterpolations,
and Filters. SIAM J Sci Comp 29(1):139-181

[74] Safta C (2009) Personal Communication

[75] Safta C, Ray J, Najm H (2009) A High-Order Projection &cle for AMR
Computations of Chemically Reacting Flows. In: Proceeslioighe 2009 Fall
Meeting of the Western States Section of the Combustioitutet Irvine, CA,
URL http://ww. cai p. rut gers. edu/ ~j aray/

[76] Sommeijer BP, Shampine LF, Verwer JG (1998) RKC: An koipBolver for
Parabolic PDEs. J Comp Appl Math 88:315-326

[77] de St Germain JD, McCorquodale J, Parker SG, Johnsor2GE0j UINTAH:
A Massively Parallel Problem Solving Environment. In: HPDBD : Ninth
IEEE International Symposium on High Performance and bisted Com-
puting

[78] van Straalen B, Shalf J, Ligocki T, Keen N, Yang WS (2086alability Chal-
lenges for Massively Parallel AMR Applications. In: Prode®ys of the 23rd
IEEE International Symposium on Parallel and Distributedcessing, URL
https://seesar.|bl.gov/ ANAG publication. htn

[79] TAU: Tuning and Analysis Utilities (Accessed Novembez009)
Http://www.cs.uoregon.edu/research/paracomp/tau/

[80] The OpenFOAM Homepage (Accessed October 2009) URLp: / / wwww.
opencfd. co. uk/ openf oam

[81] Tonse S, Moriarty N, Brown N, Frenklach M (1999) PRISMiegewise
Reusable Implementation of Solution Mapping. An econofrstategy for
chemical kinetics. Israel Journal of Chemistry 39:97-106

[82] Trebon N, Morris A, Ray J, Shende S, Malony AD (2007) Berfance Mod-
eling Using Component Assemblies. Concurr Comp-Pract B)1885—696

[83] Valorani M, Goussis D (2001) Explicit Time-Scale Spiig Algorithm For
Stiff Problems: Auto-Ignition Of Gaseous-Mixtures BehiAdSteady Shock.
J Comput Phys 169:44-79

[84] Verwer JG, Sommeijer BP, Hundsdorfer W (2004) RKC Tistepping for
Advection-Diffusion-Reaction Problems. J Comput Phys(2p61-79, DOI
http://dx.doi.org/10.1016/j.jcp.2004.05.002

[85] Visual Basic Webpage (Accessed October 2009)
http://msdn.microsoft.com/en-us/vbasic/default.aspx

[86] Williams F (1985) Combustion Theory, 2nd edn. Addis®esley, New York

[87] XCAT Homepage (Accessed October 2009)
http://www.extreme.indiana.edu/xcat/

[88] Yetter R, Dryer F, Rabitz H (1991) A Comprehensive ReacMechanism for
Carbon Monoxide/Hydrogen/Oxygen Kinetics. Combust Schifel 79:97

