

Multiscale Bayesian inversion of binary permeability fields from static and dynamic observations

J. Ray, S. A. McKenna, Y. M. Marzouk and B. van Bloemen Waanders

jairay [at] somnet [dot] sandia [dot] gov

Sandia National Laboratories, Livermore CA, Sandia National Laboratories, Albuquerque, NM Massachusetts Institute of Technology, Cambridge, MA

Problem statement

- Characterize a binary medium (BM) from sparse observations
- Binary medium
 - Low permeability matrix with high permeability inclusions
 - Volume fraction, F, of inclusion varies in space, F(x)
 - 2-3 orders of magnitude difference between matrix and inclusion permeability
- Domain ~4-5 orders of magnitude bigger than inclusions
 - Characterization = statistical summary of finescale (inclusion scale), including variation in space
 - Non-unique reconstruction !
 - Fine-scale reconstruction comes with quantified uncertainty

The inverse problem

- Sources of data
 - Static data, i.e. permeability measurements from core samples
 - Dynamic data, i.e. tracer breakthrough times
- Objects of inference, $\Theta = \{F(x), \delta, \alpha\}$
 - F(x), spatially variable distribution of inclusion volume fraction
 - Geometrical parameters used to describe inclusions (δ , α)
- Bayesian inverse problem

$$-2\log \pi(\Theta) \propto \frac{\{T_B - M_T(\Theta)\}^2}{\sigma_T^2} + \frac{\{K_{obs} - M_K(\Theta)\}^2}{\sigma_K^2} + \frac{\{\Theta - \Theta_p\}^2}{\sigma_\Theta^2}$$

- M_T , model to relate Θ to breakthrough times T_B
- M_{κ} , model to relate Θ to observed permeability at certain sampling points
- Θ_{p} , prior beliefs regarding the values of Θ
- $-\sigma_{(K,T)}$, std. dev. of various measurement errors
- $\pi(\Theta)$ evaluated by Markov Chain Monte Carlo sampling
 - Particular algorithm called DRAM
 - Uses samples collected so far to adjust the proposal distribution

Sub-grid Model

<u>GOAL</u>: $k_{eff} = f(k_1, k_2, f, FWHM)$

Distance-Based Upscaling + Truncated Gaussian Field Theory Knudby, et al., 2006 e.g., Adler et al., 2009

Multiscale Ground Truth

Proportion Field

Z-score threshold field

Fine Scale Binary Medium

Kernel size (sigma = 5.0)

K1 = 100, K2 = 1

Coarse = 20x30

Fine = 2000x3000

Coarse block is 100x100 fine cells

Coarse Scale, Numerical log10 perm

Coarse Scale, Upscaled log10 perm

Test A – an isotropic case

- Rectangular domain discretized by 30 x 20 grid
 - Sufficient to resolve a smoothly varying F(x)
 - F(x) characterized by a known semi-variogram
 - Correlation length ~10% of the domain hypotenuse
- *F*(*x*) expressed as a summation of Karhunen-Loeve (KL) modes
 - Delinks accuracy of F(x) from the resolution of the mesh
- Synthetic data
 - Develop a true F, $F_{true}(x)$, using a distribution of Gaussian processes
 - Isotropic, so Gaussians have circular cross-section
 - Permeability contrast of 100; δ = 11.78
 - True permeability field developed using truncated Gaussian processes on a 3000 x 2000 mesh
 - Breakthroughs generated using MODFLOW
- Infer
 - Weights, c_i , of KL modes; δ , the size of GP used to generate the fine scale
 - Correlation structure of F_{infer}(x) assumed known
 - Reconstruct F_{infer}(x); compare against F_{true}(x)

Lanniarolies

Simplified view of the MCMC procedure

- Propose $\Theta = \{c_i, \delta\}, c_i$ in lieu of F(x)
- Create F(x) = summation of KL modes with weights c_i
 - Called "proposed" volume fraction field
- Create a permeability field K from "proposed" F(x)
 - Use the sub-grid model i.e. $K = M_K(c_i, \delta)$
 - Called the "proposed" permeability field
- Push water and tracer and find breakthrough times
 - "proposed" breakthrough times, T_B
- Compare "proposed" K and T_B to observed K, T_B at 20 obs. pts
- Accept "proposed" {K, T_B } with a probability proportional to how close they are to observations
- Save $\Theta = \{c_i, \delta\}$ to file
 - These are the samples from the posterior distribution $\pi(\Theta)$

Results from Test A

- Construct posterior PDFs for c_i , δ
- ~2M DRAM iterations
 - Expensive (72 hrs)

Joint distribution for weights of the 1st & 15th KL modes

Coefficient c_1

Histogram of samples of weights of the 1st KL mode

Reconstructions from Test A

Uncertainty and observations

Test B – anisotropic case

- Similar to Test A, but
 - Anisotropic permeability field
 - Gaussian kernels have elliptical cross-section
 - $AR = 1.5, \delta = 10$
- Observables
 - K_{xx} and K_{yy} at 20 obs. pts; breakthrough times
- RMS error: 0.108
 - 0.157 with static data only

Difference between observed and mean inferred

Conclusions

- It may be possible to reconstruct latent BM fields from sparse data
- Crucial elements
 - A sub-grid model, necessarily parameterized, that enables transfer of information from coarse scale (breakthrough times) to fine-scale
 - Smooth F(x), which enables its modeling with KL modes
 - And drastically drops the dimensionality of the problem
- Next steps
 - Increase domain size
 - 2-level inference coarse-scale + (intermediate + fine-scale)
 - Coarse scale seeks out "good" parts of the Θ space
 - (intermediate + fine-scale) similar to now
 - What is the link function for coarse and intermediate scales?
 - What MCMC scheme? Implicitly coupled chains?
 - Parallelism needed.

