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Problem statement
• Characterize a binary medium (BM) from 

sparse observations
• Binary medium

– Low permeability matrix with high permeability 
inclusions

– Volume fraction, F, of inclusion varies in 
space, F(x)

– 2-3 orders of magnitude difference between 
matrix and inclusion permeability

• Domain ~4-5 orders of magnitude bigger 
than inclusions 

– Characterization = statistical summary of fine- 
scale (inclusion scale), including variation in 
space

• Non-unique reconstruction !

– Fine-scale reconstruction comes with 
quantified uncertainty
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The inverse problem

• Sources of data
– Static data, i.e. permeability measurements from core samples
– Dynamic data, i.e. tracer breakthrough times

• Objects of inference,  = {F(x), , }
– F(x), spatially variable distribution of inclusion volume fraction
– Geometrical parameters used to describe inclusions 

• Bayesian inverse problem

– MT , model to relate  

 

to breakthrough times TB

– MK , model to relate 

 

to observed permeability at certain sampling points
– p , prior beliefs regarding the values of 
– {K, T} , std. dev. of various measurement errors

• 

 

evaluated by Markov Chain Monte Carlo sampling
– Particular algorithm called DRAM
– Uses samples collected so far to adjust the proposal distribution
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Sub-grid Model
GOAL: keff = f(k1 ,k2 ,f,FWHM)

Distance-Based Upscaling  + Truncated Gaussian Field Theory
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Knudby, et al., 2006 e.g., Adler et al., 2009
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Presentation Notes
Goal: Effective permeability as a function of the two modal permeabilities, the fraction of the high permeability material and the spatial correlation of the field as defined by the FWHM

Constraint: Must be computationally efficient – cannot afford to create the actual field



Resulting figure is shown for an isotropic 3 order of magnitude difference in k1 and k2, black “+” are average results for 10 fields run in MODFLOW and red circles are estimated values from combination of DBU and TGF theory.  The blue dots show the arithmetic (upper) and harmonic (lower) bounds on effective conductivity



Approach: Combine elements of distance-based upscaling (Knudby et a., 2006) and elements of truncated Gaussian field theory 



Multiscale Ground Truth

Kernel size (sigma = 5.0)

K1 = 100, K2 = 1

Coarse = 20x30

Fine = 2000x3000

Coarse block is 100x100 fine cells

Fine Scale Binary Medium

Z-score threshold field

Proportion Field
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Point out top right is best estimate, but too expensive





Test A – an isotropic case
• Rectangular domain discretized by 30 x 20 grid

– Sufficient to resolve a smoothly varying F(x)
– F(x) characterized by a known semi-variogram

• Correlation length ~10% of the domain hypotenuse

• F(x) expressed as a summation of Karhunen- 
Loeve (KL) modes

– Delinks accuracy of F(x) from the resolution of the 
mesh

• Synthetic data
– Develop a true F, Ftrue (x), using a distribution of 

Gaussian processes
• Isotropic, so Gaussians have circular cross-section

– Permeability contrast of 100;  = 11.78
– True permeability field developed using truncated 

Gaussian processes on a 3000 x 2000 mesh
– Breakthroughs generated using MODFLOW

• Infer
– Weights, ci , of KL modes; , the size of GP used to 

generate the fine scale 
– Correlation structure of Finfer (x) assumed known
– Reconstruct Finfer (x); compare against Ftrue (x)

• Observations at 20 points
– Permeability 
– Tracer breakthrough times



Simplified view of the MCMC procedure

• Propose  = {ci , }, ci in lieu of F(x)
• Create F(x) = summation of KL modes with weights ci

– Called “proposed” volume fraction field

• Create a permeability field K from “proposed” F(x)
– Use the sub-grid model i.e. K = MK (ci , )
– Called the “proposed” permeability field

• Push water and tracer and find breakthrough times
– “proposed” breakthrough times, TB

• Compare “proposed” K and TB to observed K, TB at 20 obs. pts
• Accept “proposed” {K, TB } with a probability proportional to how 

close they are to observations
• Save  = {ci , } to file

– These are the samples from the posterior distribution 



Results from Test A

• Construct posterior PDFs 
for ci , 

• ~2M DRAM iterations
– Expensive (72 hrs)



Reconstructions from Test A

• RMS error in F = 0.145 
– 0.19 with static data only



Uncertainty and observations



Test B – anisotropic case  
• Similar to Test A, but 

– Anisotropic permeability 
field

– Gaussian kernels have 
elliptical cross-section

• AR = 1.5,  = 10

• Observables
– Kxx and Kyy at 20 obs. pts; 

breakthrough times

• RMS error: 0.108
– 0.157 with static data 

only



Conclusions

• It may be possible to reconstruct latent BM fields from sparse data
• Crucial elements

– A sub-grid model, necessarily parameterized,  that enables transfer of 
information from coarse scale (breakthrough times) to fine-scale

– Smooth F(x), which enables its modeling with KL modes
• And drastically drops the dimensionality of the problem

• Next steps
– Increase domain size
– 2-level inference – coarse-scale + (intermediate + fine-scale)

• Coarse scale seeks out “good” parts of the 

 

space
• (intermediate + fine-scale) similar to now

– What is the link function for coarse and intermediate scales?
– What MCMC scheme? Implicitly coupled chains?
– Parallelism needed.
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