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Abstract 
The capability to identify emergent technologies based upon easily accessed open-source 
indicators, such as publications, is important for decision-makers in industry and government. 
The scientific contribution of this work is the proposition of a machine learning approach to the 
detection of the maturity of emerging technologies based on publication counts. Time-series of 
publication counts have universal features that distinguish emerging and growing technologies. 
We train an artificial neural network classifier, a supervised machine learning algorithm, upon 
these features to predict the maturity (emergent vs. growth) of an arbitrary technology. With a 
training set comprised of 22 technologies we obtain a classification accuracy ranging from 58.3% 
to 100% with an average accuracy of 84.6% for six test technologies. To enhance classifier 
performance, we augmented the training corpus with synthetic time-series technology life cycle 
curves, formed by calculating weighted averages of curves in the original training set. Training 
the classifier on the synthetic data set resulted in improved accuracy, ranging from 83.3% to 
100% with an average accuracy of 90.4% for the test technologies. The performance of our 
classifier exceeds that of competing machine learning approaches in the literature, which report 
an average classification accuracy of only 85.7% at maximum. Moreover, in contrast to current 
methods our approach does not require subject matter expertise to generate training labels, and 
it can be automated and scaled. 

Keywords 
Technology life cycle, machine learning, artificial neural network, data augmentation 
 

1 Introduction 
 
Research and Development (R&D) managers must make strategic decisions about when to invest 
in, hold or divest from a technology. The maturity of a technology plays an important role in this 
decision as it governs the availability, cost, and obsolescence of the said technology. R&D 
managers obtain this information from standardized short intelligence reports which cover a 
myriad of topics, technology maturity being one. Many open-source proxies of technological 
maturity exist, and scanning them to produce a quantitative measure, in an economical and 
timely fashion, requires that the process be automated and implemented via information 
technology (Albert, 2015). This paper presents a method to do so, using statistical/machine 
learning. 
 
Technology Life Cycles (TLC) are often characterized using an S-curve (a sigmoid). The abscissa 
(“x-axis”) is usually time but could be any measure of effort required to develop the technology 
e.g. funding. The ordinate (“y-axis”) is a measure of maturity (e.g., the number of products using 
the technology or some performance parameter). The S-curve illustrates that technologies 
emerge slowly (emergent phase) but accelerate into a growth phase. At a point, the technology 
matures, and slows down (the saturation phase), and then finally plateaus (the decline phase). A 
similar process is seen in Product Life Cycles (PLC) curves, though they are usually cast in terms 
of incremental changes per unit time i.e., they are a time-derivative of the S-curve, and are called 
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the “bell-curve.” We will use the bell-curve formalism in this paper. In this formalism, the peak 
of the curve separates the growth from the saturation phase.  
 
There are many methods to study the S- or bell-curves; see (Taylor & Taylor, 2015) for a review. 
Albert’s Ph.D. thesis (Albert, 2015) presents a concrete realization of Sommerlatte and 
Deschamps’s TLC evolution model (Sommerlatte & Deschampes, 1986) as a transition between 
four phases (emergence-growth-saturation-decline). Each of the phases can be characterized 
using 9 traits (Table 2.12, in (Albert, 2015)) but a time-series of scientific publications and patents, 
collated annually, are two traits that change with the four phases i.e., the two time-series follow 
a bell-curve, and have the same four phases. In this paper we will use an annual time-series of 
scientific publications as a proxy for the TLC. Then, using 22 such TLCs as a training corpus, we 
will construct a model that given a test TLC, will classify the years as belonging to the emergent 
or growth phase. Our model stipulates that the TLCs not be labeled by subject matter experts 
(SMEs) into their four phases, but rather be labeled by a model that keeps a certain fraction of 
the published papers in the emergent phase. 
 
As should be clear, the use-case for this classifier is in the widescale, automated scanning of a 
vast number of new technologies, with the aim of detecting transition from emergence to 
growth. This transition should coincide, approximately, with the start of commercial interest in 
the technology. We will not address transitions to saturation or decline, as by then, the 
technology is widely known 
 
Our approach is based on the hypothesis that the transition between emergence and growth is 
encoded in the shape of the TLC curve itself. Specifically, we hypothesize, that the derivatives of 
the TLC curve, suitably normalized, assume very different values for the emergent and growth 
phases, and these values are universal across technologies i.e., the transition boundary could be 
learned from our training corpus. We will “learn” this boundary in the form of a binary classifier. 
The approach, if successful, could simplify the detection of emergent and growing technologies, 
conditioned on open-source information. This is the first contribution of this paper. 
 
The compilation of a training corpus for training the classifier is quite difficult. Since the TLC 
curves constituting the training corpus should contain all four phases, it will, perforce, contain 
obsolete technologies. This eliminates recent and many relevant technologies. In addition, 
technology maturity cannot be measured directly and therefore requires some proxy measure, 
such as publication count, which precipitates other challenges. Government-funded scientific 
and engineering research, which necessitated regular publications as a measure of funding 
performance, only became common in the 1950s. In addition, many TLC curves, which are based 
on technology maturity proxies, show spurious artifacts. For example, the time-series of 
publications referring to a smallpox vaccine shows two peaks, one during the 1970s when the 
smallpox eradication program was being pursued and another one that spanned 1998-2010, 
when there was interest in bioterrorism. However, these later papers dealt mostly with 
mathematical models to investigate the most efficient way to vaccinate a population. The actual 
technology for manufacturing or improving the vaccine was rarely considered and it is debatable 
if these papers should be considered as a representation of the TLC. It is not often that one can 
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discern and remove such artifacts manually, and consequently constructing the training corpus 
can be difficult, and somewhat subjective, resulting in a small one. A classifier trained on a small 
corpus suffers from two shortcomings – (1) it assimilates little information, leading to a classifier 
that predicts inaccurately and (2) the training process is difficult, leading to a classifier that is 
sometimes unstable. There is nothing much that can be done about the first shortcoming without 
expanding the training data, but the second shortcoming, being entirely numerical in nature, 
might admit an algorithmic improvement. 
 
The second contribution of this paper is a method to make a large synthetic training corpus using 
our original scarce one. The hypothesis is that the TLC curves are quite simple and could be 
encoded in a low-dimension space. If true, then our scarce training corpus could adequately 
define a distribution in low-dimensional space, implying that randomly weighted linear 
combinations of the TLC curves could yield a large synthetic dataset. This dataset would not 
contain any new information (being derived from the original one), but it could render the 
training process easier. A classifier trained on the synthetic dataset should prove to be as 
accurate, and perhaps slightly better than the original one. We will test this hypothesis using 
held-out TLC curves i.e., TLC curves that were not used to construct the large synthetic training 
corpus. With the inclusion of synthetic training data, we found that the classification accuracy of 
the held-out TLC curves improved, and moreover exceeded the performance that has been 
reported in the literature for other machine learning approaches to technology maturity 
classification. 
 
The paper is structured as follows. In Section 2, we will review literature on various ways of 
gauging and modeling technological maturity. In Section 3, we will formulate the statistical 
problem. We will extract, smooth and label the TLC curves. In Section 4, we postulate the 
classifier as an artificial neural network (henceforth, neural net), train and test it and verify our 
first hypothesis. In Section 5, we will construct the synthetic dataset, retrain a new classifier (also 
a neural net) and check its performance on held-out TLCs to verify our second hypothesis. The 
paper concludes with a summary of the two contributions and proposals to extend the research.  
 

2 Literature Review 
 
2.1 Technology Life Cycle Models 
Historically researchers have used expert knowledge to assess technology maturity. One 
common approach is the Delphi method in which experts iterate through several rounds of 
elicitation with feedback until their opinions converge (Dalkey & Helmer, 1963). The results of 
the Delphi method and other consensus methods can be skewed by experts’ imperfect, 
qualitative knowledge of the technology domain. Additionally, relying on subject matter 
expertise is costly and time-consuming (Lemos & Porto, 1998). In response more quantitatively 
rigorous, automated approaches have been developed. 
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Several models for the life cycle of a technology have been developed (Sommerlatte & 
Deschamps, 1986; Ford & Ryan, 1981; Ansoff, 1984; Linden & Fenn, 2003), but the fields of 
economics and management have broadly adopted two general curve models (Nieto et al., 1998). 
The first is an S-Shaped curve of cumulative innovation over time or R&D expenditures (Merino, 
1990; Ernst, 1997; Wu et al., 2011; Gao et al., 2013). Cumulative innovation represents the total 
sum of innovations up to that point in time. An S-shaped curve has been supported by the 
findings of several empirical studies (Achilladelis et al., 1990; Achilladelis et al., 1993; Achilladelis 
& Antonakis, 2001; Andersen, 1999). The second model is a bell-shaped curve of rate of 
innovation over time or R&D expenditures (Urban & Hauser, 1993; Nieto et al., 1998). Rate of 
innovation represents the number of innovations per unit time.  Taylor and Taylor (2012) review 
the literature and argue that a bell-shaped curve can be applied to TLCs.  
 
Both the S- and bell-shaped curves can be split into four distinguishable stages signifying 
introduction, growth, maturity, and decline of the technology (Taylor & Taylor, 2012). In the 
introduction stage there is a breakthrough and a technology’s innovations slowly increase. As the 
technology grows the innovations increase more rapidly. Upon reaching the maturity stage 
innovation rate stagnates. Finally, in the decline stage innovations decrease as the technology is 
replaced by other emerging technologies (Kim, 2003). 
 
2.2 Technology Life Cycle Indicators 
A quantitative approach to modeling technology maturation requires some measure of 
technology maturity. Since technology maturity itself cannot be directly observed and measured, 
a variety of indicators have been used to serve as proxies for technology performance in 
modeling the TLC. Some researchers employ univariate indicators such as counts of patents or 
publications (Ramadhan et al., 2018; Lezama-Nicolás et al., 2018; Byun et al., 2018; Sick et al., 
2018; Albert, 2015), news articles (Lezama-Nicolás et al., 2018), web search queries (Albert, 
2015), start-up companies or product launches (Sick et al., 2018). Others leverage a suite of 
patent- or publication-related indicators (Gao et al., 2013; Kim et al. 2012; Lee et al., 2016; Su, 
2018; Albert, 2015). Albert et al. (2015) perform text analytics on a corpus of blog text. Momeni 
and Rost (2016) extract patent citation paths, while others consider patent citations as a network 
instead (van der Pol & Rameshkoumar, 2018; Smojver et al., 2019). Other indicators that have 
been framed as networks include the collaboration network of co-authors on publications and 
patents (van der Pol & Rameshkoumar, 2018) and patent keywords (Smojver et al., 2019).  
 
2.3 Quantitative Approaches to Assessing Technology Maturity 
Various methodologies have been employed to model TLCs using these indicators. A classic 
approach is curve fitting, in which an S- or bell-shaped curve is fitted with a statistical distribution 
such as a Gompertz, logistic, Weibull, or normal (Stapleton, 1976; Franses, 1994; Ryu & Byeon, 
2011; Sharif & Islam, 1980; Nagula, 2016). While curve fitting approaches allow for forecasting 
based upon a single indicator, subject matter expertise is still required for interpretation of the 
results, which allows room for unquantified bias and uncertainty and requires additional 
resources. Some researchers also argue that the accuracy and reliability of curve fitting methods 
is questionable (Haupt et al., 2007; Watts & Porter, 1997; Gao et al., 2013).  
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In order to avoid the inherent pitfalls of curve fitting, more recent advances use machine learning. 
Lee et al. (2016) present a single case study in which they use continuous hidden Markov models, 
an unsupervised machine learning method, to calculate a transition probability matrix between 
stages of the life cycle. However, most machine learning efforts in classifying the TLC stages have 
been supervised approaches. Kim et al. (2012) used decision trees to classify stages of technology 
evolution with 85.7% accuracy. Gao et al. (2013) demonstrated the efficacy of a k-nearest- 
neighbors classifier for a single technology. Linear Discriminant Analysis (LDA) has been 
successfully employed with up to 83.3% classification accuracy (Albert, 2015). A neural net 
approach to classifying TLC phases has also been developed (Ramadhan et al., 2018). It was 
trained and tested on only one technology, so its accuracy in classifying other technologies that 
may not have yet undergone the entire TLC is unknown. Machine learning approaches employed 
thus far have shown promise in learning the often non-linear patterns that drive the technology 
life cycle. However, these studies have either been demonstrated on only one technology and 
require subject matter expertise to label training data, been validated using only subject matter 
expertise, if at all, or in the case of Kim et al. (2012) and Albert (2015) proven to be less than 86% 
accurate over many technologies when classifying maturation stages. While these approaches 
are promising, work remains to be done. 
 
Other researchers have employed a variety of methods for determining the TLC stage. Albert et 
al. (2015) use fuzzy logic to map the outputs of sentiment analysis into TLC stages. Smojver et al. 
(2019) classify TLC stages by the degree distribution or growth of the graphs of patent citations 
and keywords. Other researchers do not explicitly classify TLC stages, but rather they characterize 
stages based on some result. For example, Momeni and Rost (2016) apply a forward-citation 
node pair algorithm to patent citations and characterize technology maturity stages based upon 
the resulting patent-development paths. Similarly, van der Pol and Rameshkoumar (2018) 
describe how patterns in graph topology of International Patent Classification (IPC) codes and 
collaboration networks vary by technology maturity stage. Su (2017) used ANOVA (analysis of 
variance) to determine which patent-related indicators are useful in distinguishing technology 
maturity stages.  
 
Given the initial success of machine learning approaches we employed a neural net classifier. We 
sought to train this classifier on just one indicator for multiple training technologies so that it 
could be used to classify the TLC stage of any new technology.  
 

3 Preparing the Data 
 
3.1 Data Extraction 
A critical step in developing the machine learning classifier is the selection of the training and 
testing data. The TLCs, as approximated by publication counts, were extracted from the Elsevier 
Scopus database of scientific publications. The Scopus database was chosen to demonstrate the 
approach we propose in this paper because it is multidisciplinary, has high quality control 
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standards for data, and has an easily accessible API. However, the approach need not strictly be 
applied to data extracted from the Scopus database, as the method is generalizable to many 
databases of scientific publications. The Title, Abstract, and Keywords (Author Assigned and 
Scopus Curated) fields were queried for the timeframe 1861-2019. We adopted a wide range in 
dates (all dates available in Scopus up to 2019) to ensure that full technology curves were 
captured in the data. The annual publication counts for each query were recorded and scaled by 
dividing by the total number of publications recorded in the entire Scopus database for that year. 
This scaling process is required to mitigate bias in the publication count indicator due to the ever-
increasing number of total publications on the Scopus database, as shown in Figure 1.  

 
Figure 1. Total Scopus Publications 

 
The technologies and their corresponding queries were selected and constructed by a group of 
Subject Matter Experts (SMEs) at Virginia Tech Applied Research Corporation and Sandia National 
Laboratories with backgrounds in Biophysics, Computer Science, Healthcare, Electrical, and 
Mechanical engineering.  The technology subjects were anticipated by the SMEs to cover 
complete TLCs as to provide data containing emergence, growth, saturation, and decline. This 
selection method aimed at producing data representative of all four maturity phases, since many 
technologies produced partial cycles. The keywords listed in Table 1 were used as the queries. 
For technologies represented by multiple words (e.g., carbon nanotube) the keyword was 
enclosed in double quotes to form the query (e.g. “carbon nanotube”).  
 
The full list of training and testing TLCs are given in Table 1. The testing TLC data were selected 
at random from the overall list of technologies. Per convention we opted to maintain a roughly 
80%/20% split for training and testing. Figure 2 shows the normalized publication counts for all 
training and testing technologies.  
 

Table 1. Training and Testing Technology Keywords 
Training TLC data Testing TLC data 
airbag microfluidics 
high temperature superconductor carbon nanotube 
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scanning tunneling microscopy confocal microscopy 
soft lithography atomic force microscopy 
turbine engine fuel cell 
x-ray lithography directed evolution 
YBaCuO  
gel electrophoresis  
patch clamp  
micro-electromechanical system  
optical computer  
bubble memory  
polymerase chain reaction  
green fluorescent protein  
ricin  
photoresistor  
3g  
4g  
cephalexin  
compact disc  
anthrax  
GaAs  
stable isotope analysis  

 
 
 
 

 

(a)  
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(b) 

 
Figure 2. Normalized publication counts for testing (a) and training (b) technologies 
 
 
3.2 Data Smoothing 
The extracted and normalized publication counts of the sample technologies resulted in 29 
individual time series. Training and testing of the classifier required these time series to be 
smoothed so that derivatives could be computed. Three smoothing techniques were applied to 
the sample technologies and compared, including LOESS (LOcally Estimated Scatterplot 
Smoothing), moving average, spline, and kernel smoothing. The smoothing techniques were 
compared using RMSE (Root Mean Square Error) and a visual inspection to determine which 
technique resulted in smoothed values that were close to the original values without overfitting. 
The LOESS smoother proved to be effective over the greatest number of sample technologies, so 
it was applied to normalized publication counts to produce all the technology maturity curves for 
the classifier. Figure 3 shows two example TLCs and each candidate smooth curve. 
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(a)                                                                               (b) 

Figure 3. TLCs smoothed using candidate techniques. (a) Gel electrophoresis technology curve is 
overfit with all smoothing techniques except for Loess smoothing. (b) Green fluorescent protein 
technology curve is overfit with spline and kernel smoothing, and LOESS smoothing results in a 
lower RMSE (5.71 x 10-5) than that for moving average smoothing (1.07 x 10-4). 
 
3.3 Data Labeling 
One goal of this research is to propose a machine learning based automated approach for 
classifying a technology into one of the phases of the technology life cycle (henceforth, the 
maturity curve). Since we are proposing a supervised approach to predict the maturity of a 
technology, we will require labeled training data. The methodology we used to prepare the 
training data consists of two sub-tasks. The first is to identify technologies which have gone 
through, ideally, all the four phases of the maturity cycle, or at least the phases in which we are 
most interested. The second task is to label the points in the smoothed time series by one of the 
four phases (emergence-growth-saturation-decline).  
 
Unlike classical machine learning applications where labeling of data points may be trivial (e.g., 
labeling images of classification categories), labeling in this problem requires judgement of 
experts on specific technologies that have been identified. There are two potential problems with 
this labeling strategy. First, it may not be feasible, or even possible to identify experts with 
knowledge or expertise in labeling the data points as required. Second, such a labeling procedure 
will invariably lead to a subjective assessment i.e., two experts on a given technology may or may 
not agree with particular labels identified. 
 
In order to overcome these limitations, we first identify characteristics of phases in maturity cycle 
which must be satisfied by both the labeling procedure and the machine learning classifier. Let 
us consider the ‘ideal’ technology maturity curve 𝑓(𝑥)	shown in Figure 4, which follows the 
probability distribution function of a normal random variable.  
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Figure 4: An ideal technology maturity curve. It follows probability density function of a standard 
normal distribution.  
 
This curve corresponds to a hypothetical technology; however, it has the following characteristics 
useful for labeling of data:  
 

• It depicts all the four phases of the maturity cycle 
• It has a peak, called the stagnation point. Data points to the left of stagnation point belong 

to emergence and growth phases. Points to the right of stagnation belong to saturation 
and decline phases. 

• The four phases of emergence, growth, saturation and decline follow sequentially in that 
order (i.e., there is no intermingling of points belonging to these phases) 

 
Our first objective is to design a strategy that labels the training data on this ‘ideal’ curve 
satisfying above characteristics. The maturity curve for a real technology will not be the same as 
Figure 3 but must necessarily have the same characteristics. Our second objective is to devise a 
strategy to map labeling from the ideal maturity curve to the maturity curve of any real 
technology. Next, we detail the procedure to achieve these two objectives. 
 
In order to label points on the ideal maturity cycle, we use shape features of the curve that follow 
the desired characteristics mentioned above. Let 𝑡 denote the time variable and 𝑓(𝑡) denote the 
feature, smoothened and normalized publication count in this case, that tracks the maturity of a 
technology. Let'𝑡!, 𝑓(𝑡!)), … , '𝑡" , 𝑓(𝑡")), 1 ≤ 𝑛	 ≤ 𝑁 denote sampling coordinates of the time 
series. We define the labeling strategy ℒ	as a map: 
 
     ℒ: '𝑡#, 𝑓(𝑡#)) → (𝑡#, 𝐶#), 
 
where 𝐶# is a label in the set (Emergence, Growth, Saturation, Decline).  
 
For a given 𝑖 ∈ ℕ, we consider the set of points that satisfy: 
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= 0, 𝑡 > 0,  
 
and define the inflection point 𝑡∗(

))as the smallest point in this set. As a consequence, the 
stagnation point can be denoted as 𝑓(𝑡∗(

!)). In other words, 𝑡∗!is the point where the slope of the 
curve is zero. 𝑡∗+, 𝑡∗,⋯ are the points where the second, third etc. derivatives of the curve are 
zero. Note that, by construction, the stagnation point implicitly provides classification of a point 
on the maturity curve as either in (emergence, growth) phase or in (saturation, decline) phase. 
 
We now propose a strategy to label phases in each subgroup. For ease of explanation, we only 
consider part of the curve up to the stagnation point and describe the proposed approach for 
labeling points in either emergence or growth phase. A similar approach can be used to label 
saturation and decline phases. Let us define 𝐴& as area under the ideal maturity curve such that 

 

𝐴& =	; 𝑓(𝑡)𝑑𝑡
&

-
 

 
and the transition coefficient 𝛾 ∈ [0,1] as 
 

𝛾) =	
.
"∗
(!)

.
"∗
(&)

. 

 
Here, 𝛾)  is the measure of area up to an inflection point 𝑡∗(

))	normalized w.r.t area up to the 
stagnation point 𝑓(𝑡∗(

!)). For a choice of 𝑖, 𝑐 ∈ ℕ, we define the following labeling rule 
 

• ."'
.
"∗
(&)
≤	𝑐𝛾) , 𝐶# = Emergence 

• ."'
.
"∗
(&)
>	𝑐𝛾) , 𝐶# = Growth 

 
Figure 5(a) shows labeling obtained with 𝑖 = 3 and 𝑐 = 2 which gives a good balance of 
distribution of data points between emergence and growth labels. Let us also define the 
transition point 𝑡0  such that 𝐶# = Emergence for 𝑡 ≤ 𝑡0, i.e. the point where the label transitions 
from emergence to growth. 
 
Next, we generalize the labeling strategy to the maturity curve of any real technology. For doing 
so, we map the notion of transition point from the ideal curve to the maturity curve of a real 
technology. For particular choice of 𝑖 = 3	and	𝑐 = 2,	we estimate numerically that 𝐴&( 𝐴&∗(&)Q ≈ 

0.2. We therefore use this metric to determine the transition point on the maturity curve of a 
real technology and label the points accordingly. Note that this mapping requires technologies in 
the training dataset to at least have the stagnation point for data points to have emergence and 
growth labels, if not the full technology life cycle. Since in this application we are mainly 
interested in technologies in either emergence or growth phases, training technologies with data 
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having the stagnation point are sufficient. Figure 5(b) shows an example of this mapping from 
ideal maturity curve to the maturity curve for a real technology, optical computer in this case. 
 

 
(a)                                                                          (b) 

Figure 5. Mapping of Emergence-Growth-Saturation-Decline onto curves. (a) An ideal curve.  (b) 
An actual curve.   
 

4 The Classification Problem 
 
In this section, we describe the classification methodology developed in this study to determine 
the phase of evolution of a technology. We obtain data for classification by tracking 29 real 
technologies and labeling them with one of the four maturity phases, using the labeling method 
described in section 3.2. Data from 22 technologies were considered for training and validation 
(one of the technologies, “stable isotope analysis”, did not have a stagnation point and was 
discarded) and the remaining 6 technologies were considered for testing the accuracy of the 
classifier. Figure 6(a) shows the distribution of data in each of the four labels.    
 
The classification process consists of applying a hierarchy of binary classifiers. The first level of 
classification consists of using a binary classifier that distinguishes between data points in 
emergence/growth classes from data points in saturation/decline classes. Having obtained the 
first level of classification, we use a second binary classifier to distinguish data points between 
sub-phases i.e., emergence and growth for data points prior to stagnation point saturation and 
decline for the rest. Figure 7 gives a schematic representation of the classification procedure. 
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                                                     (a)                                                                   (b)      

 
Figure 6: (a) Distribution of training data in four phases of technology maturity and (b) Region 

on ideal maturity curve belonging to (emergence, growth) and (saturation, decline) phases. 

 
Figure 7: A schematic representation of the classification procedure. 

 
 
4.1 Level One Classifier  
The level one classifier is trivial and follows from the definition of stagnation point. We therefore 
have a simple rule-based classifier defined as follows:  
If 𝑡∗(

!) exists, then 
• 𝐶# = (Emergence or Growth), if 𝑡# ≤ 𝑡∗(

!)  
• 𝐶# = (Stagnation or Decline), 𝑡# > 𝑡∗(

!) 
Else 

• 𝐶# = (Emergence or Growth) 
 
Figure 6(b) shows the application of this classifier on points of the ideal maturity curve. Since 
finding the existence and location of stagnation point is a simple deterministic procedure 
(calculation of 𝑡∗

(!)), the accuracy of this classifier is 100%. 
 
Next, we propose a classifier to distinguish between sub-phases of a technology maturity curve.  

Level One
Classifier

!" ≤ !∗(&)

Yes

Emergence
Growth

Saturation
Decline

Level Two
Classifier

No

(′(!)

(′′′′(!)

(′′(!)

(′′′(!)

Emergence/
Growth

Data
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4.2 Level Two Classifier  
We consider the task of classification of data points in the emergence and growth phases and 
state that a similar approach can be used to distinguish between data points belonging to 
saturation and decline classes of the maturity cycle. Below, we list two important characteristics 
of the classification problem that informs our choice of features and the classification model. 
 

• The training data comes from a time series and hence is sequential in nature.  
• The shape of the maturity curve encodes the rate(s) of change in the observed variable, 

normalized publication count in this case, to track its evolution. 
 
An ideal choice of classifier features and the classification model must naturally consider these 
specific characteristics of the problem. We note the following points on our choice of features 
and model. 
 

• Numerical estimation of higher order derivatives (via finite-differences) at a given point 
on the maturity curve progressively takes into account the values of the maturity curve 
at adjacent locations. Thus, first and higher order derivatives of the maturity curve forms 
a promising set of features.  

 
• Convolution Neural Networks naturally consider shape attributes and have been 

successfully used in image-based classification problems. If derivatives are used as 
features of the classification model, derivative stencils, in principle, can be considered as 
particular filter weights for the convolution operation.  

 
We therefore choose first, second, third and fourth derivatives of 𝑓(𝑡) as classifier features and 
Neural Networks as the classification model.  
 
The neural net architecture (Goodfellow et al., 2016) considered in this work consists of an input 
layer with four nodes (one for each feature), one hidden layer in which the number of nodes is 
considered as a hyper-parameter and an output layer with two nodes, one for each class. We 
consider both mean squared error (MSE) and cross entropy (CE) loss functions and choose the 
one that gives an optimal model using Adam stochastic gradient descent algorithm (see 
Goodfellow et al., 2016 for details). The learning rate of the stochastic gradient descent algorithm 
is also considered as a hyperparameter. The output of the network is the probability of a data 
point belonging to the emergence class. Here, we use a standard threshold of 0.5 i.e., probability 
above 0.5 is considered as an emergence point. The threshold is a hyperparameter, and given 
that probabilities range from zero to one, 0.5 is the natural, naïve choice in the absence of 
hyperparameter tuning. The network was trained using the PyTorch framework (Paszke et al., 
2019). In the following, we compare different classifier architectures based on the accuracy score 
(the fraction of examples in the training dataset that are correctly predicted by the classifier). 
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A sequential hyperparameter tuning procedure was used to select optimal architecture and 
learning algorithm parameters i.e., we first determined the optimal activation function, followed 
by the number of nodes in the hidden layer and finally the learning rate of the learning algorithm. 
The error for each hyperparameter combination was estimated on a separate set of data, the 
validation set, which was obtained by randomly selecting 20% of the training data before training 
the final model. Table 2 summarizes hyperparameter tuning results. 
 
Based on hyperparameter tuning results shown in Table 2, we find that the optimal neural net 
architecture with an accuracy of 87.3% consists of the Tanh activation function with 5 hidden 
layer nodes and trained with MSE loss function with a learning rate of 5 × 101+. Using the 
selected network architecture and algorithm training parameters, we use the proposed classifier 
for classifying data points in the test technologies. 
 
Table 2: Optimal hyperparameter selection based on the accuracy score for Mean Squared and 
Cross Entropy error measures. The hyperparameters considered are (a) activation function, (b) 
number of nodes in the hidden layer and (c) learning rate of the stochastic gradient descent 
algorithm.  

 
 

 
Loss Function 

Activation Function 
Tanh Sigmoid Leaky ReLU 

Mean 
Squared Loss 83.5% 77.2% 76.0% 

Cross Entropy 
Loss 78.5% 81.0% 79.8% 

          (a) 
 

 
Loss Function 

Nodes in Hidden Layer 
3 4          5 

Mean 
Squared Loss 83.5% 86.1% 87.3% 

Cross Entropy 
Loss 81.0% 83.5% 82.2% 

                                 (b) 
 

 
Loss Function 

     Learning Rate 
0.05 0.01 

Mean 
Squared Loss 87.3% 84.8% 

Cross Entropy 
Loss 83.5% 78.4% 

          (c) 
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4.3 Results on Test Technologies 
Figure 8 shows classification of data points for test technologies in the emergence and growth 
classes using the level two neural net classifier.  
 

 
 
Figure 8: Classification of points on the maturity curve of two test technologies in emergence and 
growth classes using the level two classifier. The color of a point shows the probability of 
classifying a point in the emergence phase and its relative size indicates its deviation from the 
true value (i.e., 1 if the label is emergence and 0 otherwise).   
 
The performance of the classifier on the six test technologies is in Table 3. The proposed classifier 
gives an average accuracy of 84.6% on data points on the test set which is close to the predicted 
accuracy of 87.3% of the optimal neural net architecture on the validation set. However, one 
limitation of this classifier is the wide range of accuracy scores on test technologies. For example, 
the classifier is 94.4% accurate for “carbon nanotube” but gives an accuracy score of 58.3% for 
“directed energy”. In order to overcome this limitation, we propose to generate more data to 
further improve the accuracy score of the classifier and to reduce its accuracy range. 

Table 3: Accuracy scores on six test technologies   
 Technology Accuracy 

Microfluidics 87.5% 
Carbon Nanotube 94.4% 

Confocal Microscopy 84.2% 
Atomic Force Microscopy 88.8% 

Fuel Cells 94.1% 
Directed Energy 58.3% 

 

5 Data Augmentation and Refinements 
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5.1 Generating Synthetic Data 
The neural net classifier showed promise when it was trained on 22 technologies, achieving a 
84.6% accuracy on average. There are two general approaches to improving the accuracy of any 
machine learning algorithm: hyperparameter optimization and increasing training set size. 
Refinement of the classifier via hyperparameter optimization is described in section 5.2. This 
section describes the methodology for generating synthetic data to bolster the accuracy of the 
neural net classifier. When a machine learning algorithm has more training data, it is able to learn 
about the entire range of cases it may encounter, thus improving its accuracy. 
 
To create new, synthetic technology maturity time series, the following procedure was 
employed: 

1. The 23 training technology maturity time series were re-discretized to each have 50 time 
points. 

2. The 23 re-discretized time series were rescaled to be between zero and one, such that for 
any training technology 𝑖 at time point 𝑡, the rescaled data point is given by 

𝑦)"
∗ = 	(𝑦)" 	– 	𝑚𝑖𝑛))/𝑟𝑎𝑛𝑔𝑒)  

where 𝑦)"  is the re-discretized data point, 𝑚𝑖𝑛)  is the minimum value of the curve for 
technology 𝑖, and 𝑟𝑎𝑛𝑔𝑒)  is the difference between the maximum and minimum values 
of the curve for technology 𝑖. 

3. Two training technologies were randomly sampled. 
4. Two weights 𝑤! and 𝑤+ were randomly sampled, such that 

𝑤!	~	℧(0, 	1)  
where ℧ is the uniform distribution and 

𝑤+ = 	1 − 	𝑤! 
5. The rescaled time series for the two randomly sampled training technologies were 

averaged using the randomly sampled weights, resulting in a new time series (Example in 
Figure 9(a)). 

6. The new time series went through the reverse of the rescaling process in step two by 
applying the equation with a new minimum and range. The new minimum and range were 
sampled from their empirical distributions of the minimums and ranges of the 23 training 
technologies.  

7. The time series was then re-discretized to a new number of time points. The new number 
of time points was randomly sampled from the density of the number of time points of 
the 23 training technologies, via inverse transform sampling. This results in a synthetic 
maturity time series to be used in the training set for the classifier (Example in Figure 
9(b)). 

Steps three through seven were repeated 500 times in order to produce 500 new, synthetic 
technology maturity curves. These synthetic data were used to train the classifier.  
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Figure 9(a). Training technologies 1 and 2 are re-discretized over time, rescaled, and then 
averaged to form an average curve. Figure 9(b). The average curve undergoes a reverse of the 

rescaling process and is re-discretized to create a synthetic training technology curve. 
 
By expanding the size of the training set dramatically, the accuracy of the classifier improved (see 
Sec. 5.2). Leveraging synthetic data allowed the classifier to more easily learn about the 
distribution of the training data in low-dimensional space and hence a fuller range of possible 
curves it could encounter. This approach to generating synthetic data is not only effective in 
improving performance, it is also computationally inexpensive and simple to implement. 
 
5.2 Level Two Classifier Refinement  
In this section we use the 500 synthetic maturity curves as the training and validation data for 
new neural net classifier. The set of six test technologies that were used in Section 4.2 (and were 
not used to generate the synthetic data) are also used here to assess the performance of the new 
classifier. We choose the same architecture of the neural net with the exception of the number 
of nodes in the hidden layer. As we have more training data, we can have a higher number of 
nodes in the hidden layer. Here, we obtained the optimal value of 40 hidden nodes using 
hyperparameter tuning described in section 4.2. Figure 10 shows the convergence of mean 
squared error loss and accuracy score w.r.t the number of epochs in training the classifier. In 
addition, we optimize the probability threshold value for classification to the emergence class by 
doing a grid search in the set (0.4, 0.45, 0.5) and determine that the optimal value of 0.4 gives 
the smallest misclassification error for both emergence and growth classes.  
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Figure 10: Convergence of mean squared error loss and accuracy score w.r.t the number of 

epochs in training the classifier 
 
 
Table 4: Confusion matrix of the classifier trained on synthetic data. Misclassification error is 0.21 
and 0.077 for emergence and growth classes respectively.   
 

 
 
 
 
 
   

 
Table 4 shows the confusion matrix obtained on the validation set with the classifier trained on 
synthetic data. Figure 11 shows classification of data points of the test technologies for which the 
classifier exhibited the best and the worst performance. In Table 5, we tabulate the accuracy 
score of the 6 technologies that were not used to construct the synthetic dataset. The average 
accuracy score on data points from the test set is 90.4% with the best accuracy of 100% (confocal 
microscopy) and the worst accuracy of 83.3% (directed energy). Thus, when optimized and 
trained on a dataset that was augmented with synthetic data, the classifier is more accurate 
overall, and its range of accuracy scores is narrower. Table A.1. shows the accuracy scores for all 
training and test technologies based upon the classifier trained with synthetic data. 
 

 
 

Predicted 
Emergence Growth 
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h Emergence 504 132 
Growth 83 988 
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Figure 11: Classification of data points of (a) confocal microscopy (accuracy score = 100%) and 
(b) directed energy (accuracy = 83.3%) using the classifier trained on synthetic data. The color 
of a point shows the probability of classifying a point in emergence phase and its size indicates 
the deviation from the true value (i.e., 1 if the label is emergence and 0 otherwise). For confocal 
microscopy the points are small and there is a clear delineation in color between the two 
phases, indicating that the classifier predicts the boundary between emergence and growth 
clearly. For directed energy the points are larger, particularly near the boundary between 
emergence and growth, and the color is more neutral in the emergence phase. This indicates 
that the classifier struggles more to predict the boundary between emergence and growth, and 
that even when it does so successfully it is with a narrower margin.  

 
Table 5: Accuracy scores on six test technologies obtained from classifier trained on synthetic 

data   
 Technology Accuracy 

Microfluidics 87.5% 
Carbon Nanotube 88.9% 

Confocal Microscopy 100% 
Atomic Force Microscopy 88.9% 

Fuel Cells 94.1% 
Directed Energy 83.3% 

 
 

6 Conclusions 
 
We have investigated whether the technology life cycle curve, as quantified by peer-review 
journal / academic publications referring to the technology, can be used to predict the maturity 
of the technology. We are primarily interested in devising a way of identifying emergent 
technologies from open-source indicators, of which publications and patents are the most easily 
accessed, and which are also very closely linked to the actual development and evolution of the 
technology. Given this use-case, we focus on separating emergent technologies from growing 
ones. The premise behind our approach is that the time-series of publication counts, properly 
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normalized, can yield features that are, in some sense, universal i.e., these features assume 
values that can be thought of as draws from distributions that are characteristic of the emergent 
and growth phases, and which are not affected by the identity of the technology. If the premise 
is true, it should be possible to construct a classification model, that given the features, can 
predict the maturity (emergent/growth) of an arbitrary technology. 
 
In this paper, we have shown that the premise may hold, and such a classifier is feasible. Using 
the time-series of annual publication counts (properly normalized) from 22 technologies, we 
compute the time-derivatives (that serve as features), learn a classifier and test its predictive skill 
on 6 held-out technologies. We obtain accuracies that range from 58.3% to 100% with an average 
accuracy of 84.6%. This performance was also helped by the fact that we developed a principled 
way of defining emergent and growth phases of a technology based on the fraction of 
publications that appear before the technology saturates. The absence of any labeling of data by 
experts spared us the complications of subjective bias. However, experts were used to develop 
the keyword searches to generate the technology curves, which could impart bias in the TLCs 
selected. The variability in the performance of our classifier is large and, we hypothesized, was 
mainly caused an unstable neural net classifier trained on too small a dataset. This numerical 
issue can be corrected by using a larger training dataset. 
 
Consequently, we augmented the dataset by randomly weighted averaging of the 23 original 
training technologies, selected two at a time. By doing so, we quickly created a large synthetic 
dataset on which we trained a new neural net classifier (a more stable one). Note that the 
classifier was trained solely on the synthetic data and then used to reclassify the 28 training and 
testing technologies. Our worst performing test case improved its accuracy score from 58.3% to 
83%, a respectable performance. The performance of the classifier on the six held-out 
technologies varied between 100% and 83.3% with an average classification accuracy of 90.4%. 
In comparison, other modern machine learning approaches (which required labeled training 
data) are reported to have an average classification accuracy of 85.7% at maximum. In doing so, 
we demonstrated how a small dataset could be leveraged to reduce the errors in a classifier 
engendered by shortcomings of the training process. Note that the synthetic dataset does not 
contain entirely new information; it is derived from the original set of 23 technologies.  
 
The ability to identify promising emergent technologies has its obvious uses in commerce, 
investment and the ability to maintain a competitive advantage. Current practices rely heavily on 
experts, which limits the number of technologies that can be assessed by them and is also 
affected by subjective bias. In contrast our method is free of experts with the exception of what 
search keywords to use when generating the TLCs, is purely algorithmic and consequently can be 
automated and scaled up. It raises the potential of constantly monitoring publication (and 
perhaps, patent) databases to unearth promising new developments in emergent fields of 
science and technology. 
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Appendix A. 
 
Table A.1 Accuracy scores on training and test technologies obtained from classifier trained on 

synthetic data 
Technology Accuracy Technology Accuracy 

Airbag 86.7% Optical Computer 87.5% 
High Temperature 
Superconductor 

91.7% Bubble Memory 88.9% 

Scanning Tunneling 
Microscopy 

100% PCR 100% 

Soft Lithography 90.9% Green Fluorescent Protein 100% 
Turbine Engine 94.6% Ricin 100% 
X-ray Lithography 94.7% Photoresistor 90% 
Gel Electrophoresis 96.4% 3G 100% 
Patch Clamp 100% 4G 100% 
MEMS 100% Compact Disc 86.1% 
Microfluidics 87.5% Carbon Nanotube 88.9% 
Confocal Microscopy 100% Atomic Force Microscopy 88.9% 
Fuel Cells 94.1% Directed Energy 83.3% 
GaAs 93.9% Anthrax NA* 
YBaCuO NA** Cephalexin NA** 

 
* Anthrax had a rejuvenation which could not be classified as either emergence or growth.       ** 
YBaCuO and cephalexin do not have any points in the emergence phase, and thus are not 
representative of the data expected during inference. 
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