Exceptional service in the national interest

Robust Bayesian calibration of a RANS model for jet-in-crossflow simulations

J. Ray, S. Lefantzi, S. Arunajatesan and L. Dechant

Contact: jairay@sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Introduction

- Aim: Enable predictive RANS simulations of compressible jetin-crossflow configurations (JIC)
- **Problem:** JIC simulations not very predictive; suffer from:
 - Model-form errors i.e., missing physics
 - Use of constants derived from incompressible canonical flows
- Hypothesis: Prediction errors are caused mostly by wrong constants
 - Calibration solves this problem (quantify estimation uncertainty!)
 - Fixing model-form error has a smaller effect
 - Approximate the new constant using an analytical model
 - i.e., show that the calibrated constants are physical, not just a "curve-fit"
 - Explore if there exists a calibration that works across a set of JIC configurations

The equations

The model

• Devising a method to calibrate 3 k- ε parameters **C** = {C_µ, C₂, C₁} from expt. data

$$\begin{split} \frac{\partial \rho k}{\partial t} &+ \frac{\partial}{\partial x_i} \left[\rho u_i k - \left(\mu + \frac{\mu_T}{\sigma_k} \right) \frac{\partial k}{\partial x_i} \right] = P_k - \rho \varepsilon + S_k \\ \frac{\partial \rho \varepsilon}{\partial t} &+ \frac{\partial}{\partial x_i} \left[\rho u_i \varepsilon - \left(\mu + \frac{\mu_T}{\sigma_\varepsilon} \right) \frac{\partial \varepsilon}{\partial x_i} \right] = \frac{\varepsilon}{k} \left(C_1 f_1 P_k - C_2 f_2 \rho \varepsilon \right) + S_\varepsilon \\ \mu_T &= C_\mu f_\mu \rho \frac{k^2}{\varepsilon} \end{split}$$

- Calibration parameters
 - **C** = { C_{μ} , C_1 , C_2 }; C_{μ} : affects turbulent viscosity; $C_1 \& C_2$: affects dissipation of TKE
- Model-form error

$$-\tau_{ij} = -\overline{u_i'u_j'} = \frac{2}{3}k\delta_{ij} - \nu_T S_{ij} + \nu_T \frac{k}{\epsilon} \sum_{l=1}^3 c_l f_l(S,\omega) + \nu_T \left(\frac{k}{\epsilon}\right)^2 \sum_{l=4}^7 c_l f_l(S,\omega)$$

 Currently only linear terms are used (linear eddy viscosity model, LEVM); does adding more terms help in increasing prediction accuracy?

Target problem - jet-in-crossflow

Sandia National Laboratories

- A canonical problem for spinrocket maneuvering, fuel-air mixing etc.
- We have experimental data (PIV measurements) on the cross- and mid-plane
- Will calibrate to vorticity on the crossplane and test against midplane

RANS (k-ω) simulations - crossplane results

- Crossplane results for stream
- Computational results (SST) are too round; Kw98 doesn't have the mushroom shape; non-symmetric!
- Less intense regions; boundary layer too weak

Calibration

- Bayesian calibration Develop a PDF for $(C\mu, C_2, C_1)$
 - Captures the uncertainty in the estimation
 - Will be performed for 4 (Mach, J) combinations, to see how generalizable the calibration is
- We pose the calibration as a statistical/Bayesian inverse problem
 - Solve it using Markov chain Monte Carlo (MCMC)
 - Requires O(10⁴) samples/generations to give converged PDFs
 - Implies O(10⁴) invocations of the forward problem
 - Samples taken sequentially, not concurrently, so takes a long time
- Observational data for calibration: velocity measurements (PIV) on the midplane
 - 5 streamwise locations with 63 measurement points per location ~ 315 "probes"
- Observational data for testing: vorticity measurements on the crossplane

The Bayesian calibration problem

• Model experimental values at probe j as $v^{(j)}_{ex} = v^{(j)}(C) + \varepsilon^{(j)}$, $\varepsilon^{(j)} \sim N(0, \sigma^2)$

$$\Lambda(\mathbf{v}_{ex}|\mathcal{C}) \propto \prod_{j \in P} \exp\left(-\frac{\left(v_{ex}^{(j)} - v^{(j)}(c)\right)^2}{2\sigma^2}\right)$$

• Given prior beliefs π on **C**, the posterior density ('the PDF') is

$$P(C, \sigma | \mathbf{v}_{ex}) \propto \Lambda(\mathbf{v}_{ex} | C) \pi(C, \sigma)$$

- P(C|v_{ex}) is a complicated distribution that has to be visualized by drawing samples from it
- This is done by MCMC
 - MCMC describes a random walk in the parameter space
 - Each step of the walk requires a model run to check out the new parameter combination

Forward model and surrogates

- 3D, finite volume, unsteady Roe solver
 - 10⁷ mesh, 10⁴ CPU hours to steady state. Can't be used in MCMC
- Surrogate models: A "curve-fit" replacement for aero solver
 - $v^{(j)} = a^{(j)}_{0} + a^{(j)}_{1}C\mu + a^{(j)}_{2}C_{2} + a^{(j)}_{3}C_{1} + a^{(j)}_{4}C\mu C_{2} + a^{(j)}_{5}C\mu C_{1} + \dots$
- Making surrogates
 - Generate ~5000 (Cµ, C₂, C₁) samples (bounds are known); run RANS
 - For the rest, OLS fitting for a^(j)
 - Simplify using AIC
 - If within 10% of RANS, accept surrogate as being "accurate enough"
- Usually left with ~50 / 315 probes where we can make sufficiently good surrogates

Probes

All probes. Those with surrogates are in red and track the jet 8

Laboratorie

Solution of the inverse problem

- We estimated $\mathbf{C} = (C_{\mu}, C_2, C_1)$ for 4 (M, J) cases
 - M = [0.6, 0.7], J = 10.2
 - M = 0.8, J = [10.2, 16.7]
- A few commonalities
 - C₂ is higher than nominal
 - C₁ (nominal) is probably OK
 - Cµ ?? probably does not affect mean flow much and is not constrained by it
- σ show that
 - M = 0.7 case probably best fit
 - M = 0.6 case worst fit

Vertical green lines:

•

•

Dashed: nominal value

Solid: Analytical model's estimate

Check # 1 – point vortex summary

- Same 100 C from the PDF, run them forward
- Use the crossplane vorticity fields from the ensemble to compute
 - Total circulation, centroid of vorticity field, radius of gyration of vorticity field
 - Normalize each by their experimental counterpart
- We expect to get an ensemble of values for each metric around 1
 - We also find a $C_{opt} = \{0.1025,$ 2.09, 1.42} that provides the best predictions

The spread of point vortex summaries are tightly distributed around 1. The red circles are the predictions from the nominal values of C

Check # 2 – the vorticity field

RANS predictions with C_{nom}

RANS predictions with \mathbf{C}_{opt}

- Contours are plotted using the experimental measurements
- The improvement is significant

Check # 3 – mid-plane comparisons

M = 0.8, J = 10.2, case

Check #4 - M = 0.7 case

• M = 0.7, J = 10.2

Combining PDFs

- The 4 PDFs have overlaps
 - Could (C_µ, C₂, C₁) samples from the overlap region be predictive for all 4 cases?
- Take 100 samples each from the 4 PDFS; simulate all 4 cases with them
 - Call each RANS run, seeded with a (C_μ, C₂, C₁) sample, a separate "model"
 - We have an ensemble of 400 models
- Could a weighted average of 400 models reproduce experimental velocities for all 4 cases? BMA!
 - If yes, then the weights of each model i.e., (C_μ, C₂, C₁) combination, could be used to make a PDF over them
 - That becomes a PDF that's useable for all 4 cases
 - But only if they cluster in a region, to make a unimodal PDF

Combining PDFs - results

Histogram of model weights

400 **C** samples, colored by the PDF they were drawn from

- 22/400 account for 99.9% of the probability mass
- They don't cluster. Failed!

Sandia National Laboratories

Model-form error

- Hypothesis: The simple form of the EVM is responsible for lack of predictive skill
 - Can enriching it fix the problem?

$$-\tau_{ij} = -\overline{u'_i u'_j} = \frac{2}{3} k \delta_{ij} - \nu_T S_{ij} + \nu_T \frac{k}{\epsilon} \sum_{l=1}^3 c_l f_l(S,\omega) + \nu_T \left(\frac{k}{\epsilon}\right)^2 \sum_{l=4}^7 c_l f_l(S,\omega)$$

- We do have estimates of c_l from incompressible canonical flow
- Which terms do we include? We don't have enough expt data to estimate all 7 terms
- Pose a shrinkage problem
 - We have measurements of *k*, S, ω and τ_{ij} on the midplane; no ε
 - Approximate ε as Production = destruction
 - $\min_{\mathbf{c}} \|\tau_{ij} \mathbf{A}(k,\epsilon,S,\omega)\mathbf{c}\|_{2}^{2} + \lambda \|\mathbf{c}\|_{1}$
 - This will retain only those c_l that are supported by observations
- Note that the values of c_l so obtained are not trustworthy

Model-form error results

7 7 7 6 6 6 6 4 4 3 3 2 2 2 2 2 2 1 1

- Good value of λ obtained via 7-fold cross-validation
- Final chosen value of λ retains one extra quadratic term (ω^2) in the EVM

Calibrating QEVM

- While we have an enriched EVM, we still have a problem values of constants
- Calibration shows (again) that appropriate values of C₂ are different from nominal
 - And C₁ is close to OK
- We'll check the calibration via a "pushed-forward posterior"

Vorticity, crossplane

Uncalibrated, LEVM

Calibrated, QEVM

- Experiments: Contours
- Significant improvement

Uncalibrated, CEVM

Velocities, midplane

- Velocities on the mid plane match experiments, after calibration
- Neither QEVM and LEVM, before calibration, are predictive

Discussion

- We have shown how Bayesian calibration improves predictive skill
 - New (C_μ, C₂, C₁) could be a mere artefact to fitting to data; may have no physical significance
 - But analytical model predictions very close to predictions with C_{opt}
 - Next talk: C_{opt} ~ C_{analytical}
 - Our calibration *does* yield physically realistic constants
- We've also explored enriching the LEVM, but no great improvements
 - For this particular configuration, it does not seem to be about modelform errors, but inappropriate constants
 - Dechant (next talk) will show how and why the calibrated constants are the good ones

Conclusions

- We have explored the causes behind non-predictive JIC RANS computations
 - We think we should be using very different constants
 - We inferred the "good" values of the constants via Bayesian calibration
 - Calibrated PDFs more accurate than the nominal values
 - Also, calibration supported via analytical verification
- We addressed model-form error too
 - In this case, the inappropriate constants overwhelmed model-form error
 - Regardless, the model-form error exists, and manifests itself in the turbulent stresses
 - They don't match measurements

BACKGROUND

RANS (k-ω) simulations – midplane ^{Sandia} results

- Experimental results in black
- All models are pretty inaccurate (blue and red lines are the nonsymmetric results)