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Introduction
§ Aim: Enable	predictive	RANS	simulations	of	compressible	jet-

in-crossflow	configurations	(JIC)
§ Problem: JIC	simulations	not	very	predictive;	suffer	from:

§ Model-form	errors	i.e.,	missing	physics
§ Use	of	constants	derived	from	incompressible	canonical	flows

§ Hypothesis: Prediction	errors	are	caused	mostly	by	wrong	
constants
§ Calibration	solves	this	problem	(quantify	estimation	uncertainty!)
§ Fixing	model-form	error	has	a	smaller	effect
§ Approximate	the	new	constant	using	an	analytical	model	

§ i.e.,	show	that	the	calibrated	constants	are	physical,	not	just	a	“curve-fit”
§ Explore	if	there	exists	a	calibration	that	works	across	a	set	of	JIC	

configurations



The	equations
§ The	model

§ Devising	a	method	to	calibrate	3	k-e parameters	C =	{Cµ,	C2,	C1}	from	expt.	data

§ Calibration	parameters
§ C =	{Cµ, C1,		C2} ; Cµ:	affects	turbulent	viscosity;	C1 &	C2:	affects	dissipation	of	TKE

§ Model-form	error

§ −	𝜏$%= −𝑢$(𝑢%( = 	
)
*
k𝛿$% −	𝜈.𝑆$% +	𝜈.

1
2
∑ 𝑐5𝑓5 𝑆, 𝜔 +	𝜈.

1
2

)*
59: ∑ 𝑐5𝑓5 𝑆, 𝜔;

59<

§ Currently	only	linear	terms	are	used	(linear	eddy	viscosity	model,	LEVM);	does	
adding	more	terms	help	in	increasing	prediction	accuracy?
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Target	problem	- jet-in-crossflow

§ A	canonical	problem	for	spin-
rocket	maneuvering,	fuel-air	
mixing	etc.

§ We	have	experimental	data	(PIV	
measurements)	on	the	cross- and	
mid-plane

§ Will	calibrate	to	vorticity	on	the	
crossplane	and	test	against	mid-
plane
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RANS	(k-w)	simulations	- crossplane results

§ Crossplane results	for	stream
§ Computational	results	(SST)	are	too	round;	Kw98	doesn’t	have	

the	mushroom	shape;	non-symmetric!
§ Less	intense	regions;	boundary	layer	too	weak
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Calibration
§ Bayesian	calibration	– Develop	a	PDF	for	(Cµ,	C2,	C1)

§ Captures	the	uncertainty	in	the	estimation
§ Will	be	performed	for	4	(Mach,	J)	combinations,	to	see	how	generalizable	the	

calibration	is
§ We	pose	the	calibration	as	a	statistical/Bayesian	inverse	problem

§ Solve	it	using	Markov	chain	Monte	Carlo	(MCMC)
§ Requires	O(104)	samples/generations	to	give	converged	PDFs

§ Implies	O(104)	invocations	of	the	forward	problem
§ Samples	taken	sequentially,	not	concurrently,	so	takes	a	long	time
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§ Observational	data	for	calibration: velocity	
measurements	(PIV)	on	the	midplane
§ 5	streamwise	locations	with	63	measurement	

points	per	location	~	315	“probes”
§ Observational	data	for	testing:	vorticity	

measurements	on	the	crossplane



The	Bayesian	calibration	problem
• Model	experimental	values	at	probe	j	as	v(j)ex =	v(j)(C)	+	e(j),	e(j) ~	N(0,	s2)

Λ v?@ 𝐶 ∝Cexp −
𝑣?@
(%) 	− 	𝑣 % (𝑐)

)

2𝜎)

�

%∈N

• Given	prior	beliefs	p on	C,	the	posterior	density	(‘the	PDF’)	is

𝑃 𝐶, 𝜎	 v?@) 	∝ 	Λ v?@ 𝐶 	𝜋 𝐶, 𝜎

• P(C|vex)	is	a	complicated	distribution	that	has	to	be	visualized	by	drawing	
samples	from	it

• This	is	done	by	MCMC
– MCMC	describes	a	random	walk	in	the	parameter	space	
– Each	step	of	the	walk	requires	a	model	run	to	check	out	the	new	parameter	
combination



Forward	model	and	surrogates
§ 3D,	finite	volume,	unsteady	Roe	solver

§ 107 mesh,	104 CPU	hours	to	steady	state.	Can’t	be	used	in	MCMC

§ Surrogate	models:	A	“curve-fit”	replacement	for	aero	solver
§ v(j) =	a(j)0	+	a(j)1Cµ +	a(j)2C2 +	a(j)3C1 +	a(j)4CµC2 +	a(j)5CµC1 +	…
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§ Making	surrogates
§ Generate	~5000	(Cµ,	C2,	C1)	samples	(bounds	

are	known);	run	RANS
§ For	the	rest,	OLS	fitting	for	a(j)i

§ Simplify	using	AIC
§ If	within	10%	of	RANS,	accept	surrogate	as	

being	“accurate	enough”

§ Usually	left	with	~50	/	315	probes	where	
we	can	make	sufficiently	good	surrogates All probes. Those with 

surrogates are in red and track 
the jet



Solution	of	the	inverse	problem
§ We	estimated	C =	(Cµ,	C2,	

C1)	for	4	(M,	J)	cases
§ M	=	[0.6,	0.7],	J	=	10.2
§ M	= 0.8,	J	=	[10.2,	16.7]

§ A	few	commonalities
§ C2 is	higher	than	nominal
§ C1 (nominal)	is	probably	OK
§ Cµ ??	– probably	does	not	

affect	mean	flow	much	and	is	
not	constrained	by	it

§ s show	that
§ M	=	0.7	case	probably	best	fit
§ M	=	0.6	case	worst	fit
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Check	#	1	– point	vortex	summary
§ Same	100	C	from	the	PDF,	run	

them	forward	
§ Use	the	crossplane	vorticity	

fields	from	the	ensemble	to	
compute
§ Total	circulation,	centroid	of	

vorticity	field,	radius	of	
gyration	of	vorticity	field

§ Normalize	each	by	their	
experimental	counterpart

§ We	expect	to	get	an	ensemble	
of	values	for	each	metric	
around	1
§ We	also	find	a	Copt =	{0.1025,	

2.09,	1.42}	that	provides	the	
best	predictions
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Check	#	2	– the	vorticity	field

§ Contours	are	plotted	using	the	experimental	measurements
§ The	improvement	is	significant
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RANS predictions with Cnom RANS predictions with Copt



Check	#	3	– mid-plane	comparisons

§ M	=	0.8,	J	=	10.2,	case
12



Check	#	4	– M	=	0.7	case

§ M	=	0.7,	J	=	10.2
13



Combining	PDFs
§ The	4	PDFs	have	overlaps

§ Could	(Cµ,	C2,	C1)	samples	from	the	overlap	region	be	predictive	for	all	
4	cases?

§ Take	100	samples	each	from	the	4	PDFS;	simulate	all	4	cases	
with	them
§ Call	each	RANS	run,	seeded	with	a	(Cµ,	C2,	C1)	sample,	a	separate	

“model”	
§ We	have	an	ensemble	of	400	models

§ Could	a	weighted	average	of	400	models	reproduce	
experimental	velocities	for	all	4	cases?	BMA!
§ If	yes,	then	the	weights	of	each	model	i.e.,	(Cµ,	C2,	C1)	combination,	

could	be	used	to	make	a	PDF	over	them
§ That	becomes	a	PDF	that’s	useable	for	all	4	cases
§ But	only	if	they	cluster	in	a	region,	to	make	a	unimodal	PDF
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Combining	PDFs	- results

§ 22/400	account	for	99.9%	of	the	probability	mass
§ They	don’t	cluster.	Failed! 15

Histogram of model weights 400 C samples, colored by the PDF they 
were drawn from



Model-form	error
§ Hypothesis:	The	simple	form	of	the	EVM	is	responsible	for	

lack	of	predictive	skill
§ Can	enriching	it	fix	the	problem?

§ −	𝜏$%= −𝑢$(𝑢%( = 	
)
*
k𝛿$% −	𝜈.𝑆$% +	𝜈.

1
2
∑ 𝑐5𝑓5 𝑆, 𝜔 +	𝜈.

1
2

)*
59: ∑ 𝑐5𝑓5 𝑆, 𝜔;

59<

§ We	do	have	estimates	of	cl from	incompressible	canonical	flow
§ Which	terms	do	we	include?	We	don’t	have	enough	expt data	to	

estimate	all	7	terms

§ Pose	a	shrinkage	problem
§ We	have	measurements	of	k,	S,	w and	tij on	the	midplane;	no e
§ Approximate	e as		Production	=	destruction

§ min
𝐜

𝜏$% 	− A(𝑘, 𝜖, 𝑆, 𝜔)c )
) +	𝜆 c :

§ This	will	retain	only	those	cl that	are	supported	by	observations

§ Note	that	the	values	of	cl so	obtained	are	not	trustworthy 16



Model-form	error	results

§ Good	value	of	l obtained	via	7-fold	cross-validation
§ Final	chosen	value	of	l retains	one	extra	quadratic	term	(w2)	

in	the	EVM
17
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Calibrating	QEVM
§ While	we	have	an	enriched	

EVM,	we	still	have	a	problem	
values	of	constants

§ Calibration	shows	(again)	
that	appropriate	values	of	C2
are	different	from	nominal
§ And	C1 is	close	to	OK

§ We’ll	check	the	calibration	
via	a	”pushed-forward	
posterior”
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Vorticity,	crossplane

§ Experiments:	Contours
§ Significant	improvement
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Uncalibrated, LEVM

Uncalibrated, CEVM

Calibrated, QEVM



Velocities,	midplane
§ Velocities	on	the	

mid	plane	match	
experiments,	
after	calibration

§ Neither	QEVM	
and	LEVM,	
before	
calibration,	are	
predictive
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Discussion
§ We	have	shown	how	Bayesian	calibration	improves	predictive	

skill
§ New	(Cµ,	C2,	C1)	could	be	a	mere	artefact	to	fitting	to	data;	may	have	

no	physical	significance
§ But	analytical	model	predictions	very	close	to	predictions	with	Copt

§ Next	talk:	Copt ~	Canalytical
§ Our	calibration	does yield	physically	realistic	constants

§ We’ve	also	explored	enriching	the	LEVM,	but	no	great	
improvements
§ For	this	particular	configuration,	it	does	not	seem	to	be	about	model-

form	errors,	but	inappropriate	constants
§ Dechant (next	talk)	will	show	how	and	why	the	calibrated	constants	

are	the	good	ones
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Conclusions
§ We	have	explored	the	causes	behind	non-predictive	JIC	RANS	

computations
§ We	think	we	should	be	using	very	different	constants
§ We	inferred	the	“good”	values	of	the	constants	via	Bayesian	

calibration
§ Calibrated	PDFs	more	accurate	than	the	nominal	values
§ Also,	calibration	supported	via	analytical	verification

§ We	addressed	model-form	error	too
§ In	this	case,	the	inappropriate	constants	overwhelmed	model-form	

error
§ Regardless,	the	model-form	error	exists,	and	manifests	itself	in	the	

turbulent	stresses
§ They	don’t	match	measurements
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RANS	(k-w)	simulations	– midplane
results

§ Experimental	results	in	black
§ All	models	are	pretty	inaccurate	(blue	and	red	lines	are	the	non-

symmetric	results)

U-defect V - velocity


