Sandia

Exceptional service in the national interest National
Laboratories

N | = | |
// \ 240 250 260 270 280

counter-rotating
vortex pair

supersonic %~
nozzie horseshoe”
vortices

Robust Bayesian calibration of a RANS model for jet-in-crossflow
simulations

J. Ray, S. Lefantzi, S. Arunajatesan and L. Dechant

Contact: jairay@sandia.gov

ia’%% U.S. DEPARTMENT OF ///A ' .' DQ"\QA
/4 ENERGY ///’ v",o-:'ﬂ Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly
< National Nuclear Security Administation owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.




Introduction

i\

Sandia
National _
Laboratories

= Aim: Enable predictive RANS simulations of compressible jet-

in-crossflow configurations (JIC)

= Problem: JIC simulations not very predictive; suffer from:
= Model-form errors i.e., missing physics
= Use of constants derived from incompressible canonical flows

= Hypothesis: Prediction errors are caused mostly by wrong

constants

= (Calibration solves this problem (quantify estimation uncertainty!)
= Fixing model-form error has a smaller effect
= Approximate the new constant using an analytical model

" j.e., show that the calibrated constants are physical, not just a “curve-fit”

= Explore if there exists a calibration that works across a set of JIC

configurations
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The equations

= The model
= Devising a method to calibrate 3 k-g parameters C = {C, C,, C;} from expt. data
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= Calibration parameters
= C={C,, C;, G} .C,: affects turbulent viscosity; C; & C,: affects dissipation of TKE

=  Model-form error
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= Currently only linear terms are used (linear eddy viscosity model, LEVM); does

adding more terms help in increasing prediction accuracy?
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Target problem - jet-in-crossflow  [@&.
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= A canonical problem for spin-
rocket maneuvering, fuel-air
mixing etc.

= We have experimental data (PIV o
measurements) on the cross- and ;
. J100E
mid-plane 5 | €
=  Will calibrate to vorticity on the >
crossplane and test against mid- 75
plane >
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RANS (k-») simulations - crossplane results T

= Crossplane results for stream

= Computational results (SST) are too round; Kw98 doesn’t have
the mushroom shape; non-symmetric!

= Less intense regions; boundary layer too weak
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Calibration )

Bayesian calibration — Develop a PDF for (Cy, C,, C,)
= Captures the uncertainty in the estimation

=  Will be performed for 4 (Mach, J) combinations, to see how generalizable the
calibration is

We pose the calibration as a statistical/Bayesian inverse problem
= Solve it using Markov chain Monte Carlo (MCMC)

= Requires O(10%) samples/generations to give converged PDFs
= Implies O(10%) invocations of the forward problem

= Samples taken sequentially, not concurrently, so takes a long time

240 250 260 270 280

Observational data for calibration: velocity
measurements (PIV) on the midplane

= 5 streamwise locations with 63 measurement
points per location ~ 315 “probes”

Observational data for testing: vorticity
measurements on the crossplane




The Bayesian calibration problem @

* Model experimental values at probe j as vi), = vi)(C) + g0, ) ~ N(0, c?)
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 Given prior beliefs T on C, the posterior density (‘the PDF’) is

P(C,0 |Vex) X A(Vey|C) (C,0)

* P(C|v,,) is a complicated distribution that has to be visualized by drawing
samples from it
* This is done by MCMC

— MCMC describes a random walk in the parameter space

— Each step of the walk requires a model run to check out the new parameter
combination




Forward model and surrogates ) .

= 3D, finite volume, unsteady Roe solver
= 107 mesh, 10* CPU hours to steady state. Can’t be used in MCMC

= Surrogate models: A “curve-fit” replacement for aero solver

= i) =3l +al),Cu +al),C, + al),C, + al,CuC, + all.CucC, + ...

= Making surrogates

= Generate ~5000 (Cu, C,, C,;) samples (bounds 3 3
are known); run RANS

= For the rest, OLS fitting for al),

0.15
X 0000000000000

0.10

y[m]

= Simplify using AIC

005

= |f within 10% of RANS, accept surrogate as 5 : : '

being “accurate enough” | g % 3

= Usually left with ~¥50 / 315 probes where ™= = = o= o
we can make sufficiently good surrogates All probes. Those with

surrogates are in red and track

the jet 8



Solution of the inverse problem

= We estimated C = (Cw C,,
C,) for 4 (M, J) cases
= M=[0.6,0.7],)=10.2
= M=0.8,)]=[10.2, 16.7]
= A few commonalities
= C,is higher than nominal
" C, (nominal) is probably OK
= Cu ??—probably does not
affect mean flow much and is
not constrained by it
= o show that
= M =0.7 case probably best fit
= M =0.6 case worst fit
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Check # 1 — point vortex summary @&,

= Same 100 C from the PDF, run
them forward

= Use the crossplane vorticity
fields from the ensemble to
compute
= Total circulation, centroid of

vorticity field, radius of
gyration of vorticity field

= Normalize each by their
experimental counterpart

=  We expect to get an ensemble
of values for each metric
around 1
" WealsofindaC,,, ={0.1025,

2.09, 1.42} that provides the
best predictions

Normalized predictions (numerical / experimental)

Jet—in—crossflow predictions for M = 0.8 and J = 10.2

O O
O
SIF —_——
% —_—
| | | Q
Circulation Centroid-z Centroid-y Gyration-R

The spread of point vortex summaries are
tightly distributed around 1. The red circles
are the predictions from the nominal values
of C
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Check # 2 — the vorticity field 1) .

Vorticity (nominal case); J = 10.2 Vorticity (best case); J = 10.2
0.1 - {-2000 0.1 - [-2000
0.08 {-3000 0.08 |7 1-3000
0.06 - 1-4000 0.06 1-4000
0.04 I -5000 0.04 -5000
0.02 -6000 0.02 -6000
0 0.02 0.04
RANS predictions with C ., RANS predictions with C

= Contours are plotted using the experimental measurements
= The improvement is significant




Check # 3 — mid-plane comparisons
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eck#4 —-M =0.7 case ) i,
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Combining PDFs h) =,

= The 4 PDFs have overlaps

= Could (C, C,, C;) samples from the overlap region be predictive for all
4 cases?
= Take 100 samples each from the 4 PDFS; simulate all 4 cases
with them

= (Call each RANS run, seeded with a (C“, C,, C,) sample, a separate
“model”

= We have an ensemble of 400 models

= Could a weighted average of 400 models reproduce
experimental velocities for all 4 cases? BMA!

= |f yes, then the weights of each model i.e., (Cw C,, C,) combination,
could be used to make a PDF over them

= That becomes a PDF that’s useable for all 4 cases
= But only if they cluster in a region, to make a unimodal PDF

14




Combining PDFs - results

Histogram of log10(w)
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BMA training samples and selected models
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Histogram of model weights

= 22/400 account for 99.9% of the probability mass
= They don’t cluster. Failed!
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400 C samples, colored by the PDF they
were drawn from
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Model-form error ) e,

= Hypothesis: The simple form of the EVM is responsible for
lack of predictive skill
= Can enriching it fix the problem?

— 2
f—ty= —w = kS — veSy + vt afiS @) + v (5) T cfi(S @)
= We do have estimates of ¢, from incompressible canonical flow

= Which terms do we include? We don’t have enough expt data to
estimate all 7 terms

= Pose a shrinkage problem
= We have measurements of k, S, ® and T; ONn the midplane; no ¢
= Approximate € as Production = destruction

: 2
" m1n||rl-j — A(k, €, S, a))c||2 + Allclly

C
= This will retain only those ¢, that are supported by observations

= Note that the values of ¢, so obtained are not trustworthy 6




Model-form error results ) e,
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= Good value of A obtained via 7-fold cross-validation

= Final chosen value of A retains one extra quadratic term (®?)
in the EVM




Calibrating QEVM ) &

= While we have an enriched

EVM, we still have a problem = )

values of constants

= Calibration shows (again) "
that appropriate values of C, A L e
are different from nominal T e e T

= And C, is close to OK L g

= We'll check the calibration :

via a "pushed-forward 8

posterior” “ 8

T T T T T T T T T T T T
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VO rtiCity’ Cross p I ane Uncalibrated, CEVM i
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= Experiments: Contours i
= Significant improvement N
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Velocities, midplane

Velocities on the
mid plane match
experiments,

after calibration

Neither QEVM
and LEVM,
before
calibration, are
predictive

Y/

Y/D,

Y/D,

Y/D,

Y/D,

Y/D.
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Discussion ) .

= We have shown how Bayesian calibration improves predictive
skill

= New (C, C,, C;) could be a mere artefact to fitting to data; may have
no physical significance
= But analytical model predictions very close to predictions with C,
= Next talk: C,. ~ C, tical
= Qur calibration does yield physically realistic constants

= We've also explored enriching the LEVM, but no great

improvements
= For this particular configuration, it does not seem to be about model-
form errors, but inappropriate constants

= Dechant (next talk) will show how and why the calibrated constants
are the good ones

21
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Conclusions )

= We have explored the causes behind non-predictive JIC RANS
computations
= We think we should be using very different constants

= We inferred the “good” values of the constants via Bayesian
calibration

= Calibrated PDFs more accurate than the nominal values
= Also, calibration supported via analytical verification

= We addressed model-form error too
= |n this case, the inappropriate constants overwhelmed model-form
error

= Regardless, the model-form error exists, and manifests itself in the
turbulent stresses

= They don’t match measurements

22
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RANS (k-w) simulations — midplane @&.
results

ND=3LS ND =7
. . b - . . v . 2 . . v v . . . .

U-defect | V - velocity
= Experimental results in black

= All models are pretty inaccurate (blue and red lines are the non-
symmetric results)




