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We demonstrate a statistical procedure for learning a high-

order eddy viscosity model from experimental data and us-

ing it to improve the predictive skill of a Reynolds-Averaged

Navier Stokes simulator. The method is tested in a 3D, tran-

sonic jet-in-crossflow configuration. The process starts with

a cubic eddy viscosity model developed for incompressible

flows. It is fitted to limited experimental jet-in-crossflow data

using shrinkage regression. The shrinkage process removes

all terms from the model, except an intercept, a linear term

and a quadratic one involving the square of the vorticity. The

shrunk eddy viscosity model is implemented in a Reynolds

Averaged Navier-Stokes simulator and calibrated, using vor-

ticity measurements, to infer three parameters. The calibra-

tion is Bayesian and is solved using a Markov chain Monte

Carlo method. A three-dimensional probability density dis-

tribution for the inferred parameters is constructed, thus

quantifying the uncertainty in the estimate. The phenome-

nal cost of using a 3D flow simulator inside a Markov chain

Monte Carlo loop is mitigated by using surrogate models

(“curve-fits”). A support vector machine classifier is used to

impose our prior belief regarding parameter values, specifi-

cally to exclude non-physical parameter combinations. The
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calibrated model is compared, in terms of its predictive skill,

to simulations using uncalibrated linear and cubic eddy vis-

cosity models. We find that the calibrated model, with one

quadratic term, is more accurate than the uncalibrated sim-

ulator. The model is also checked at a flow condition at which

the model was not calibrated.

Nomenclature

C Parameters to be calibrated

Cε2,Cε1 Parameters in the k− ε model, to be calibrated

N (µ,σ2) Normal distribution with mean µ and standard

deviation σ

J Jet-to-crossflow momentum ratio

R The physically relevant part of the C parameter space

SSS Strain-rate tensor

ΩΩΩ Vorticity tensor

AIC Akaike Information Criterion

DRAM Delayed Rejection Adaptive Metropolis

CEVM Cubic eddy Viscosity Model

CVP Counter-rotating Vortex Pair

EVM Eddy Viscosity Model

JPDF Joint Probability Density Function
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LASSO Least Absolute Shrinkage and Selection Operator

LEVM Linear Eddy Viscosity Model

LS / TS Learning Set / Testing Set

MAP Maximum a posteriori

MCMC Markov chain Monte Carlo

MSE Mean Square Error

NLEVM Nonlinear Eddy Viscosity Model

QEVM Quadratic Eddy Viscosity Model

SI Supporting Information

SVMC Support Vector Machine Classifier

1 Introduction

Reynolds-Averaged Navier Stokes (RANS) models are

the workhorse of aerodynamic design calculations due to

their computational speed vis-à-vis other simulation meth-

ods e.g., Large Eddy Simulations (LES). RANS obtains its

computational celerity by approximating many of the tur-

bulent processes in the flow. The approximations include

equations governing the evolution of the turbulent kinetic

energy k, its dissipation rate ε and a host of empirical clo-

sure models. The empirical closures also contain parameters

whose values are obtained by calibrating to simple canonical

flows [1,2]; we will refer to these values as the “nominal” pa-

rameter values. Despite their widespread use, RANS models

are not particularly predictive for complex turbulent inter-

actions such as jet-in-crossflow, especially at high Reynolds

and Mach numbers. Predictive inaccuracy arises from two

causes. Firstly, sub-optimal values of model parameters,

simply picked from literature, are unlikely to be satisfactory

for complex flows. This can be rectified by tuning parameters

to relevant experimental/high-fidelity data [3,4]. The second

cause, model-form error, arises from “missing physics” such

as assumptions of isotropy, neglect of history effects, simpli-

fication of various terms in the model equations and assump-

tions of linear relationship between the turbulent stresses and

velocity field strain rates. Here we focus on the last approx-

imation, namely, the linear relationship between the turbu-

lent stresses and the velocity strain rate. In flows with strong

curvature and anisotropy, this simple relationship (called the

linear eddy viscosity model, LEVM) is unlikely to suffice.

The problem can be alleviated by enriching the LEVM with

higher-order terms, e.g., quadratic and cubic terms [5], but

they in turn introduce more parameters that require calibra-

tion. With limited experimental data, properly calibrating

all parameters becomes impossible because of the danger of

overfitting.

In this work, we devise a principled procedure for en-

riching the LEVM, and calibrating (tuning) parameters to

obtain a predictive RANS model for a high Reynolds num-

ber interaction of a compressible (Mach number M = 3.73)

jet with a transonic (M = 0.8) crossflow. The experiment has

been described in [6–8], and it is poorly simulated by RANS

(with LEVM) [9]. We hypothesize that simultaneously en-

riching the LEVM with higher-order terms and calibrating

the parameters to experimental JIC (jet-in-crossflow) mea-

surements could yield a high-order RANS simulator with

predictive skill superior to RANS with LEVM or the cubic

eddy viscosity model (CEVM) described in [5]. The techical

difficulty is twofold. First, it is unlikely that the experimental

measurements are sufficiently informative to allow the esti-

mation of all coefficients in a high-order RANS model (9

parameters for a cubic model). Consequently, we will devise

a rigorous method for selecting the higher-order terms with

which to enrich the LEVM. Secondly, the approximations

in the RANS models, and the limited experimental measure-

ments may not allow the estimation of parameters with much

certainty. To address this, we will adopt a Bayesian cali-

bration approach, as developed by us for calibrating RANS

models [4], and use it to estimate RANS and eddy viscosity

model (EVM) parameters as a joint probability density func-

tion (JPDF). The JPDF will capture the uncertainty in the

estimate. To the best of our knowledge, such a data-driven

procedure to “discover” and configure a high-order RANS

model, commensurate with the information content of an ex-

perimental dataset, currently does not exist.

2 Background

Jet-in-crossflow (JIC): Jets perpendicular to the long

axis of slender aerodynamic bodies are used to spin the vehi-

cle for various applications. These jets convect downstream

and generate a complex vortex system that can interact with

the fins of the vehicle. This interaction generates a pressure

distribution on the fins, which can result in the production of

torque that can counter the effects of the jets, thereby reduc-

ing their effectiveness. Thus it is critical to accurately predict

this interaction for effective aerodynamic design of such ve-

hicles. In an engineering design setting, these predictions

are obtained using RANS models with LEVMs (for compu-

tational tractability). Their predictive accuracy for JIC simu-

lations leave much to be desired. A previous investigation [9]

with k−ω RANS models showed that the simulations over-

predicted turbulent intensities as well as the penetration of

the jet into the crossflow. Further, the predicted vortex sys-

tem is “fatter”, indicating that the turbulent diffusion is too

large. LES simulations of the same JIC configurations ob-

tained much better agreement with experiments [10, 11], but

they are too computationally expensive for routine design in-

vestigations.

RANS with LEVM: We have previously investigated if

the predictive skill of RANS simulations of JIC could be im-

proved via calibration [4]. There, as well as in this paper, we

use a compressibility-corrected version of the k − ε RANS

model; descriptions with an embedded LEVM are in [12,13].

As part of this study, we will enrich this particular form of

the RANS equations with the CEVM in [5]. Further, we will

calibrate two parameters, Cε2,Cε1 in the ε evolution equa-
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tion; see Eq. 2 in [4] for details. The nominal values of the

parameters in the k− ε RANS equations are obtained from

simple flows and there are inconsistencies between their val-

ues in various incarnations of the k− ε model. Further, these

parameters do not agree with values derived from simple

incompressible-flow experiments either; see [4,14] for a dis-

cussion. This uncertainty arises from the tendency to treat

these parameters as “universal” constants that could be es-

timated from any flow, whereas in reality, they are tunable

constants with flow-dependent optimal values.

There have been previous efforts to tune RANS param-

eters using a Bayesian approach (i.e., in the form of a PDF)

as well as to estimate the model-form error. These were pri-

marily performed for simple flows (flat-plate boundary lay-

ers, channel flows etc.) [14, 15] due to the enormous cost

of Markov chain Monte Carlo (MCMC; [16]) solutions of

the Bayesian inverse problems set up to estimate the param-

eters as PDFs. Investigations into more complicated flows

have been performed by assuming that the inaccuracies in

RANS predictions were entirely due to model-form errors.

The studies in [17–21] augment their turbulence transport

model (e.g., the evolution equation for turbulent viscosity in

the Spalart-Allmaras model, or the equation for k in k − ε
ones) with a spatially-dependent source term that is esti-

mated from LES data via a gradient descent algorithm. The

source terms are thereafter modeled using the local flow vari-

ables using machine-learning methods. The same philoso-

phy is employed in [22] where turbulent stress anisotropy

was modeled using spatial basis functions and calibrated us-

ing iterated ensemble Kalman filters. Ref. [23] develops

models of turbulent stress anisotropy in terms of local flow

variables using random forest models, whereas [24] develops

distance metrics to quantify the difference between a set of

training flows and a flow where the trained turbulent models

would be used. This distance is used to judge the suitability

of the trained models in the particular use case. Ref. [25]

develops a genetic algorithm to generate functional forms

that could be used to relate local flow properties to turbulent

stress anisotropy.

The use of Bayesian estimation of parameters in a com-

plex flow i.e., one that requires the RANS simulator to be re-

placed with a surrogate model to overcome the phenomenal

cost of MCMC solutions, was performed in [26]. Four k− ε
parameters, and a model-form error, were estimated from ex-

perimental measurements of turbulent kinetic energy k in a

wind-tunnel simulation of flow in a urban canyon. Gaussian

Process surrogates were used as proxies for the 3D RANS

model. They had to excise a part of the parameter space

since it was non-physical. A similar approach was used

in our previous work [4] on the estimation of three RANS

model parameters and a crude estimate of the model-form er-

ror for the JIC dataset used in this study. The paper describes

in detail how we isolated the realistic part of the parame-

ter space (called R ) and modeled it using a support vector

machine classifier (SVMC). It served as a prior distribution

for the parameters being estimated. The 3D RANS model

was replaced with polynomial surrogates, with stringent ac-

curacy requirements that could not always be satisfied; con-

sequently, all locations (“probes”) with measurements could

not be used in the parameter estimation effort. The surro-

gates and SVMC were combined within an adaptive MCMC

algorithm (called DRAM, [27]) to yield JPDFs. They were

tested for predictive accuracy in 3 different JIC interactions.

The same calibration framework and software will be reused

in this study. Note that all the studies above used the LEVM

in their RANS simulators and none attempted to enrich it

in a data-driven manner; however, the studies in [17–21, 28]

performed something similar - they enriched the turbulent

transport model instead.

Nonlinear eddy viscosity models (NLEVM): While

previous studies have tried to improve parameter values,

they have not addressed some fundamental shortcomings of

the LEVM itself. LEVMs are incapable of accommodating

anisotropy in turbulent stresses, and are also insensitive to

curvature in the mean-flow streamlines e.g., bending of the

jet in JIC and swirl e.g., CVP. Quadratic terms (leading to

quadratic eddy viscosity models, QEVM) allow anisotropy

in the normal turbulent stresses while cubic terms sensitize

them to swirl and streamline curvatures. Reviews of QEVM

and CEVM (collectively, nonlinear eddy viscosity models,

NLEVM) as well as inter-comparisons within k− ε models

are available for bluff bodies [29], shock-boundary layer in-

teractions [30] and turbulent jets [31]. NLEVMs model the

turbulent stress τi j as (Eq. 2 in [5])

−τi j = u′iu
′
j =

2

3
δi jk−νT Si j

︸ ︷︷ ︸
Intercept & Linear

+νT
k

ε̃

3

∑
l=1

cl fl(SSS,ΩΩΩ)

︸ ︷︷ ︸
Quadratic

+ νT

(
k

ε̃

)2 7

∑
l=4

cl fl(SSS,ΩΩΩ)

︸ ︷︷ ︸
Cubic

, (1)

where νT =Cµk2/ε̃,

Si j =

(
∂

∂x j

Ui +
∂

∂xi

U j

)
, Ωi j =

(
∂

∂x j

Ui −
∂

∂xi

U j

)

S̃ =
k

ε̃

√
Si jSi j

2
, Ω̃ =

k

ε̃

√
Ωi jΩi j

2

ε̃ = ε− 2ν

(
∂k1/2

∂x j

)2

and Cµ =Cµ(S̃,Ω̃). (2)

Various QEVMs differ in terms of the coefficients c1, . . . ,c3;

also, Cµ is a constant in most of them. CEVMs too vary in
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the values used for cl , as well as the functional form for Cµ in

terms of SSS and ΩΩΩ. The coefficients and functional forms are

summarized in [29, 30]. In bluff-body flows, NLEVMs pro-

duce results closer to experimental measurements, primarily

because they simulate the stagnation points (irrotational re-

gions of large strain rates) accurately [29]. Simple turbulent

jets are better simulated using LEVM (rather than NLEVM)

except for impinging jets [31]. For shock-boundary layer

simulations, [30] showed that Cµ =Cµ(SSS) provided better re-

sults and cubic terms were not very useful for those flows.

Note that these jets did not have significant curved stream-

lines or swirl. Studies in [32] found that QEVM, calibrated

to different flows, resulted in a huge variability in c1,c2,c3

and could not be used as a “universal” model. They formu-

lated Eq. 1 instead. While it captures some of the anisotropy

in normal turbulent stresses, it is not sufficient for flows with

significant heat transfer through boundaries, and require an

extra evolution equation for the anisotropy. Note that there

are some NLEVMs that do not adhere to the series structure

in Eq. 1, e.g. [33].

Experimental data: The wind-tunnel experiment that

provides us with calibration data is described in [6–8]. A

schematic of the test section is in Fig. 1 of [4].

The test section is 0.5m long and has a square cross-

section of side 304.8mm. The flow is from left to right,

with variable Mach numbers from 0.5 to 0.8. The super-

sonic jet at Mach 3.73 is introduced into the flow from a

nozzle mounted on the floor of the tunnel test section. Par-

ticle Image Velocimetry (PIV) is used to measure velocities

on the spanwise mid-plane (plane of symmetry) extending

over a region 200 mm to 400 mm downstream of the jet.

For some cases, measurements are also made on the cross-

plane, perpendicular to the flow direction, where the vortic-

ity field is best captured. Measurements inside a window W ,

0 ≤ z ≤ 0.04m,0.03m ≤ y ≤ 0.11m, which captures one of

CVP (see Fig. 1 in [4]) are used for calibration; it contains a

8× 28 grid of observations. Here y is the vertical coordinate

axis. We will call these locations “probes”. A more compre-

hensive description of the experimental setup is in [4].

3 Eddy Viscosity Model

The CEVM described in Eq. 1 has 7 parameters and it is

unlikely the information content of our experimental dataset

will allow their estimation in toto. Consequently, we sim-

plify the EVM. The measurements on the midplane at made

at 5 downstream locations; each location contains 63 mea-

surement points (“probes”). Thus, the midplane measure-

ments provide us with 5×63 = 315 “probe” locations where

τ11,τ22 and τ12 measurements exist. Further, PIV measure-

ments of the mean flow on the midplane provide us with a

well-resolved velocity measurement, with experimental val-

ues of Si j and Ωi j computed at the 315 midplane probes. This

allows us to set up a linear problem for CEVM-predicted tur-
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Fig. 1. Top: Removal of CEVM coefficients ci as λ is increased.

Bottom: Mean prediction error and ± 2 standard deviation bounds of

prediction error, as a function of log(λ). λmin (left vertical line) and

λ1se (right vertical line) are also shown.

bulent stresses V = A(SSS,ΩΩΩ, ε̃)c, where the matrix A(SSS,ΩΩΩ, ε̃)
contains the strain-rate and vorticity terms in Eq. 1 evalu-

ated at the probes and c = {c1, . . . ,c7}. A(SSS,ΩΩΩ, ε̃) has as

many rows as the number of observations (nominally, thrice

the number of probes). Unfortunately, ε̃ cannot be measured

(and is typically available only inside a RANS simulation),

and consequently we approximate it.

We assume that the rate of production of turbulent ki-

netic energy is balanced by the dissipation, allowing us to
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set ε = τi j
∂

∂x j
Ui; thereafter ε̃ can be computed using Eq. 2.

This assumption holds true only very approximately and at

best provides an order-of-magnitude estimate of ε̃. For many

probes, ε̃ assumes (non-physical) negative values and the

probes have to be eliminated. Further, probes in the non-

turbulent freestream too have to be excised, as both SSS and

ΩΩΩ are nearly zero there. In addition, we remove the probes

that lie near the wall, in an attempt to obtain a CEVM that

is tuned for the CVP. Removing these measurements leaves

us with about 170 measurements that have large SSS,ΩΩΩ and τi j .

Consolidating the measured, non-zero τi j into Vobs, we pose

the estimation of c as one of shrinkage:

minimize
c

‖Vobs−A(SSS,ΩΩΩ, ε̃)c‖2
2 +λ‖c‖1 (3)

The first term in the objective function in Eq. 3 drives c

to values that minimize the discrepancy between measure-

ments Vobs and the CEVM prediction A(SSS,ΩΩΩ, ε̃)c. The sec-

ond term drives the optimizer to set elements of c to zero

as long as the first term does not degrade. This allows us

to “shrink” the CEVM, retaining only the terms that can be

supported by the observational data, and prevents overfitting

the CEVM model to limited Vobs data. The penalty λ plays

a crucial role and its optimal value is obtained via 11-fold

cross-validation (CV). LASSO (Least Absolute Shrinkage

and Selection Operator, [34]), as implemented in R [35] via

the glmnet package [36] is used to solve the linear inverse

problem (Eq. 3). The measured turbulent stresses Vobs and

the CEVM-predicted ones V contain non-dimensionalized

normal and shear stresses τ̃i j = τi j/Ti j, where Ti j = |τobs
i j |

is the mean of absolute values of the measured turbulent

stresses. Thus a different normalization constant is computed

for τ11,τ22 and τ12.

In Fig. 1 (top) we plot the number of coefficients re-

tained in the CEVM model as λ is increased; it is clear that

as the penalty increases, c becomes increasing sparse, retain-

ing the most important coefficients ci required to minimize

the ‖ : ‖2 term. For extreme λ, the CEVM reduces to the

intercept and linear terms. In Fig. 1 (bottom), we plot the

results of the 11-fold CV performed for increasing values

of λ. For each value of λ we obtain 11 mean-square errors

(MSE); their average and ± 2 standard deviation bounds are

plotted. We identify λmin, the value for which we obtain the

minimum average MSE (left vertical line); the digits on top

of the plot show that this corresponds to a CEVM with all

coefficients retained. However, we also obtain λ1se, a value

of λ for which the mean MSE is one standard deviation away

from the one obtained via λmin. Further, this model requires

the retention of just one coefficient, c3, in the CEVM. This

corresponds to the term with Ω2
i j; in a strongly vortical flow

such as JIC, this is not entirely surprising.

Thus the NLEVM that we will use consists of 2 terms

- the linear term in Eq. 1 and one quadratic term involving

Ω2
i j. Note that we do not show the value of c3 anywhere; we

merely use LASSO to perform a data-driven simplification

of the CEVM. This is because the gross approximation used

to obtain ε̃, for use in Eq. 3, makes the value of c3 so obtained

untrustworthy. We will calibrate it, along with Cε2 and Cε1,

later in Sec. 5.

Note that it is possible that the quadratic term was re-

tained because of its ability to correct the errors in the coarse

approximation of ε̃, and consequently has little ability to fa-

vorably impact flow predictions. This will be investigated in

Sec. 5 where we will calibrate c3, the factor that multiplies

the quadratic term, using flow observations. If it turns out

that c3’s prior and posterior distributions do not differ much,

then the flow contains no information on the quadratic term

in the NLEVM, and its retention was driven by the coarse

approximation of ε̃. If the converse is true, i.e., c3 is con-

strained by flow observations, then the quadratic term merits

being included in an EVM.

4 Posing the Calibration Problem

We seek to infer C = (c3,Cε2,Cε1) from measurements

of vorticity on the crossplane, obtained from the experiments

reviewed in Sec. 2. The method we adopt for doing so is de-

scribed in [4], though there it was used to calibrate a LEVM-

based RANS. Reference [4] also contains a verification test

of the Bayesian parameter estimation method and software

framework used in this study. We provide a summary below.

4.1 Bayesian Inverse Problem for Parameters

Let ye be a vector (of length Np) of experimental obser-

vations, measured at a set of Np locations (“probes”). Let

ym(C) be model predictions of the same, produced by a pa-

rameter setting C. They are related by ye = ym(C)+εεε where

εεε is a combination of measurement and model-form error.

We make a modeling assumption that the errors at the probes

are uncorrelated, independently and identically distributed as

a zero-mean Gaussian i.e. εεε = {εi},εi ∼ N (0,σ2). σ2 thus

provides a crude measure of the model - data misfit after cal-

ibration.

Let P(C,σ2|ye) be the JPDF of the parameters and the

model - data misfit that we seek; it is also called the “pos-

terior” density. Let Π1(C) and Π2(σ
2) be our prior belief

regarding the distribution of C and σ2. The likelihood of ob-

serving ye, given a parameter setting C, L(ye|C), is given

by

L(ye|C,σ2) ∝
1

σNp
exp

(
−
||ye − ym(C)||22

2σ2

)
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and by Bayes’s theorem,

P(C,σ2|ye) ∝ L(ye|C,σ2) Π1(C) Π2(σ
2)

∝
1

σNp
exp

(
−
||ye − ym(C)||22

2σ2

)

Π1(C) Π2(σ
2). (4)

This inverse problem is solved via MCMC sampling. Identi-

cal to [4], we use DRAM as implemented in the R [35] pack-

age FME [37]. The sufficiency of samples is checked using

the Raftery-Lewis method [38] implemented in the R pack-

age mcgibbsit [39]. A conjugate inverse Gamma prior

is used for Π2(σ
2), and is the same as in [4]. The sam-

ples of {C,σ2} drawn by the sampler are used to develop

histograms or PDFs using kernel density estimation. The

MCMC method may require O(104) samples to construct

P(C,σ2|ye), each of which requires a 3D RANS simulation

of JIC to provide ym(C).This is impractical and we replace

the RANS simulator with a surrogate (also called a statistical

emulator) to serve as a computationally inexpensive proxy.

4.2 Surrogate Models

A surrogate model, for the purposes of this study, is the

functional dependence between vorticity ωx (or Ω23) in the

streamwise direction as predicted by the RANS model, and

the parameters C that cause it. As in [4], this dependence is

posed as a cubic polynomial in (c3,Cε2,Cε1), and learned by

fitting (linear regression) to a training corpus of RANS runs.

We define a cuboidal parameter space C1 given by the

following bounds: c3 ∈ [0.1,3.5], Cε2 ∈ [1.7,2.5] and Cε1 ∈
[1.2,1.7]. The last two bounds were obtained from [26]. We

draw 2744 samples using a quasi-Monte Carlo sampler (Hal-

ton sequence) and seed our RANS simulator SIGMA (see [4]

for a description of the numerical scheme and test of mesh

convergence; our 3D finite volume meshes have about 10

million cells). Most of the parameter combinations are non-

physical and only 222 / 2744 runs survived i.e. converged.

These 222 are deemed to define a more realistic parameter

space C2 and we draw more samples from it to provide a

training corpus of sufficient size. We train a SVMC with ra-

dial kernels (see [4] for a description) to segregate C2 in C1

and identify 1500 C samples that lie in C2. We run these

samples again; 374 / 1500 samples survived. The 374 in

turn define C3 and we generate 1500 points from it using a

SVMC. These are run and 1275 / 1500 runs survive. These

1275 samples are deemed to be a parameter space C4 where

a RANS simulator may be expected to run to completion.

Note that we use the CEVM in [5], with all CEVM parame-

ters except c3 set to zero.

The runs using samples drawn from C3 do not necessar-

ily provide flowfields that resemble physical ones; however,

they do provide a vorticity field, however unrealistic, on the
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Fig. 2. Top: Plot of the physically realistic part of the parameter

space, R (filled circles) along with the region where the RANS sim-

ulator runs without crashing C3 (crosses). Bottom: The experimental

vorticity field as a color plot, with locations with large vorticity (◦) and

the subset of probes with accurate surrogate models (+).

crossplane. We compare these vorticity fields with the exper-

imental one, compute the root-mean-square-error, and retain

the best 20% of the runs. The parameter space occupied by

these samples is the physically realistic part R . In Fig. 2

(top) crosses plot out C3 whereas the filled circles denote R .

The supporting information (SI) contains projections on the

relevant 2D planes.

The 0.2× 1275 = 255 RANS runs constituting R are
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used to construct surrogate models. We first identify the sub-

set of 8× 28 = 224 probes in W where vorticity is large

(see [4] for details). At these probes, we impute a cubic poly-

nomial in (c3,Cε2,Cε1) to model vorticity and fit it via linear

regression. We use Akaike Information Criterion (AIC) to

simplify the model; for most probes, the models reduce to

quadratic polynomials in (c3,Cε2,Cε1). The surrogate mod-

els so obtained are not very robust (small changes in the

training corpus could lead to very different surrogates). Con-

sequently, as in [4], we perform 50 rounds of repeated ran-

dom subsampling (a form of crossvalidation) to compute ro-

bust surrogates. Surrogates whose testing set errors are less

than 10% and where the ratio of learning and testing set er-

rors deviate from 1 by less than 15% are deemed fit for cali-

bration purposes. Thus accurate surrogate models could not

be constructed for all probes with large vorticity. We plot the

testing set errors and the ratios in Fig. 2 of the SI. In Fig. 2

we plot the 90 probes inside W with large vorticity. A sub-

set of 50 / 90 probes, plotted with “plus” signs, are the ones

where we could construct accurate surrogate models. Thus

Np = 50.

Altogether, about 6000 3D RANS JIC simulations were

conducted. Each simulation takes approximately 12,000

core-hours on a PowerPC A2 processor.

4.3 Constructing an Informative Prior Π1(C)

The surrogate models constructed in Sec. 4.2 are only

valid inside R ⊂ C4 and consequently the posterior density

(Eq. 4) must be solved within that constraint. We employ the

prior belief:

Π1(C) =

{
1 for C ∈ R

0 otherwise.
(5)

We enforce this prior belief using a SVMC.

Fundamentally, we seek a binary function ζ(C) in

(c3,Cε2,Cε1) space that could be used to decide whether a

parameter combination C ∈ R . We set ζ(C) = 1 at the

255 / 1275 that define R and ζ(C) = −1 elsewhere. Then

ζ(C) = 0 denotes ∂R , the demarcation of the physically re-

alistic part of the parameter space. This function is approxi-

mated by the SVMC with radial kernels, as described in [4].

We test the SVMC’s accuracy via repeated random subsam-

pling cross-validation. We randomly split the training data

into Learning Set / Testing Set (LS/TS) pairs, with 85% of

the training data lying in the LS. The SVMC is trained on

the LS and is tested on the TS to obtain the mis-classification

rate. This is performed 50 times, with different LS/TS pairs,

and an average mis-classification rate is computed. We find

it to be 6.5%.

The SVMC is used to compute ζm(C), the approxima-

tion of ζ(C), at arbitrary C, and identifies whether C ∈ R .

Thereafter, the computation of Π1(C) is straightforward via

Eq. 5.

5 Results

The Bayesian inverse problem in Eq. 4 requires 80,000

MCMC steps to converge. These samples are thinned by a

factor of 5 (i.e., 1 in 5 samples is retained) and used to de-

scribe the posterior density. In Fig. 3, we plot the marginal-

ized PDFs for all the parameters as well as σ2. The nominal

values of the parameters are also plotted. We see that the

nominal value for Cε1 approximately agrees with the max-

imum a posteriori value (MAP, peak of the PDF), but for

the rest of the parameters the MAP values and the nom-

inal ones are quite different. In fact, the nominal values

are in the tails of the prior distribution, indicating their sub-

optimality. The PDFs of all three parameters are bimodal,

another sign of the complexity of the posterior density. Fur-

ther, the marginalized PDF for c3 is quite different from

its prior, indicating that the observations contain informa-

tion on c3. In addition, we plot the model-data misfit, that

has units of the calibration variable/observable, the vortic-

ity on the crossplane. The variation of the magnitude of

vorticity predicted by the best set of parameters (Copt; see

below) i.e., its 5th,25th,50th,75th, and 95th percentiles are

{0.007,0.039,0.76,2.4,4.1}× 103 sec−1. The experimen-

tal counterparts are {0.0093,0.069,0.184,0.89,3.8}× 103

sec−1. The sign of the vorticity is negative. Comparing σ
with the 95th percentile of the vorticity magnitude, we see

that σ is quite large (about 20%). Note that a slight offset

in two sharply defined vorticity fields (such as the CVP) can

result in a very large σ. A better comparison is a plot of the

two vorticity fields; this is discussed below in Fig. 6. In Fig.

3 in the SI, we plot 2D marginal densities for the parameters.

We see that they are complex and strong correlations exist

between all, and especially for Cε2 and Cε1. The two modes

in the density are also clearly evident.

First we check the accuracy of the calibration via

a posterior predictive test. We randomly select 100

(c3,Cε2,Cε1,σ
2) samples from those picked by the MCMC

sampler and predict the vorticity at the probes with accurate

surrogate models. Note that these predictions also contain

a realization of the model-data mismatch εεε, corresponding

to N (0,σ2). These predictions are then normalized by their

experimental counterparts. We use this ensemble to com-

pute the 5th,50th and 95th percentiles, of the prediction at

the probes. In Fig. 4, we plot the normalized vorticity at

the probes where they are available. The filled ◦ is the me-

dian prediction and the error bars span the 5th-95th percentile

range. The horizontal line at 1 denotes the experimental data.

It is clear that the experimental values are consistently brack-

eted by the error bars. Note that much of the variability (the

width of the error bars) is due to εεε; Fig. 4 in SI contains the

same plot, but without εεε (we call this the “pushed-forward
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Fig. 3. Marginalized PDFs of c3,Cε2,Cε1 and σ2. The dashed line is the prior density (due to R and the solid line denotes the posterior

density. The vertical lines are the nominal values of the parameters. The figure at the bottom right shows magnitude of the data - model

misfit. As a comparison to σ, the 95th percentile of the (experimental) vorticity magnitude is 3.8× 103sec−1 .

posterior”). As is clear, the shorter error bars in the “pushed-

forward posterior” tests sometimes do not bracket the exper-

imental measurements. Most of εεε is due to model-form error

(as opposed to measurement uncertainty) and shows the im-

pact of approximate modeling of turbulent processes in the

k− ε model. Next we investigate the response of the RANS-

CEVM simulator (RANS with an embedded CEVM with 7

parameters) to the 100 (c3,Cε2,Cε1) samples from the pos-

terior density. All CEVM parameters except c3 are set to

zero. We perform the simulations and summarize the stream-

wise vorticity field inside W by the circulation, the vorticity

field’s centroid in the crossplane and the radius of gyration.

These provide a point-vortex approximation of the vortic-

ity field, and we refer to them as the “point-vortex metrics”

(PVM). These metrics are normalized by their experimen-

tal counterparts and plotted in Fig. 5. No εεε is added to them.

The outline of the boxes are the first and third quartiles of the

predictions, whereas the horizontal line is the median. The

whiskers denote the limits beyond which we have outliers.

The small variability of the PVM are a reflection of the short

error bars in Fig. 4 in the SI. The horizontal line at y= 1 indi-

cates the experimental value. The open ◦ are predictions us-

ing RANS-CEVM, seeded with c1, . . . ,c7 from [5], while the

filled ♦ are predictions with RANS-LEVM, seeded with the

nominal values {Cµ,Cε2,Cε1} = {0.09,1.92,1.44}. We see

that while using nominal values of the parameters, LEVM

is better than CEVM. This is somewhat unexpected as the

severe bending of the jet and the CVP should have played

to the strengths of CEVM. However, selecting one quadratic

term in the CEVM and calibrating it results in a RANS simu-

lator that is clearly superior to either of the two uncalibrated

models. This seems to indicate that the inferiority of CEVM

may be due to the values of c1, . . . ,c7 in [5] being unsuitable

for transonic JIC interactions. Post-calibration, the PVM
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Fig. 5. Box-and-whisker plots of the posterior samples’ runs with

RANS-CEVM, for the PVM. The horizontal line denotes experimen-

tal results. The open ◦ are prediction using nominal CEVM param-

eters [5] whereas the filled ♦ are predictions using an LEVM with

nominal parameters. Model predictions are normalized by their ex-

perimental counterparts.

have errors less than 20%, whereas predictions with nomi-

nal parameter values lead to 30-40% error. The ensemble of

100 runs also allowed us to obtain an optimal value of C,

Copt = (c3,Cε2,Cε1)opt = {0.169,2.464,1.496}, that yielded

PVM that were closest to 1. We will refer to this as our “Best

case”.

In Fig. 6, we investigate the vorticity field on the cross-

plane further. We plot the streamwise vorticity field pre-

dicted by RANS-LEVM (left) and RANS-CEVM (right) us-

ing their nominal values. Overlaid on them is the experimen-

tal vorticity field, plotted as contours. As is clear, the agree-

ment is not very good; further, the vorticity field produced by

the CEVM is substantially worse than LEVM. On the right

is the vorticity field predicted by Copt . The improvement

is substantial, further reinforcing the unsuitability of RANS-

CEVM (with nominal parameter values) for JIC.

The improvement in vorticity field predictions after the

estimation of (c3,Cε2,Cε1) is somewhat expected since that

was the calibration variable. We now investigate whether

calibration improves the entire flowfield. In order to do so,

we compare the streamwise velocity deficit ((Umax −u)/U∞)

and normalized vertical velocity (v/U∞) profiles as a function

of the normalized height y/D j with experimental measure-

ments. Here U∞ is the freestream velocity (286 m/s) and D j

is the jet diameter (9.83 mm). Umax is the maximum velocity

in test section and is slightly higher than U∞ due to addition

of extra mass by the jet. We use the midplane flowfields sim-

ulated using the 100 (c3,Cε2,Cε1) samples described above

to compute the streamwise velocity deficit and the vertical

velocity. We summarize the ensemble’s predictions using

the mean. These plots are shown in Fig. 7 at three loca-

tions 200, 300 and 400 mm downstream of the jet. The top

row contains the velocity deficit and the lower row the ver-

tical velocity. Predictions with the uncalibrated parameters

(LEVM or CEVM) i.e., the dotted and dashed lines, lead to

a jet that sits too far above the true (experimental) jet; this is

clear in both the deficit and vertical velocity plots. Further,

the vertical velocity is over-predicted (bottom row), indicat-

ing a CVP that is too strong. This is in agreement with the

circulation being over-predicted (before calibration) as seen

in Fig. 5. It is also clear that the LEVM results agree with

the experimental data better than the CEVM ones before cal-

ibration. However, the improvement in agreement, after cal-

ibrating (c3,Cε2,Cε1), is quite substantial. The mean stream-

wise velocity deficit and vertical velocity are quite close to

the experimental data, with the agreement in vertical velocity

being superior, compared to the streamwise velocity deficit.

In addition, the agreement in vertical velocity improves as

we proceed downstream. Further, the prediction using Copt

(+ symbols in Fig. 7) is almost identical to the ensemble

mean.

Finally we check if the calibration performed using a

M = 0.8 crossflow is applicable at other flow conditions. We

use the 100 (c3,Cε2,Cε1) samples to simulate a JIC interac-

tion with M = 0.7 crossflow. The experimental dataset [6]

contains measurements of velocity on the midplane for a

M = 0.7 interaction, but we do not have any crossplane mea-

surements. Consequently we plot the equivalent of Fig. 7

for the M = 0.7 interaction in Fig. 8. The findings of Fig. 7

hold here too - LEVM (nominal parameter values) provides
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Fig. 6. Plots of simulated streamwise vorticity field (as a flood plot) with contours of experimental vorticity overlaid. Left: Simulations using

RANS-LEVM driven by nominal parameters. Middle: RANS-CEVM, driven by the nominal parameters in [5]. Right: Predictions using Copt .

The improvement is stark. Note that the scales of the vertical and horizontal axes are different.

better predictions than CEVM (nominal parameter values)

and the calibration produced with M = 0.8 crossflow leads

to a remarkably good prediction (via the ensemble mean) of

the M = 0.7 experimental results, especially for the vertical

velocity (bottom row). Thus there is some degree of robust-

ness in the calibration of (c3,Cε2,Cε1).

5.1 Discussion

Predictive errors in RANS simulations are due to,

among other causes, the shortcomings of the EVM and the

approximate closure relationships in the evolution equations

for k and ε. In the results above, we see that simply sensi-

tizing the turbulent stresses to strain-rate, vorticity, stream-

line curvature etc. serves little purpose unless the parameters

accompanying the model are also properly calibrated. The

lack of free parameters to calibrate thus renders the simple

LEVM more predictive for JIC than CEVM when the nomi-

nal parameter values are used. Our EVM which has only one

quadratic term in CEVM “turned on” (the one multiplying

Ω2
i j) provides superior results, but only after calibration. Fur-

ther since we calibrate Cε2 and Cε1 (which appear in the evo-

lution equation of ε) in addition to c3, it is not clear whether

our calibrated EVM or the ε-equation is responsible for this

improvement.

In our previous work [4], we had addressed the improve-

ment of a RANS equation (with LEVM), calibrated to the

same experimental data. There we estimated (Cµ,Cε2,Cε1)
and obtained an improvement in the predictive skill simi-

lar to the one seen in this paper (or perhaps even slightly

better). Our previous paper allowed us to directly control

the dependence of turbulent stresses on strain-rate (via the

LEVM) during calibration whereas in the present study, we

control its dependence on vorticity (via our NLEVM). How-

ever, both the studies provide a similar degree of improve-

ment in predictive skill, inviting the speculation that it may

be (Cε2,Cε1), the parameters in the ε-equation, that play the

dominant role in drawing the flowfield closer to experimen-

tal measurements. Further, the PDFs for Cε2 and Cε1, drawn

from these two studies (see Fig. 3 and Fig. 5 in [4]), show

that their MAP values are somewhat similar - for Cε2 they

are far greater than the nominal value of 1.92 whereas Cε1

is quite close to the nominal one of 1.44. The insensitivity

of these crucial parameters to the form of the EVM tends

to argue that the impact of c3 (or Cµ in LEVM) may be of

secondary importance, and the equations for k and ε may be

more important for improving the predictive skill of RANS

for JIC interactions.

The impact of adding the Ω2
i j term to the EVM is clearly

seen in Fig. 7 and Fig. 8. As the CVP evolves downstream,

it widens i.e., a larger fraction of the flowfield contains large

vorticity. The vorticity field modulates τi j . As is seen in the

two figures, agreement of the vertical velocity clearly im-

proves downstream. This dependence was not seen in our

previous study [4]. The results above also show that the cal-

ibration of (c3,Cε2,Cε1) improves the predictive skill of the

entire flowfield and not just streamwise vorticity. Further, it

is robust across changes in the crossflow Mach number. This

is in line with what was observed in our previous paper which

did not address enrichment of the EVM [4].

6 Conclusions

In this study we investigate whether enriching a standard

linear eddy viscosity model with higher order terms could

reduce the model-form errors in RANS simulations of jet-in-

crossflow interactions. In particular, we choose a cubic eddy

viscosity model [5]. We find that simulations using the linear

eddy viscosity model are actually superior to those using the

cubic model, as long as both are seeded with parameters ob-

tained from literature i.e., they use nominal parameter values.

This highlights the crucial role played by the eddy viscosity

model’s parameters, and the importance of calibrating them

to relevant experimental data. Thus the type of model enrich-

ment that may be possible is inextricably linked to the avail-

able measurements. We devise a statistical procedure, based

on shrinkage, to discover a high-order eddy viscosity model
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Fig. 7. Plots of streamwise velocity deficit (top row) and vertical velocity (bottom row) at three locations 200, 300 and 400 mm downstream

of the jet. Experimental data is plotted using symbols, LEVM (nominal) using the dotted line, the CEVM (nominal) using the dashed line and

the ensemble mean of 100 samples from the posterior using the solid line. The + symbols are the predictions using Copt . The crossflow is

M = 0.8.

in a purely data-driven manner. We find the our experimen-

tal dataset can support an additional term in the eddy viscos-

ity model that is quadratic in vorticity. Given the strongly

vortical nature of the jet-in-crossflow interaction, this is not

surprising.

We embed the new eddy viscosity model in a RANS

simulator and calibrate its parameter (c3) along with two

other parameters, Cε2 and Cε1, that appear in the evolution

equation for ε, the dissipation rate of the turbulent kinetic

energy. We use vorticity measurements on the crossplane of

a jet-in-crossflow interaction as the calibration observable.

The Mach number M of the crossflow is 0.8. The calibration

is Bayesian and we compute a joint PDF for the parameters

being estimated. We use surrogate models to circumvent the

enormous computational expense of Bayesian solutions of

inverse problems. We also use informative priors to excise

non-physical parts of the parameter space. We find that cal-

ibration immensely improves the predictive skill of the sim-

ulator. This improvement is seen in the entire flowfield (and

not just vorticity on the crossplane) and holds even when the

calibrated parameters are use to predict a jet-in-crossflow in-

teraction with a M = 0.7 crossflow. Thus the calibration has

some degree of robustness.

The joint calibration of (c3,Cε2,Cε1) in this study, taken

in isolation, does not allow us to ascribe the improvement in

predictive skill to the addition of the Ω2
i j term in the eddy vis-

cosity model. However, in a previous study [4], we had cali-

brated a RANS simulator with a linear eddy viscosity model

to the same experimental dataset. The parameters calibrated

were (Cµ,Cε2,Cε1). The improvements in predictive skill and

the robustness of the calibration are very similar to the ones

obtained in this study. Further, the PDFs for Cε2 and Cε1 also

show some agreement. Thus the addition of a Ω2
i j term in

the eddy viscosity model had a rather muted effect. This was

unexpected given the strongly vortical nature of the jet-in-

crossflow interaction, where the primary coherent structure is
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Fig. 8. Plots of streamwise velocity deficit (top row) and vertical velocity (bottom row) at three locations 200, 300 and 400 mm downstream

of the jet. Experimental data is plotted using symbols, LEVM (nominal) using the dotted line, the CEVM (nominal) using the dashed line and

the ensemble mean of 100 samples from the posterior using the solid line. The + symbols are the predictions using Copt . The crossflow is

M = 0.7.

a counter-rotating vortex pair. It supports the notion that the

modification of the closure models (in the ε-equation) by Cε2

and Cε1 plays a significant, if not dominant, role in improv-

ing the predictive skill of RANS models. It also implies that

the closure models may be equally important contributors to

the model-form errors in RANS jet-in-crossflow simulations,

along with the eddy viscosity model.

While the enrichment of the eddy viscosity model with

a quadratic vorticity term may not have caused large global

changes in flowfield, it may have intense local effects e.g.,

inside the counter-rotating vortex pair. This could be ev-

idenced in a RANS simulation of a jet-in-crossflow inter-

action where vorticity measurements on the crossplane are

available. This particular measurement is not available in

our M = 0.7 dataset, and the investigation is left for future

work.
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List of figure captions

Figure 1. Top: Removal of CEVM coefficients ci as λ is

increased. Bottom: Mean prediction error and ± 2 standard

deviation bounds of prediction error, as a function of log(λ).
λmin (left vertical line) and λ1se (right vertical line) are also

shown

Figure 2. Top: Plot of the physically realistic part of

the parameter space, R (filled circles) along with the re-

gion where the RANS simulator runs without crashing C3

(crosses). Bottom: The experimental vorticity field as a color

plot, with locations with large vorticity (◦) and the subset of

probes with accurate surrogate models (+).

Figure 3. Marginalized PDFs of c3,Cε2,Cε1 and σ2. The

dashed line is the prior density (due to R and the solid line

denotes the posterior density. The vertical lines are the nom-

inal values of the parameters. The figure at the bottom right

shows magnitude of the data - model misfit. As a compar-

ison to σ, the 95th percentile of the (experimental) vorticity

magnitude is 3.8× 103sec−1 .

Figure 4. Results of the posterior predictive test using

100 samples. We plot the predicted vorticity normalized

by the measured value at the probes with accurate surrogate

models. The horizontal line indicates the experimental mea-

surement. The error bars span the 5th - 95th percentile range

and the filled ◦ are the median prediction.

Figure 5. Box-and-whisker plots of the posterior sam-

ples’ runs with RANS-CEVM, for the PVM. The horizontal

line denotes experimental results. The open ◦ are predic-

tion using nominal CEVM parameters [5] whereas the filled

♦ are predictions using an LEVM with nominal parame-

ters. Model predictions are normalized by their experimental

counterparts.

Figure 6. Plots of simulated streamwise vorticity field

(as a flood plot) with contours of experimental vorticity over-

laid. Left: Simulations using RANS-LEVM driven by nom-

inal parameters. Middle: RANS-CEVM, driven by the nom-

inal parameters in [5]. Right: Predictions using Copt . The

improvement is stark. Note that the scales of the vertical and

horizontal axes are different.
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Figure 7. Plots of streamwise velocity deficit (top row)

and vertical velocity (bottom row) at three locations 200, 300

and 400 mm downstream of the jet. Experimental data is

plotted using symbols, LEVM (nominal) using the dotted

line, the CEVM (nominal) using the dashed line and the en-

semble mean of 100 samples from the posterior using the

solid line. The + symbols are the predictions using Copt .

The crossflow is M = 0.8.

Figure 8. Plots of streamwise velocity deficit (top row)

and vertical velocity (bottom row) at three locations 200, 300

and 400 mm downstream of the jet. Experimental data is

plotted using symbols, LEVM (nominal) using the dotted

line, the CEVM (nominal) using the dashed line and the en-

semble mean of 100 samples from the posterior using the

solid line. The + symbols are the predictions using Copt .

The crossflow is M = 0.7.

List of table captions

There are no tables.

Paper: RISK-16-1100; Corr. author last name: Ray 15



Supporting Information

Learning an eddy viscosity model using shrinkage and Bayesian calibration:

A jet-in-crossflow case study

J. Ray, S. Lefantzi, S. Arunajatesan & L. Dechant, Sandia National Labs

0.10 0.15 0.20 0.25 0.30 0.35 0.401
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1.6

1.8

2.0

2.2

2.4

2.6

c3

C
2C

1

0.10 0.15 0.20 0.25 0.30 0.35

1
.8

2
.0

2
.2

2
.4

c3

C
2

0.10 0.15 0.20 0.25 0.30 0.35

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

c3

C
1

1.8 2.0 2.2 2.4

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

C2

C
1

Figure 1: Top left: The set of samples constituting R (filled ◦) and C3 (+ signs). The rest of the
figures plot the samples as projected on 2D planes
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Figure 2: Left: Results from CV when making surrogate models for 90 probes. Root mean squared
relative error, averaged over 50 rounds of CV, are plotted. Blue circles denote results from the
Learning Set and red circles are represent errors from the Testing Set. We see many probes where
relative errors (surrogate modeling errors normalized by RANS results) are less than 10% (horizontal
line). Further, both types of errors are about the same in magnitude for most probes. Right: Ratio
of RMSE error, TS/LS. Ratios around 1 (±0.15) , as denoted by the horizontal line, denote robust
surrogate models that do not substantially overfit the data.
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Figure 3: 2D marginalized PDFs of the four-dimensional posterior density in (c3, Cǫ2, Cǫ1, σ
2) space.

Complex correlations are seen between the various parameters. Cǫ2 and Cǫ1 show very strong
correlation.
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Figure 4: Pushed forward posterior test for the vorticity on the crossplane, computed using surro-
gate models for the probes with + in Fig. 2 in the main text. The error bars span the 5th - 95th

percentile range and the filled ◦ are the median prediction. Compared to the variability in Fig. 4
in the main text, the error bars are much smaller, indicating the large role played by ǫ, a compos-
ite of measurement and model-form error. Also, the error bars do not bracket the measurements
(horizontal line).
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