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Problem statement

• Aim: To develop spatial models that 
can capture the spatial variability of 
anthropogenic (fossil fuel) CO2
emissions

• Motivation
– Bottom-up estimates of FF emissions 

are often compared against top-
down estimates (inversions)

– If one desires some degree of spatial 
resolution, one needs a spatial 
model

– Gaussian Process models will not 
work

• Used for biogenic emissions
– So what’s a model for FF emissions?

Biogenic emissions: Mueller et al, JGR, 2008

Anthropogenic emissions: Gurney et 
al, EST, 2009



Properties desired of the spatial model

• We plan to use the spatial model in a statistical inversion
– To develop PDFs of the inferred FF emissions
– Will use a method like EnKF

• The spatial model needs to be 
– Low dimensional (few parameters to be inferred from limited data)
– If not possible, the model should be sparse
– Joint (prior) PDFs between model parameters would be helpful

• But what are these spatial models?
– Kernel models: “basis functions” based on some easily observed 

auxiliary variable
• E.g. GDP, population density, nightlights (Rayner et al, JGR, 2010; Oda

& Maksyutov, ACP, 2011)

– Wavelet models: A set of orthogonal polynomials, capable of 
capturing non-stationary behavior



Constructing a Gaussian kernel representation

• Was used for CO2 inversion in the first talk
• Hypothesis:

– FF emissions can be represented as a set of Gaussian kernels
• Each kernel represents the spatial variation of emission in each 

“location”

– Amplitude of each kernel to be inferred during the inversion
• The shape of the Gaussian kernel (covariance of the bivariate

Gaussian) is determined using DMSP-OLS nightlight image

• Questions
– Given an upper limit of M kernels, how much of the nightlight can 

you capture?
• Is this a function of the resolution at which the nightlights are 

measured?

– What does the spatial coverage of kernels look like, wrt truth?



Lights at night: 150x150 Image
Lights at Night, NN = 250
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Lights at Night, NN = 400
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Lights at Night, NN = 550
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Lights at Night, NN = 700
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• Procedure
– Threshold the 

nightlight intensity
– Outline the 

thresholded 
clusters (red)

– Fit an ellipse to the 
fluxes in cluster

• Obtain the 
covariance 
needed for the 
kernel model

– Place a Gaussian 
at the ellipse COM



How much of the intensity did we capture?

• The intensity capture as a function of M kernels depends on the resolution 
of the nightlight image

• About 1000 kernels does it
– not very high dimensional for EnKF
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Blue: 150x150  pixel nightlight image

Red : 300x300 pixel nightlight image



What is the spatial coverage of the kernels?
Initial Image
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Updated Image, NN =  250
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Updated Image, NN =  700
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Updated Image, NN =  550
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• Kernel amplitudes 
have been set to 1.0 
arbitrarily

• We’re just 
checking spatial 
coverage

• 150x150 nightlight 
images were used to 
derive the kernels

• About 250-400 
kernels may be OK



Constructing a wavelet spatial model

• Hypothesis: A wavelet basis will efficiently capture FF emissions
• Ramification:

– Wavelet models are not low-dimensional, a priori
– We hope that they may be sparse

• Procedure to construct such a model
– Start with Vulcan (Gurney et al, EST, 2009)
– Subject the FF emissions to wavelet decomposition using 

• Wavelets from a number of families and a number of orders
• Choose the sparsest, simplest representation

– Model the correlation between wavelet coefficients at different 
levels/scales/resolution

• This will be used to constrain them when the spatial model is used in an 
inversion



How do emissions vary month to month?

• Procedure
– Read the hourly emissions from Vulcan; average them over a month 

• tons of FF emissions / hr / gridcell (10km x 10km)

• Result: same  spatial models for  January  & June may work
– Different model parameters, though

January, 2002 June, 2002 CDF of emissions for all 12 
months



How do emissions change diurnally?

• Emissions for January 30, 2002
• Significant diurnal changes (in magnitude)

– See eastern half for brightness

• Spatial distribution changes are on a small scale
– No change in non-stationary nature – reweighting of a wavelet model may 

suffice

4 am, EST 6pm, EST



How does one represent emissions with wavelets?

• Propose

– φs,l(x) is a wavelet basis; s, l are its 
scale and location indices

– ws,l are weights

• So what are wavelets?
– Basis set with compact support
– Belong to different families 
– Within a family, can have different 

orders (high order ~ smoother)
– One chooses a family and an order, 

to expand E(x)
– The expansion consists of varying 

• s, to get different frequency content
• l, to shift in space (location)
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Haars at different scales and locations



A wavelet decomposition of a field
• Decompose a field E = Φ w on wavelet bases

– ws,l form a binary tree (quad-tree in 2D)
• If a field E is smooth, ws,l, at large s are all small

– So chop the binary tree; drastically reduce the elements 
in w

• If a field s is smooth, but with edges or splotchy 
structure

– ws,l mostly zero, but some ws,l at large s may be non-
zero

– Sometimes if a ws,l is small (large), it’s children are small 
(large) too



Posing the problem

• An emission field on 2N x  2N pixels
– Can be decomposed on a wavelet basis, N deep
– Each level s has 2s x 2s – (2s-1 x 2s-1) weights

• Emissions

• Conjecture
– ws,i,j are mostly zero (i.e., is sparse)
– ws,i,j and ws+1,i,j are correlated – parent-child relationship

• Procedure
– Pick June 2002 from Vulcan
– Subject them to a wavelet transform

• Results in 9 levels
• Try Daubechies, Symlet, Coiflet, ….. of many orders

– Check the above conjectures
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Is the wavelet distribution sparse?

• What is the distribution of w on each of the levels?

3/20/2011
14

• Sparse distribution, regardless of the wavelet chosen

Haars
(order = 2)

Symmlet
(order = 6)

Level = 2 Level = 4 Level = 6 Level = 8



Wavelet coefficients and order at s = 9

• Sparsity of wavelet coefficients is good
– Having a few large wavelet coefficients is bad – can’t ignore them

• As order increases
– Number of non-zero coefficients goes up i.e., sparsity decreases
– There are no large coefficients

3/20/2011
15



Wavelet coefficients and order at s = 5

• As order increases
– Sparsity plummets- but few non-zero coefficients are that large

• Live with low order wavelets like Haars?
– Most coefficients on level 6 and above are small – set them to zero, or model them

3/20/2011
16



How important are the wavelets at high s?

• Choose 2 wavelet families
– Haars: simplest possible, most wavelet coefficients beyond level 4 

are zero, but the non-zero ones are big
• Ignoring the non-zero ones will make a big mistake (may be)

– Symlet: a sophisticated, high-order wavelet. All wavelet coefficients 
beyond level 4 are small, but aren’t non-zero

• Procedure
– Take June 2002 emissions from Vulcan database
– Do a wavelet decomposition
– Set all wavelet coefficients on s = {6, 7, 8, 9} to zero. Reconstruct
– See difference

• There are 25 x 25 non-zero wavelet coefficients

3/20/2011
17



Reconstructed fields, ignoring high s

• Lessons learnt
• Haars and the more 

complicated wavelets 
don’t have very 
different distributions –
may be smoother, and 
little more structure

• If you consider that we 
will be working with 
sparse data, the 
choice of wavelets 
may not matter at all

• Sophisticated wavelets 
(symlet) may not give 
better answers

18

Haars Daubechies 6

OriginalSymlet 6



Walking down the quad-tree 

• Are there inter-level correlations?
– Can result in parent-child correlations
– Or at least a HMM on low/high weight classification

• Consider the average (µs) and standard deviation 
σs of the non-zero wavelet coefficients on level ‘s’

– If |ws,l|  < (µs – 0.5 σs) consider it a “low-valued” 
coefficient

• If I am a high-valued coefficient, is my child high-
valued too?

– Does my child modify the signal structure significantly?
– Compute P(high -> high) transition between me and 

my children

• If I am a low-valued coefficient, is my child low-
valued too?

– If I get ignored, can you ignore the sub-tree rooted at 
me?

– Compute P(low -> low) transition between me and my 
children

3/20/2011
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P(L->L) and P(H->H) for Haars

3/20/2011
20

•Persistence behavior  
beyond level 3
• High wavelet coefficients 
have high children, low 
wavelet coefficients have 
low children (90% transition 
probability)

• High/low threshold as a 
ratio to mean (non-zero) 
wavelet coefficient is about 
0.3

• Could lead to a simple 
HMM between levels



P(L->L) and P(H->H) for symlet 6

• With symlet 6 (a 
high-order 
sophisticated 
wavelet) transition 
probabilities are a 
lot more variable

• A hard one to 
model with an 
HMM

3/20/2011
21



Are there correlations between levels?

• Is there a correlation 
between wavelet 
coefficients on level 
‘s’ and ‘s+1’?

– Not a simple one
– Star-shaped 

distribution is often 
modeled as a 
“shrinkage prior” 
called the 
“horseshoe prior”

22

Level 4 and 5 Level 5 and 6

Level 6 and 7 Level 8 and 9



Summary

• Both Gaussian kernels and Haars may be used to capture FF 
emissions
– Inversion using Gaussian kernels has been attempted (van 

BloemenWaanders, yesterday)
– Wavelet modeling & inversion a lot harder

• Future work
– Do an EnKF inversion with wavelets

• Priors on weights given from nightlights, GDP, population density
• Basically looking to see which wavelets to permanently set to zero

– Compare and seek to answer these questions:
• Do we need to bother with fine wavelets at all?
• How does this perform vis-à-vis Gaussian kernels?

3/20/2011
23



BONEYARD



Gaussian Kernel representation

Initial Image
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Updated Image, NN = 1000
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All “updated” Gaussian kernel amplitudes are arbitrarily set to 
1.0 in this image for comparison with the original lights at night 
map
All images for the 300x300 resolution case
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