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1 Introduction

Chemical reacting systems based on hydrocarbon fuelsaijypiexhibit a large spectrum of character-
istic spatial and temporal scales. The complexity of kmetodels even for simple hydrocarbon fuels
compounds this problem making multidimensional numersiadulations difficult even for laboratory
scale configurations.

These difficulties are commonly addressed in a variety ofsw#pr low speed flows, one may assume
that acoustic waves travel at infinite speed and adopt a loeshMamber approximation of the Navier-
Stokes equations [1]. The structure of the governing eqoattan also be exploited for an operator-split
construction, performing the transport and reactive taedgancement via specialized integrators [2]. In
problems where fine structures exist only in a small fractibtihe domain e.g. in laminar jet flames, one
may employ adaptive mesh refinement (AMR) [3] to concentraselution only where needed [4-7],
while maintaining a coarse mesh resolution elsewhere.

We have recently developed a humerical model that aims teeagddome of the challenges posed by the
use of AMR for reacting flow computations. In order to reduzenumber of grid points and the number
of refinement levels in the computational mesh hierarchyewmwgloy high-order stencils to discretize
the transport equations and to interpolate between the gtatipnal blocks on adjacent mesh levels.
Further, we employ a projection scheme for the momentunsprar on auniformmesh, that is coupled
with the adaptive mesh solution of the scalar transport #gpus This hybrid construction is driven by
a number of practical considerations, as further detaitettié next section. For ease of implementation
with AMR, we employ an extended-stability Runge Kutta Chaleyw (RKC) scheme [8] to time-advance
the system. The 2D numerical scheme developed in this igatisin is designed to work with block-
structured adaptively refined meshes (alternativelycstired adaptive mesh refinement, SAMR).

2 Numerical Approach

In this section we describe the numerical construction tsesolve the low Mach number reacting flow
equations. In the low-Mach number limit, the continuity, mentum and scalar equations are written in
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compact form as
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Herev is the velocity vectorp the density,T the temperatureYy the mass fraction of specids p

is the hydrodynamic pressure, ahld is the number of chemical species. Th¢Dt operator in the
continuity equation represents the material derivativiee $ystem of governing equations is closed with
the equation of state for an ideal gas:

pOT Yi 1Dp  1DT W DYy

Po= Pl —pOT S X _ const— =
=W Z NS S Bt T~ T ot Zth

(2)
wherePy is the thermodynamic pressurg, is the universal gas constait is the molecular weight
of speciesk, andW is the molecular weight of the mixture. The thermodynamiesgure is spatially
uniform in the low-Mach number limit. Further, restrictimyr focus to flows in open domainB; is
constant. A detailed description of the convect®n diffusion D,, and source termS, in therhs of
equations[(l&-1d) is given in [9].

The divergence constraint (€lg. 1a) resulting from the loncMaumber limit leads to a differential
algebraic equation system, for which we adopt a projectiethiod to solve for the velocity and pressure
fields. The momentum solver is coupled with a solver for thecgs and temperature fields, arriving at
an overall construction that is fourth-order in space, sdeorder in time.

As described in Sectidd 1, the problem is solved on a meshrcigy. On a given patch, variables are
defined at cell centers and edge-centers. The temperatnsity pressure, and species mass fractions
are located at cell centers, while the velocity componerdgdazated at edge centers.

The numerical integration of the system of equations isqueréd in three stages. First, a projection
approach is adopted to advance the velocity field based ceqtions[(l&-1b). The projection scheme
is implemented on a uniform mesh. In the second stage, tHarsare advanced using an operator
split approach that separates the convection and diffusiotributions from the ones due to the chem-
ical source terms. We implement a symmetric Strang sgiticheme beginning with the source term
contribution for half the time step, followed by the contriltons from convection and diffusion terms
for a full time step, and concluded by the remaining contitou from the reaction term for half the
time step. During this stage, scalars are recursively amb@on successively refined grids necessary to
resolve the scalar spatial structures. The time steppiogrisluded with the third stage, which repeats
the projection algorithm on a uniform mesh using informatom scalar fields obtained at the end of the
second step. The algorithm is described in detail below.

Stagel,
A 2"order Adams-Bashforth scheme is used to advance the wefaid using momentum and diffu-
sion terms only
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Superscripts andn— 1 refer to values at the curretitand previoug" ! times, respectively. The above
expression takes into account changes in time step valiest"t! —t" andAt, = t" —t"1.

The convection terms contain components that are eithémoated or staggered. Derivatives are dis-
cretized using % order stencils. Interpolations between cell-centers atgea@enters areorder
accurate in order to preserve the overdfl drder accuracy of the scheme. The stencils for the these
discretizations are given elsewhere [9, 10].

Stagelp
The provisional velocity fieldy, does not satisfy eq_{lla). This equation is used in conumatith
eq. [Ib) to derive an equation for the hydrodynamic prestele
n+1
> ; (4)
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that will be then used to correct the provisional velocitydieSince the scalar fields #t! are not yet
1Dp ‘n+

' p Dt

at previous time steps (#% is described in Stage,3 The density at"*?1, p"1, is also extrapolated

from values at" andt"~1. The projection scheme for the momentum solution adaptsite-finlume

construction from [11] to finite differences, in order to @sfe a consistent™ order construction for

the pressure (Poisson) solve. The variable coefficientsBoiproblem is solved using a conjugate-

gradient method, preconditioned with a multigrid techmidgua thehyprepackage [12] to accelerate the

convergence rate.

1
known is estimated by extrapolation using its values”andt"~1. The numerical evaluation

Stagel.
The gradient of the hydrodynamic pressure is used to catieqtrovisional velocity field"*! to obtain
the predicted velocity ai+ 1

At

viLP — gt rrillP (5)

Superscriptp was added te to distinguish the predicted velocity values obtained atehd of Stage 1
from the corrected ones obtained at the end of Stage 3 below.

Stage2,
In the first part of the second stage, temperature and spexass fractions are advanced over half the
time step based on contributions from the source teBpsndS,, .

/ Srdt (6)
At)2
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The CVODE stiff integrator package [13] is used to integeds. [6). At the end of the stage, the scalar
values are recursively restricted from fine to coarse gntlie Stencils for interpolations between
coarse and fine grid levels ar®®rder.

Stage?2,
During the second part of the second stage'%eoder, multi-stage, Runge-Kutta-Chebushev (RKC) [8]
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scheme is used to advance scalars based on the contribfifdiomsonvection and diffusion terms:

tl"l+l

T -T" = Cr +Dydt
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tl"l+l
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th N——
i

The numerical details for the multi-stage RKC scheme arergalsewhere [2, 8].

As scalars are advanced frathto t"*1, velocity values needed to construct advection fluxes fer th
intermediate RKC times are computed by interpolation basethe values at” andv™ 1P att"?! =

t" 4+ At. Similar to some of the velocity convection terms, scalanvection and diffusion terms involve
components that are not collocated. For these terms scetamtives are evaluated using' 4rder
staggered derivative stencils, while interpolations U8@#ler stencils. This results in the computation
of convective and diffusive terms at cell centers. They bemtused to advance the scalar values with
the RKC algorithm, applied recursively using the Bergefl€la time refinement [3] on successively
refined mesh levels.

Stage2;

Stage 2is a repeat of Stage,2using the “**” scalar values as initial conditions. At thedeof this stage
all scalars correspond t8+1 and the solution needs to be restricted (fine-to-coarseiwgedpolation)
recursively starting from the finest grid level in the maiedairchy.

Stage3,
The provisional velocity field values #t"! are re-evaluated based on the scalar values obtained at the
end of Stage 2 and on the predicted velocity values at the €8thge 1

\7n+1 —_yn

VL (g0 + (- 0p ) ®

The convectiorC}™* and diffusionD{}"* are based on the velocity field+P and the scalar values at
tel,

Stage3,
The hydrodynamic pressure field is re-computed using egugli). The divergence term that enters the
right hand side of this equation is constructed using theigianal velocity field obtained in Stageg,3

n+1
while eq. [2) is used to compu%&%‘ based on scalar valuestit?, obtained in Stage 2.

Stage3;
This stage is similar to Stage.1The gradient of the hydrodynamic pressure obtained aeS3aig used
to correctV™* (computed at Stage,Bto obtainv™*?,

3 Results

Results for 2D vortex pair - flame interactions are used tafwéne stability and accuracy of the nu-
merical construction. All reacting flow tests involve matbacombustion. Flame results for GRI-Mech
3.0 (53 species, 325 elementary reactions) [14] are shownmgtdight the benefits of this numerical
approach in capturing the inner flame structure efficierilye to the computational expense, the con-
vergence rate is measured in simulations with chemistryateadusing a C1 skeletal mechanisms (16
species, 46 reversible reactions).
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Figure 1: Left frame: Vorticity contours (black lines) andC® mass fraction (colormap) during the
interaction between a vortex pair and an initially flat preed flame. The vorticity contours are shown
on level 0, while the mass fraction colormap is shown on Evelnd 2. Right frame: streamwise
velocity u and and species mass fraction profiles along a centerlioe. sli

Axrange pm] | T p u v Opx Opy Ycn, Yo, Yco, Ycrs YHco
15—-30—60(39 40 38 37 38 37 39 39 39 3.9 411

Table 1: Spatial convergence rates f@ 2ortex-pair flame interactions using 2 level mesh and a C1-
mechanism. Solutions are advanced with a time &iep- 2 x 108 s and errors are measured after
t = 0.3 ms from the beginning of the simulations.

Figure[l shows a snapshot of the vorticity and HCO mass fnadtelds (left frame) and velocity and
species mass fraction profiles along a centerline slicautfirahe flame (right frame) at= 0.4 ms from
the beginning of the simulation. At this time the flame, siatetl with GRI-Mech 3.0, is contorted by
the vortex pair and the centerline region is significantlynpoessed by the velocity field induced by
the vortex. The species mass fraction profiles in the righinf show that radical profiles are thinner
than the velocity field length scales in the flame region. Tihicates that mesh refinement is only
necessary for resolving inner flame structure, while thdiapl@ngth scales associated with the flow can
be captured on the lowest level of the SAMR hierarchy only.

The results in Tablgl 1 show the spatial convergence ratekddD flame-vortex configuration obtained
with the 16 species C1 kinetic model. Roughl{-drder convergence rate is observed for all variables.

4 Conclusions

This paper describes a high-order numerical model for thmukition of chemically reacting flow in
the low-Mach number limit. A% order (in space) projection algorithm for the momentum $port is
coupled to a # order-in-space, "® order-in-time scheme for the solution of the equations afigport
of energy and species mass fractions on a block-structutaptiaely refined mesh. Finite differences
are used to approximate spatial derivatives.

The primary reason for constructing §-érder adaptive mesh refinement scheme was to reduce the
number of cells in the entire problem, prior to using it witktailed (and stiff) kinetic mechanisms
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in reacting flow studies. Chemistry integration costs afggeeted to dominate and efficiency/usability
gains are tied to using shallow grid hierarchies and to keefhe number of cells at a “manageable”
level, while resolving the flame structure adequately. Faurfforts will be devoted to such problems
and will necessarily exploit massive parallelism in conapions.
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