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Motivation & Approach 

•  Disease models are used in planning, resource allocation etc. 
–  They contain parameters which have to be supplied 
–  Generally biosurveillance data is used to detect, not characterize 

outbreaks (some exceptions – Held et al, Stats. Modelling, 2005) 
•  To develop statistical techniques that can characterize an 

epidemic from biosurveillance data 
–  Characterization of the epidemic– estimate number of index cases, 

(time-dependent) spread rate, etc 
•  NOT trying to characterize the pathogen – no genetic, immune-system 

response, etc. 

–  Use biosurveillance data and real-time estimation 
•  Estimates will be highly uncertain, so need to quantify uncertainty 

•  Questions 
–  How small an epidemic can we detect and characterize? 
–  What can we characterize with useful uncertainty bounds? 



A Communicable Disease Example 

•  A simulated plague epidemic 
–  Performed with an agent-based model for disease 

spread; includes visit-delay 
•  Disease parameters from Gani & Leach, EID, 2004 

–  Insert into ICD-9 stream for ILI from Miami 
–  100/1000 index cases; epidemic dies out in 40 days 

•  Extract epidemic, per Ray et al, CBD Conf, 
Orlando, 2010 

•  Aim:  
–  Estimate the total size of the epidemic 
–  Also, the infection rate and visit delay curves 
–  Compare with the “true” figures from the simulation 
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Extraction of the Epidemic 

100 Index Cases 1000 Index Cases 



Formulation of the Problem 
•  Data – the extracted epidemic: time-series of counts of people 

seeking care, on a daily basis 
•  Model - A convolution of a time-dependent infection rate (1 free 

parameter), incubation period (known), and visit delay (1 free 
parameter) 

–  Also includes total size of the epidemic, time of infection of the index 
cases and fraction of index cases as free parameters (Brookmeyer’s 
1988) 

–  5 free parameters in all 
• Fitting 

–  Estimate the PDFs of the 5 parameters using an adaptive Markov Chain 
Monte Carlo (MCMC) approach 

–  Takes about 1-3 hrs depending upon the length of the time-series 
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Estimation of the No. of Index Cases 

• The true values are 100 and 1000, 
respectively 

• The estimate improves with time 
(and data!) for larger outbreaks 

• Estimates performed with data 
starting from  
–  Start of epidemic + 4 (s+4) 
–  Start of epidemic + 6 (s+6) 

• Easier for large outbreaks 
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Estimation of the Start of the Epidemic 
and its Total Size 

Total size true value  
is approx. 11000 

Epidemic starts 4 and 6 days, 
respectively, before data collection 



Estimation of the Parameters in Infection 
Rate and Visit Delay Models 

• Both modeled as a Γ-functions 
–   rate parameters are inferred; shape parameters are set 



Joint Probability Distributions of the 
Inferred Parameters 

5 Days of Data 15 Days of Data 



Estimation of the Epidemic’s Progression 

•  Best estimate – based on maximum a-posteriori (MAP) distribution 
•  Developed using 15 days of data, starting 4 and 6 days, 
respectively, after first 1000 people got infected 



Speed up the Inference – Surrogate Models 

� 

ν ind ti,ti+1( ]( ) = Ntot 1−α( ) f inc s− τ( ) Fvd ti+1 − s;rvd( ) − Fvd ti − s;rvd( )[ ]ds
τ

ti+1

∫

νsec (ti,ti+1]( ) = Ntotα qinf (u − τ;rir )
u=τ

ti+1

∫
w=τ

ti+1

∫ f inc (w − u) Fvd (ti+1 − w;rvd ) − Fvd (ti − w;rvd )[ ] dudw
ν tot = ν ind + νsec

•  Double integral is very costly during the MCMC sampling 
•  Create a surrogate for the epidemic model and compute it offline 

•  Use Polynomial Chaos representations (Ghanem & Spanos, 
1991): accurate with respect to the pdf’s of interest and fast to 
evaluate. 

� 

ν tot (t) = akΨk
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Surrogate Models – cont’d 

• Red mesh   direct model 
• Blue mesh  surrogate model 

Visit delay rate = 0.2 Visit delay rate = 1.0 



Conclusions 
•  Early in the development of a techniques to characterize epidemics 

–  Working off biosurveillance data 
–  Provides information on the particular/ongoing outbreak 
–  Second half of a detect-and-characterize algorithm; model selection 

algorithm is also in place 

•  Parameter estimation capability ideal for providing the input 
parameters into an agent-based model 

–  Index cases, spread/infection rate, total epidemic size, etc 
–  Since it’s real-time, can be used to check if medical interventions are 

effective 

•  To do 
–  Tests with different kinds of background models 
–  Tests with outbreaks of different sizes and spread/infection rates 
–  Identification of a “proper” set of ICD-9 codes for monitoring 

biosurveillance data streams 
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