

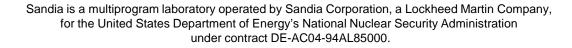
Statistical Techniques for the Characterization of Partially Observed Epidemics

Jaideep Ray¹, Cosmin Safta¹, Karen Cheng² and David Crary²

¹Sandia National Laboratories, Livermore CA, ²Applied Research Associates, Inc, Arlington, VA

Acknowledgements: The work was funded by DTRA, under contract HDTRA1-09-C-0034

Ms. Nancy Nurthen is the DTRA PM. Ms. Karen Cheng at ARA, is the Principal Investigator. Contact Info: <u>kcheng@ara.com</u> and <u>jairay@somnet.sandia.gov</u>



Problem Statement

- Aim: To develop statistical techniques to characterize ongoing epidemics from partial biosurveillance data
 - Estimate # of index cases, time of infection, or infection rate
 - Do so with minimal data i.e., early in the outbreak
 - Data is a time-series of counts of ICD-9 codes
 - Quantify the confidence in the estimates
- Motivation
 - To provide initial conditions for disease models, to be used for planning medical interventions, resource allocation etc.
 - Disease models can be agent-based ones too
 - Can also be applied to historical epidemics, with case-counts as the data
 - Useful for obtaining disease model parameters for agent-based simulators.

Why Are Current Biosurveillance Methods Inapplicable?

- Current biosurveillance methods focus on detection
 - Based on anomaly detection
 - No model of the background
 - Or filtered out and this "disturbs" the detection

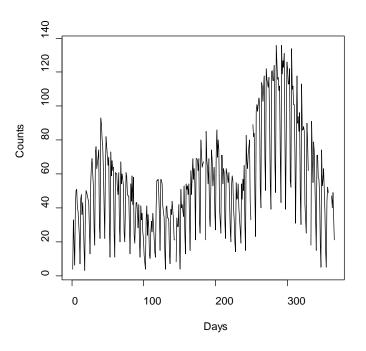
"7 day moving average filters suppress exactly the short scale features that were the intended object of study"

- Bloom, Buckeridge, and Cheng, JAMIA (2006)

- Current characterization methods for epidemics are used retrospectively
 - The epidemics are *fully* observed, not *partially* observed
 - The identity of the disease is known
 - The data consists of counts of people who have been diagnosed with the disease
 - It is not biosurveillance data with all its confounding issues

Difficulties with Using Biosurveillance Data

- Biosurveillance data (ICD-9 counts, OTC sales etc) is complex
 - Weekly & seasonal cycles; nonstationary structure
 - Symptom, not diagnosis, data (for timeliness)
- Characterization of epidemics with biosurveillance data requires:
 - Ability to model the background/endemic morbidity in real time
 - Detect the start of the epidemic
 - Extract the epidemic from the data
 - By "subtracting" the background



ILI ICD-9 stream from Miami (background / endemic morbidity)

Technical Challenges

- The components of the procedure are:
 - **Detection** of an outbreak from time-series data
 - *Extraction* of the outbreak from the background
 - Data for detection and extraction are ICD-9 streams with both the background/endemic and outbreak signal
 - Characterization of the outbreak (index cases, infection rate ...)
- Biosurveillance data is partial, so ...
 - All estimates are uncertain, and
 - The uncertainties need to be quantified
- Figures of merit
 - Delay between infection and detection
 - Cleanliness of the separation of background and epidemic
 - Closeness of inferred and true nature of outbreak

Detection of the Outbreak

- Based on sequential data assimilation using a Kalman Filter (KF)
 - Uses a simple model for daily ICD-9 counts (case-count)
 - Case-count model contains
 - A daily mean level and a cyclic weekly term
 - A quadratic, fitted to 4-week window of daily levels, for one-step-ahead predictions
 - KF also produce a measure of uncertainty in model predictions
 - KF covariance matrix
- Results in a model for the background morbidity
- Detection strategy:
 - Predict one-day ahead using quadratic model
 - If observation is greater than threshold, alarm (2-3 Std. Dev.)
 - Else, assimilate observation to obtain new mean level

Example with Synthetic Data

Simulated anthrax outbreak

- Small atmospheric release over a spatially distributed population (3 Million people)
- 1125 index cases, with a range of doses
- Includes visit delay
- Background data for Miami (ICD-9 for ILI)
 - Anthrax outbreak injected in on Day 130
- KF starts fitting background model from Day 0
- Question: How good is the background model

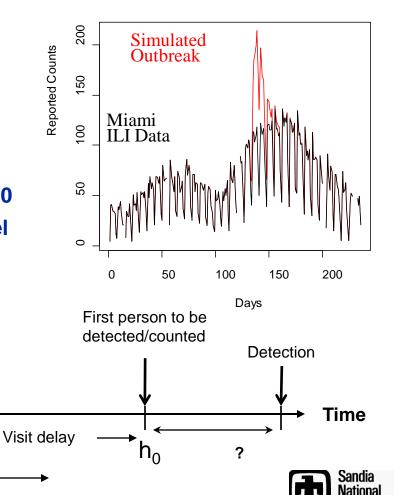
incubation

First symptoms

 S_0

- i.e. how many days to detection?

Attack occurs



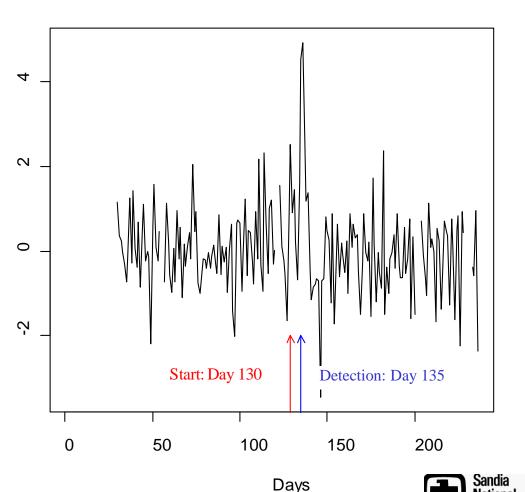
aboratories

Detection Performance

Based on Kalman Filters ۲

- Starts on Day 0 _
- Creates a model of endemic ILLIndisease tection: One-day-ahead model predictions Compared with observations
- **Detection:** ۲

 - **Compared with observations**
 - **Significant deviation indicates** an anomaly – detection!
 - In this case, detection took 5 days
 - **Incubation: 3-4 days**

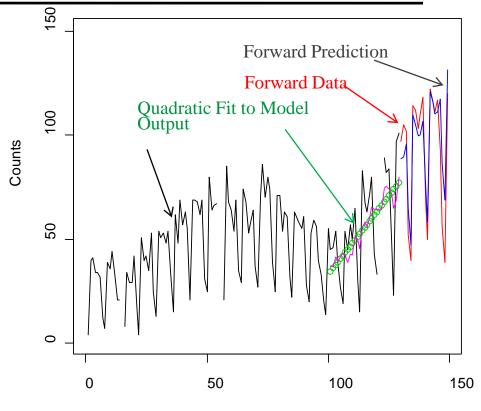


Start: 130 Alarm: 135

National aboratories

Extraction of the Epidemic

- The "background" model can be "frozen" on the day of alarm
 - A quadratic is fitted to mean levels to determine local slope for forward projection
 - Weekly cycles derived previous data
 - KF formalism used for forward projection
- Questions:
 - How close are the model predictions to observations?
- Test this without the injected outbreak.
- Caveat: Model predictions will degrade in time

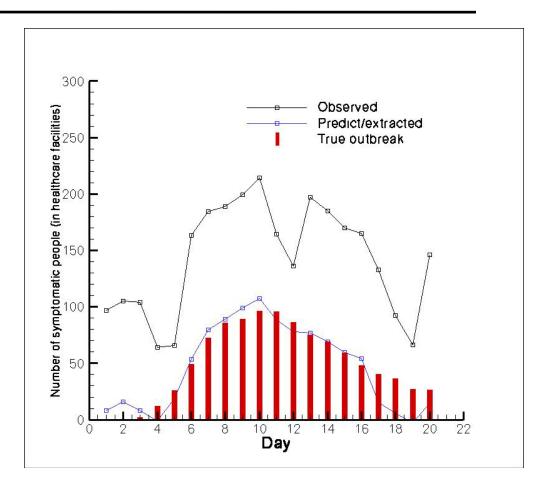


Days

- Predictions up to 2 weeks ahead look good
- But can this be used to extract the epidemic?

Extraction of the Epidemic Cont.

- Plot the difference between observations and predictions by frozen background model
- Estimate of the anthrax outbreak
 - Pretty good for 15 days
- However, it is a partial estimate
 - Extends only to the number of days of observations
- Can the partial anthrax outbreak be used for characterizing the attack?



Day 0 is day of release Day 5 is day of detection

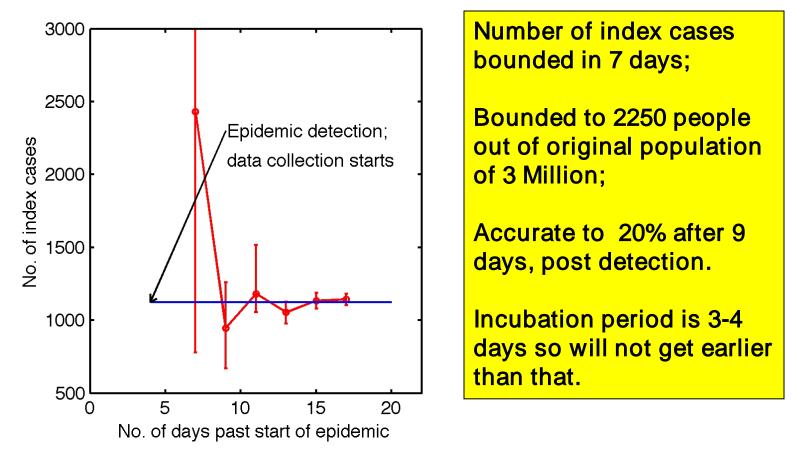
Characterization of the Anthrax Epidemic

- Characterization:
 - Estimation of the number of index cases, time of release, an average dose, and some parameters of the visit-delay model
- Hypothesis:
 - An anthrax incubation period model + a visit delay model can reproduce the epidemic curve
 - The quantities of interest are all parameters/inputs into this epidemic model
 - So given a partial epidemic curve, fitting an anthrax model should reveal the necessary model parameters
- Questions:
 - How much data is needed to estimate these parameters?
 - i.e., is less than 15 days of (good, normal background extracted) data sufficient?
 - What is the level of uncertainty in parameter estimates, as a function of (quantity of) data?

Bayesian Techniques to Solve the Problem

- The estimation is posed as a Bayesian inverse problem
 - Predicated on the extracted outbreak data
- Allows one to use bounds / prior beliefs regarding the value of the parameters
 - We assumed that index cases ranged between 100-10,000
- Solved using an adaptive Markov chain Monte Carlo sampler
 - All parameters estimated as probability density functions (PDF)
 - Used autocorrelation analysis to determine "convergence" of the Markov chain

Estimates of the Number of Index Cases



- Estimates of the number of index cases (in red).
- True figure in blue

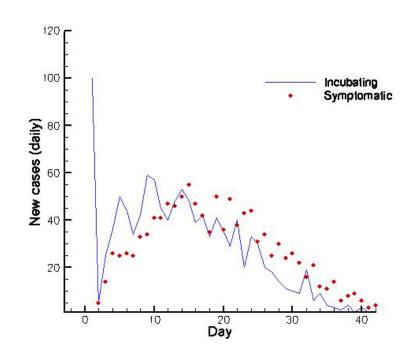
Application to a Communicable Disease

- The technique can be applied to a communicable disease
 - Need to estimate infection rate (along with "usual" parameters)
- Assumptions for communicable diseases model
 - The infection rate rises & then falls smoothly in time
 - Index cases are a small fraction of the total number of victims
- A lightweight model can be created and fitted to data
 - The model of epidemic evolution is statistical (not AB)
 - Is used with MCMC, as before
 - Allows inferences to be drawn as PDFs
- Demonstrate with synthetic data
 - Simulate a plague epidemic using an AB model

A Communicable Disease Example

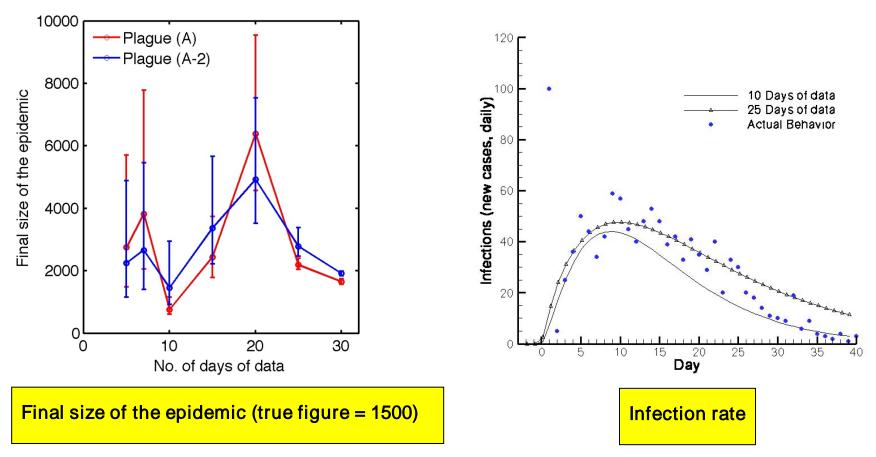
• The simulated plague epidemic

- Includes visit-delay
- Incubation is NOT dose dependent
- 100 index cases
 - Epidemic dies out in 40 days
 - 1500 victims, total
- Aim:
 - Estimate the total size of the epidemic
 - Also, the infection rate curve
 - Compare with the "true" figures from the simulation



- Red points: People turning symptomatic, daily (observed)
- Blue line: people being infected, daily (unobservable)

Estimation of the Final Epidemic Size



- The estimate improves (shorter error bars) with time
- Easier for large outbreaks

Conclusions

- Techniques appear promising to construct and integrate automated detect-and-characterize technique for epidemics
 - Working off biosurveillance data
 - Provides information on the particular/ongoing outbreak
- Potential use in crisis management and planning, resource allocation
 - Parameter estimation capability ideal for providing the input parameters into an agent-based model
 - Index Cases, Time of Infection, infection rate
- Non-communicable diseases are easier than communicable ones
 - Small anthrax can be characterized well with 7-10 days of data, post-detection; plague takes longer
 - Large attacks are very easy

