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Abstract: We present an innovative methodology for developing scientific and 
mathematical codes for computational studies of reacting flow. High-order (>2) spatial 
discretisations are combined, for the first time, with multi-level block structured adaptively 
refined meshes (SAMR) to resolve regions of high gradients efficiently. Within the SAMR 
context, we use 4th order spatial discretisations to achieve the desired numerical accuracy 
while maintaining a shallow grid hierarchy. We investigate in detail the pairing between the 
order of the spatial discretisation and the order of the interpolant, and their effect on the 
overall order of accuracy. These new approaches are implemented in a high performance, 
component-based architecture (Common Component Architecture) and achieve software  
re-usability, flexibility and modularity. The high-order approach and the software design 
are demonstrated and validated on three test cases modelled as reaction-diffusion systems 
of increasing complexity. We also demonstrate that the 4th order SAMR approach can be 
computationally more economical compared to second-order approaches. 
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1 INTRODUCTION 

Reacting flow computations are based on the numerical 
solution of the mass, momentum (Navier-Stokes), species, 
and energy conservation equations. These form a time 
dependent partial differential equation system with requisite 
initial and boundary conditions. Allowing for both 
turbulence and detailed chemical kinetics, reacting flow 
models typically involve a large range of length and time 
scales, leading to high spatial resolution requirements and 
severe time integration stiffness. The resulting computations 
are extremely challenging, even for laboratory-scale flames. 
As a result, a variety of approaches have been adopted to 
make flame simulations feasible. 

The most obvious way to reduce the computational cost is 
to use appropriate reduced order models that ameliorate the 
complexity of the equation system. Approaches like 
Reynolds averaged Navier-Stokes (RANS) (Wilcox, 1993) 
and large eddy simulations (LES) (Pope, 2000) are useful 
for reducing the turbulent flowfield complexity, while the 
use of simplified chemical mechanisms (Peters and  
Rogg, 1993) and transport models (Hirschfelder et al., 1954) 
have proven to be successful in reducing the complexity of 
the species governing equations. These models are typically 
validated against experiments and in some simple cases, 
against direct numerical simulations (DNS). Further, the 
low Mach number approximation (Williams, 1985), which 
neglects the acoustic compressibility of the fluid, is very 
effective in eliminating sonic-speed time scales and their 
associated time-integrator time-step stability constraints. In 
the absence of acoustic phenomena (e.g., acoustic instability 
of flames), high-Mach number flow, and detonations, the 
low Mach number model has proven very adequate for 
computations of reacting flow. 

High-fidelity DNS reacting flow computations, where  
all relevant time and length scales are resolved, are 
computationally intensive, requiring sophisticated  
numerical and computational techniques for handling  
two- and three-dimensional (2D and 3D) laboratory scale 
flames. Our objective is the development of a toolkit for 
DNS of reacting flows, with particular emphasis on 
laboratory scale 2D and 3D flames. Our primary interest is 
in the testing and implementation of new physical models 
and numerical schemes and the analysis and modelling of 
flame physics. Thus, the toolkit needs to be efficient, 
modular and extensible to accommodate the testing of 

various physical models with parallel and high performance 
computing. The most important characteristics are 
modularity, low maintenance requirements, and a code 
design that hides the complex data structures from the user. 
We achieve these characteristics through a judicious 
mixture of new and old software engineering techniques and 
numerical methods. In this paper we present a description of 
both, with an emphasis on numerical methods. 

Reacting flows (and especially laboratory-sized 
hydrocarbon flames at atmospheric conditions) exhibit a 
wide spectrum of length and time scales. Length scales 
range from roughly 100 µm (Najm et al., 1998) (the width 
of atmospheric-pressure flame radical profiles) to the flow 
geometry scale (O(10 cm) for laboratory-scale flames). 
Assuming that the finest structures need to be resolved with 
at least ten grid points, we end up with a grid that has 104 
grid points on each side. Coupled with the fact that  
detailed-chemistry reacting flow models have O(100) 
unknowns (mostly species concentrations), the CPU and 
memory requirements become significant for adequately 
resolved simulations. 

Except for the cases where reaction zones are distributed 
in the entire domain (e.g., reacting turbulence), most flames 
involve localised regions of intense chemical and physical 
activity while the bulk of the domain is largely sedate. 
These localised flame front regions are sites of intense 
concentration gradient, and involve large reaction rates and 
high diffusional transport fluxes. The total spatial extent of 
the reaction zones is usually small relative to the flow 
domain length scales. Therefore, if high grid densities are 
limited to the active regions, one can achieve significant 
savings in CPU and memory requirements. Since these 
flames are unsteady, the grid would also need to be 
adaptive, i.e., these ‘reactive’ zones need to be 
automatically identified and the grid needs to be adapted  
to them. Such a technique, adaptive mesh refinement 
(Chung, 2002), is widely used in hydrodynamics, and we 
employ one of its subcategories called structured adaptive 
mesh refinement or SAMR in the present work. 

Structured adaptively refined meshes overlay grids of 
increasing refinement until the required accuracy is 
achieved, thus reducing the total number of mesh points 
compared to uniform mesh approaches. However, this 
results in a multi-level mesh, i.e., a point in space admits 
multiple resolutions and, unless a consistent numerical 
approach is followed, multiple (erroneous) solutions. The 
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SAMR approach restricts the sub-domains of higher 
refinement to regions that can be expressed as a disjoint 
union of rectangular boxes. Berger and Oliger (1984) first 
proposed this multi-level approach for inviscid supersonic 
flows (the compressible Euler equation, hyperbolic PDEs 
which reduce to ODEs after spatial discretisation) which 
was simplified (by restricting all rectangles to be aligned to 
each other) by Berger and Colella (1989). This was 
extended to incompressible inviscid flows (incompressible 
Euler equation, which reduces to DAEs after spatial 
discretisations) by Minion (1996), and variable density 
incompressible viscous flows (incompressible Navier-Stokes 
equation) by Almgren et al. (1998). The main contribution 
in (Minion, 1996; Almgren et al., 1998) was the 
establishment of a consistent way of enforcing the algebraic 
constraint of the DAE. Pember et al. (1998) added a 
chemical reaction to the physics and augmented the fluid 
dynamical equations with coupled equations for the 
evolution of chemical species. Day and Bell (2000)  
further refined the approach and have used SAMR to 
simulate large 2D and 3D flames (Bell et al., 2003a, 2003b; 
Sullivan et al., 2002). 

Timescales in reacting flow vary between ~1 ns (fast 
chemical reactions) and ~100 ms (diffusion of ‘heavy’ 
hydrocarbon species). Since the differential equations 
modelling flame chemistry are often ‘stiff’, an implicit  
time-integration scheme is indicated. However, 
implementing an implicit scheme on adaptive meshes in a 
parallel environment is difficult because of the cross-processor 
coupling caused by spatial derivative stencils at processor 
boundaries. We address this issue by adopting an  
operator-split construction (Strang, 1968), where the 
reactive terms are integrated separately from the convective 
and diffusive terms. This allows us to choose separate time-
integration algorithms for the stiff reactive system and the 
diffusive systems. This enables us to avoid the excessively 
tight timestep constraint that a stiff chemical system may 
pose if integrated with an explicit time integrator. 

Operator splitting, as proposed by Strang (1968) is a 
commonly used procedure to allow the use of 
specialised/customised integrators for various 
terms/operators in an equation. It has been used in 
atmospheric modelling (Spee, 1995; Verwer et al., 1995; 
Spee et al., 1998) to decouple different operators. Emphasis 
has been placed on the stability of different schemes 
(Sheng, 1989; Wright, 1998) and the role of stiffness in 
stability (LeVeque and Yee, 1990). The identification and 
control of splitting errors has been a common subject  
(Spee, 1995; Wright, 1998; Lanser and Verwer, 1999;  
Ropp et al., 2004) as have been the transients (which  
occur when one switches from one operator to the other) 
(Spee et al., 1998) and the consequences of restarting a stiff 
integrator at each timestep (Verwer et al., 1995; 1999). An 
application of operator-splitting to address stiff chemical 
systems found in flames can be found in (Knio et al., 1999). 
A recent paper by Kværnø (Kozlov et al., 2004) analyses 
the behaviour of local error in splitting methods (both  
 

Strang and Godunov splitting) using Lie groups as well as 
singular perturbation theory. This was done since the 
classical theory for the local order of consistency is valid 
only for stepsizes which are smaller than the ones that are 
typically used in practice. Though very different, both 
approaches provide results which are consistent with 
numerical experiments. 

In this paper, we present, for the first time, how  
high-order spatial discretisations may be used in a SAMR 
environment, to achieve an accurate yet economical 
discretisation of a domain. One can find interesting studies 
and results in the literature regarding high-order spatial 
discretisations for single-level (structured and unstructured) 
meshes with finite differences (Lele, 1992; Visbal and 
Gaitonde, 2002; Wang and Huang, 2002), finite volumes 
(Lilek and Perić, 1995), finite elements (Cockburn and  
Shu, 1998), and spectral elements (Karniadakis and 
Sherwin, 1999). However, no published results exist 
regarding high-order (>2) schemes applied to multi-level 
block-structured adaptive meshes (SAMR). In this paper we 
address various numerical consistency issues and present a 
study of the computational savings achieved with  
fourth-order approaches vis-a-vis second order ones for 
SAMR meshes. We also adapt an extended stability explicit 
time-integration strategy to operate in a time-refined  
(see Section 2.2) manner on such meshes. This is coupled 
with a conventional backward differentiation scheme (BDF) 
in an operator-split construction to solve a set of coupled 
nonlinear stiff PDEs. Specifically, we use a 5th order 
scheme. The order may seem excessively high given the 
second-order operator-split construction, but BDF5 was 
empirically observed to converge the fastest when used in 
our problems. 

This work is effectively a prelude to the ultimate aim of 
creating a toolkit for the simulation of flames using the low 
Mach-number approximation of the Navier-Stokes equation. 
It describes and validates the numerical and software 
techniques that will be employed to create the toolkit. In 
Section 2, we present an outline of high-order 
discretisations and a numerical time-integration scheme 
developed to work on SAMR meshes. This is followed, in 
Section 3, by an account of the CCA (software) 
methodology that we use to implement the schemes 
described in Section 2. In Section 4 we apply and  
validate our schemes on three test cases modelled as 
reaction-diffusion systems of increasing complexity. We 
conclude in Section 5. 

2 NUMERICAL METHODS 

In this section we present an outline of the SAMR approach 
and a description of how high-order spatial discretisations 
and extended stability explicit time-integration schemes are 
adapted to work efficiently (time-refinement) on such 
meshes. 
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2.1 Structured adaptive mesh refinement (SAMR) 

SAMR (Berger and Oliger, 1984; Berger and Colella, 1989) 
is a multiscale algorithm for Cartesian meshes employed to 
achieve higher grid resolution locally, in regions of the 
domain where it is required. Numerical simulations of 
reacting flows and multidimensional simulations in 
particular, can be very expensive in terms of computing 
power. The SAMR method can be summarised as follows: a 
coarse Cartesian mesh (called the Level 0 mesh) is overlaid 
over a rectangular domain, and, based on a suitably defined 
error, the grid points which require further refinement are 
identified. These grid points are flagged and collated into 
rectangular children patches on which another denser 
Cartesian mesh (called Level 1) is imposed. This is done 
recursively, to create a grid hierarchy (GH). Figure 1 shows 
one such GH. The refinement factor between the parent and 
the child mesh is usually kept constant for a given problem. 
In this paper, the refinement ratio is two. The more accurate 
solution from the finest meshes is periodically interpolated 
onto the coarser ones. 

 
Figure 1   A 4-level Grid Hierarchy, taken from a simulation of an 
igniting H2–Air mixture. The temperature field is plotted on the 
Level 0 mesh (the coarsest mesh). Higher levels of refinement are 
shown as a disjoint union of boxes containing meshes of increasing 
fineness 

Although SAMR techniques are fairly simple and 
straightforward conceptually, in practice there are issues 
associated with their implementation. For example, in 
explicit schemes the global timestep is restricted by the 
stability criterion on the finest mesh resulting in a very 
small global timestep. To address this issue one can use 
time-refined explicit schemes (Berger and Oliger, 1984) 
with hierarchies of patches, where each patch is sub-cycled 
with a different stable timestep. A description can be found 
in Section 2.2. Further, SAMR simulations involve temporal 
and spatial interpolations between different levels. Figure 2 
shows a 1D example. The solution Φn on Level 0 (L0) is 
advanced first to Φn+1. Boundary conditions are used to 

evaluate the ‘domain boundary points’, marked as ovals on 
L0 in the figure and their value is used to evaluate  
spatial derivatives near the boundaries. When the same 
time-integration step is repeated at L1, the ‘patch boundary 
points’ (shown as ovals on L1) are interpolated from Φn 
from the coarse mesh. This coarse-to-fine interpolation is 
called prolongation. Since explicit time-integration schemes 
are subject to a constraint on ∆t (because of stability), L1 is 
sub-cycled twice with ∆t1 = ∆t0/2, i.e., Φn → Φn+1/2 → Φn+1, 
assuming a convection stability constraint. During the 
second cycle, Φn+1/2 → Φn+1, the ‘patch boundary points’ 
(ovals on L1) require interpolated data from L0, but at time 
t = ∆t0/2. This is obtained by first spatially interpolating 
both Φn and Φn+1 from L0 to the oval point and then 
temporally interpolating between the Φn and Φn+1 
interpolated at the oval point. Interpolations from  
fine-to-coarse meshes are also done to synchronise data 
between fine and coarse meshes. The fine-to-coarse 
interpolation is called restriction. See Section 2.2 for 
details. Spatial interpolations add a significant cost to 
SAMR approaches, especially in 3D. 

 
Figure 2   A 1D example of interpolations that occur in SAMR 
simulations. In order that one may avoid skewed spatial derivative 
stencils, boundary conditions are used to evaluate the ‘domain 
boundary points’ (ovals on L0). On L1, the ‘patch boundary 
points’ (ovals on L1) are interpolated from L0. For linear 
interpolations, the dependence of the L1 oval on L0 grid points are 
shown with arrows. Time sub-cycling is shown by the requirement 
to solve for 1 solution on L0 (Φn+1) and 2 on L1 (Φn+1 and Φn+1) 

The criteria for adaptation (refining and coarsening regions 
in space) pose a challenge in most adaptive simulations. 
While a rigorous approach based on Richardson 
extrapolation is outlined in Berger and Colella (1989),  
it is expensive and is frequently replaced by heuristic  
work-arounds, thus creating a degree of uncertainty in the 
accuracy of the solutions. Further, the use of SAMR on 
parallel computers poses significant load balancing 
problems. It poses the requirement of keeping parents and 
children on the same processor to avoid sending prolonged 
and restricted data for entire patches over the network. 
Thus, the distribution of computational load (as a function 
of space) becomes extremely non-smooth, i.e., regions of 
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multiple levels of refinement have high loads because load 
scales exponentially with the level of refinement, and one is 
posed the task of partitioning such a domain into equally 
loaded parts. Unless the L0 mesh is quite fine (i.e., the 
partitioning can be achieved in a fine-grained manner), this 
is extremely difficult, resulting in poor domain-partitioning. 
Since L0 is typically very coarse, severe load-imbalances 
are quite common when operating with deep grid 
hierarchies. There are two possible approaches in order to 
avoid deep hierarchies: the first is to increase the refinement 
factor (e.g., instead of having a refinement factor of two, 
have a factor of four), thus reducing the required levels of 
refinement; the second is to implement a high order method 
to discretise the spatial derivatives thus obtaining higher 
accuracy with coarser grids, i.e., with fewer levels of 
refinement. The first approach reduces the hierarchy depth 
but does not appreciably reduce the number of grid points, 
and hence we chose to explore the second approach. 

To illustrate the potential efficiency gains of high-order 
spatial discretisations, one may consider first-derivative 
operators. The qualitative conclusions for derivative 
operators may then be applied to interpolation operators 
provided Runge phenomena are not experienced. Jameson 
(2000) has attempted to quantify the relative efficiencies of 
different orders-of-accuracy. Table 1 lists the number of 
grid points needed by explicit, centred derivative operators 
of various orders to resolve a particular wavenumber mode 
to a given error tolerance. Even a modest increase in order 
(from 2nd to 4th) drops the resolution requirements in 1D 
by a factor of 3 for a 10–2 error tolerance; for tighter 
tolerances a factor of 20 is achieved; and at higher orders, 
one achieves almost 2 orders of magnitude savings in 
resolution. Given that these savings will be squared and 
cubed as one proceeds to 2D and 3D respectively, the 
advantages of a high-order scheme become evident. 

Table 1   Number of grid points per wavelength required for 
a chosen error tolerance ε when the first derivative of a sine 
wave is computed using an explicit central difference stencil 
of 2nd, 4th, 6th, 8th and 10th order (2E, 4E, 6E, 8E and 10E 
respectively) 

ε 2E 4E 6E 8E 10E 

10–2.0
 25.65 8.344 5.712 4.696 4.156 

10–2.5
 45.53 11.22 7.012 5.516 4.753 

10–3.0
 81.07 15.03 8.572 6.444 5.412 

10–3.5
 144.1 20.20 10.44 7.507 6.136 

10–4.0
 256.5 26.85 12.69 8.727 6.943 

10–4.5
 455.3 35.70 15.44 10.12 7.834 

10–5.0
 816.0 47.60 18.70 11.72 8.837 

The use of high-order stencils is not without its drawbacks. 
High-order stencils involve more computations to evaluate a 
derivative. In addition, derivative schemes above fourth-order 
may best be closed to a lower order at the domain  
 
 
 

boundaries to remain time-stable. Further, they need to be 
coupled with high-order prolongation and restriction 
operators to preserve the accuracy at all levels of the GH. 
While the increased computational cost is relatively 
inconsequential with derivative operators, interpolation 
operators are evaluated by using a linear combination of as 
many as pd (where p is the order of accuracy and d is the 
dimensionality) values and their respective coefficients. In 
an explicit time integration procedure, the larger 
eigenvalues of the high-order derivative operator matrix 
may reduce the maximum step-size by a third or so. 
However, the sparser grid (small data size) of a high-order 
formulation will benefit tremendously from the higher 
cache-hit rate and it is unclear whether the ‘time-to-solution’ 
of a high-order scheme will be vastly different. 

2.1.1 High-order discretisations 

A high-order spatial discretisation for vertex-centred AMR 
with a refinement factor of two requires derivative,  
coarse-to-fine interpolant, and filter operators. In this paper, 
we investigate 4th order discretisations. All derivatives used 
in our work use first-derivative operators, applied repeatedly 
if necessary. For example, a fourth-order first derivative 
evaluated at (i) on a uniform mesh is of the general form: 

3 2 1

1 2 3

( ) ( ) ( ) ( )

.
( ) ( ) ( )

L i L i L i i
i

R i R i R i

c f b f a f f
f

x x x x
a f b f c f

x x x

− − −

+ + +

ϒ′= + + + +
∆ ∆ ∆ ∆

+ + +
∆ ∆ ∆

 (1) 

where {a, b, c} are stencil coefficients for the points right 
(R) and left (L) of (i) and ϒ is the i-point stencil coefficient. 
Several examples of varying accuracies are listed in  
Table 2. At the domain boundaries, the derivatives can be 
calculated either by creating a halo of grid points around the 
domain and using the same stencils or by closing, possibly 
to lower order, using skewed stencils. We use the second 
approach because of its better stability characteristics.  
Table 3 lists several possible stencils. The approach for high 
orders is identical. 

Table 2   Stencil coefficients for centred (E) and upwinded 
(U) first-derivative operators of different orders of accuracy 
on uniform grids. S is the name of the stencil, LOTE is an 
abbreviation of Leading Order Truncation Error and ξ is a 
scaled wavenumber. O(p) stencils have O(ξp+1) LOTE. 
These results were obtained for a uniform mesh 

S cL bL aL ϒ aR bR cR LOTE 

2E 0 0 –1/2 0 1/2 0 0 –(1/6)ξ3 

3U 0 0 –1/3 –1/2 1 –1/6 0 –(1/12)ξ4 

4U 0 0 –1/4 –5/6 3/2 –1/2 1/12 +(1/20)ξ5 

4E 0 1/12 –2/3 0 2/3 –1/12 0 –(1/30)ξ5 
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Table 3   Stencil coefficients of skewed lower-order,  
first-derivative operators near boundary points. These can 
be used with fourth-order derivative discretisations. These 
results were obtained for a uniform mesh 

cL bL aL ϒ aR bR cR LOTE 

0 0 0 –1 1 0 0 –(1/2)ξ2 

0 0 0 –11/6 3 3/2 –1/3 +(1/4)ξ4 

0 0 –1/3 –1/2 1 –1/6 0 –(1/12)ξ4 

0 0 –1 1 0 0 0 +(1/2)ξ2 

–1/3 3/2 –3 11/6 0 0 0 –(1/4)ξ4 

0 1/6 –1 1/2 1/3 0 0 +(1/12)ξ4 

As mentioned in Section 2.1, SAMR simulations 
periodically prolong data from coarse meshes to a halo of 
points around their finer children so that centred stencils 
may be used throughout. This process is skipped on a patch 
boundary if it abuts a domain boundary. More accurate data 
are also restricted from a finer patch to its coarser parent. In 
two-dimensions, interpolation stencils take data off from a 
four-squared block of points (for fourth-order 
interpolations) and interpolate a value onto the geometric 
centre of a cell. Within the interior of the domain, the 
interpolated point is the geometric centre of the block but 
near physical boundaries, the block will skew relative to the 
interpolation point. Whereas second-order coarse-to-fine 
interpolation requires no boundary closure, fourth-order 
does. At second-order, there is one stencil coefficient, i.e., 
for the points (i ± 1/2, j ± 1/2) = 1/4. At fourth-order, there 
are three unique stencil coefficients; (i ± 1/2, j ± 1/2) 
= 81/256, (i ± 1/2, j ± 3/2) = (i ± 3/2, j ± 1/2) = –9/256, and 
(i ± 3/2, j ± 3/2) = 1/256. At higher order, the number of 
unique stencils increases. 

Filtering (Kennedy and Carpenter, 1994) is a potential 
way to cleanly remove high-wavenumber information from 
the grid. There are two compelling reasons to filter. The 
first is that any finite difference numerical method has 
limited accuracy, therefore higher-wavenumber information 
that is unresolvable by the numerical method needs to be 
removed before it interferes with the resolved wave-numbers. 
Secondly, in order to avoid failure of the interpolant  
operators, no wavenumber that represents less than 
approximately six grid points may be present (Trefethen and 
Weideman, 1991). Filters on a vector f old are implemented 
as 

f new = (I – νD)f old 

where D is a discrete operator corresponding to a high order 
spatial derivative, f new is the filtered vector, I is the identity 
matrix, ν = (–1)n2–2n and 2n is the order of the filter. Filters 
are an important element in the overall numerical method 
but significant care has to be exercised when using them, 
since the use of a filter is approximately equivalent to 
adding a high order spatial derivative to the PDEs being 
solved. This can lead to non-physical results. We use 8th 
order filters in our study. 

To investigate if high order spatial interpolation 
approaches with SAMR are indeed more economical, we 
solve a model test case, the FitzHugh-Nagumo (Fall et al., 
2001) (FN) equation in Section 4.1. FN has an analytical 
travelling wave solution which simplifies the evaluation of 
errors. We use 2nd and 4th order discretisations on SAMR 
meshes and compare against the theoretical convergence 
rate. A variety of interpolants are used to determine the 
appropriate (discretisation, interpolant) pair, and a 
computational cost analysis is performed. 

2.2 Time integration strategy 

We are interested in PDEs which are of the general form: 

2( , , , ) +
t

∂Φ
= Φ ∇Φ ∇ Φ Φ

∂
…F G( )  (2) 

where Φ is the vector of unknowns (usually temperature and 
the concentration of species). If F in equation (2) includes 
spatial derivatives where each point in linked to its 
neighbours, an implicit integration approach leads to the 
formation, after linearising, of an [A]x = b linear system 
where x includes Φ for all mesh points. Solving such a 
system on a decomposed (across processors) domain is  
non-trivial. Conversely, if no spatial derivatives are 
included, x = Φ, for a mesh point which can be solved rather 
easily, mesh point by mesh point. Details of implicit and 
explicit integrators can be found in (Tannehill et al., 1997). 

G, in equation (2), is stiff (the ratio of the largest and the 
smallest eigenvalues of ∂G/∂Φ is large) while F is non-stiff. 
We employ the following technique, based on  
operator-splitting (Strang, 1968) to time-advance equations 
like equation (2). For a given timestep (called global or 
coarse mesh timestep) ∆tc, advancing from tn to 
tn+1 = tn + ∆tc: 

• Integrate Φt = G(Φ). The initial condition is Φn and the 
output is kept in Φ . This is done using an implicit 
integrator (Cvode, Cohen and Hindmarsh, 1994), on a 
point-by-point basis, for a timestep of ∆tc/2. 

• Integrate Φt = F(Φ,∇Φ, ∇2Φ, …) using an explicit 
integrator (Runge-Kutta-Chebyshev, Shampine et al., 
1998). The initial condition for the step is Φ ; the 
output is kept in Φ , integrated over a period of ∆tc. 

• Integrate Φt = G(Φ) again. The initial condition is Φ  
and the output is kept in Φn+1. This is identical to step 1 
and is done for a timestep of ∆tc/2. 

This procedure for splitting the stiff chemical operator G 
from the non-stiff spatial transport operator F, to form an 
FGF sequence was outlined by Knio et al. (1999). The 
present construction, employing a GFG sequence, follows 
Sportisse (2000) by letting the stiff operator be the last in 
the time step, in order to achieve higher accuracy in the data 
reported at the end of the time step. 

Explicit integrators suffer from a stability restriction  
(due to the transport term F) such that the maximum ∆tc 
depends on the mesh density. Thus, fine patches need to be 
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stepped at finer temporal resolutions than coarser ones; 
consequently for every step of a coarse patch, its (higher 
resolution) children undergo multiple steps. In our case, 
children patches take R steps for each step of the parent 
patch, R being the factor of refinement (2 in this study). 
This is best illustrated in 1D. In Figure 3, we see a three 
level GH, with a refinement factor of 2. As per the CFL 
criterion, the stable timestep ∆t will also vary by factors  
of 2. Level 0 is integrated first with ∆tc. This is followed by 
one integration of Level 1 with ∆t1 = ∆tc/2 and another one 
on Level 2 with ∆t2 = ∆t1/2. Since there are no more levels 
to recurse to, a second integration of ∆t2 is done on  
Level 2. This brings Level 1 and 2 solutions to the same 
point in time (∆t1) and the (accurate) solution from Level 2 
is restricted (fine-to-coarse interpolation) to Level 1. The 
same process is repeated to advance Level 1 up to ∆tc, with 
Level 2 undergoing two more integration phases. Thus the 
integration sequence is ABCCBCC (where A, B and C are 
the meshes on Level 0, 1 and 2 respectively), the pre-order 
traversal of a binary tree. The entire process of sub-cycling 
different patches at different timesteps is called time 
refinement. This sub-cycling increases the complexity of the 
time-integration scheme substantially and incurs significant 
recursion overheads if the GH is deep (large number of 
refinement levels). 

 

Figure 3   Time-refinement/sub-cycling strategy to avoid the 
timestep constraint imposed by the finest mesh. Finer levels are 
subcyled (integrated more frequently but with smaller ∆t) and the 
solution is synchronised between (coarse) parent and (fine) 
children using restrictions (fine-to-coarse interpolations) 

The patch hierarchy is periodically recreated. The solution 
is passed through a filter (with an appropriately defined 
error criterion) to determine regions needing finer meshes, 
whereby new patches are created and initialised with 
prolonged data from the coarse meshes (provided there does 
not exist a fine patch over that subdomain, wholly or 
partly). Regions which are deemed over-refined have their 
fine patches destroyed.  

2.2.1 Runge-Kutta-Chebyshev explicit integration 

Shallow grid hierarchies benefit from explicit time-integrators 
capable of large timesteps. Given an initial value problem 
Φt = F(Φ), one can design Runge-Kutta schemes with 
extended stability regions along the negative real axis, i.e., 
schemes which are suitable for problems where the  
 

eigenvalues of ∂F/∂Φ are near the negative real axis. We 
use one such second-order Runge-Kutta-Chebyshev (RKC) 
scheme (Shampine et al., 1998) with a stability region 
which grows approximately as 0.6s2 along the negative real 
axis, where s is the number of stages in the scheme. Local 
error analysis (Shampine et al., 1998) reveals that the error 
term over a timestep τ is of O(τ3) , but is also a function of s. 
Convergence results are in (Verwer et al., 1990). Briefly, 
each timestep can be written as: 
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where the time-advancement of Φn to Φn+1 is over a 
timestep τ. Note that jµ , jγ , µj and νj are known analytical 
functions of s. The stage timestep size varies as Dtj/t ≈ 
(j2 – 1)/(s2 – 1), where j, is the stage number. The stability 
region for this scheme occupies a fairly narrow region 
around the negative real axis (in the complex stability 
plane). Thus, if the system being integrated has eigenvalues 
with a significant imaginary component, it is unlikely that 
RKC will be very advantageous. However, in most reactive 
diffusive-advective problems of interest this has not been 
the case, and RKC-based approaches have worked quite 
well (Najm and Knio, 2003; Lanser and Verwer, 1999). 
Recently, RKC has also been coupled with an  
implicit-explicit (IMEX) scheme (Verwer and Sommeijer, 
2004) to solve reaction-diffusion equations. Within the 
setting of linear stability theory, the incorporation of IMEX 
was not seen to affect the stability region of the RKC 
scheme. 

The extension of a traditional explicit Runge-Kutta 
method (second order) for time-refined stepping on SAMR 
grids was outlined in (Berger and Oliger, 1984). The 
extension of RKC is conceptually similar. Each RKC stage 
is first-order, requiring only linear (temporal) interpolation 
(from a parent mesh’s data) at the child patch edges (where 
it becomes impossible to evaluate centred spatial stencils 
due to lack of grid points on one side). Implementation 
details involve significant book-keeping and temporal 
interpolations from coarse to fine meshes based on the stage 
number of the integration process on the fine mesh. 

We used RKC (modified for time-refined time-stepping 
on SAMR meshes) to solve ft = µ∇2φ on a unit  
square with zero gradient boundary conditions and a 
Gaussian distribution (f0(x) = exp(–r2/δ2), δ = 0.05, where 
r = x – x0, x0 = {0.5, 0.5}) for the initial condition.  
A second order discretisation was chosen. The region 
0.3 ≤ x ≤ 0.7, 0.3 ≤ y ≤ 0.7 was refined. Two levels of 
refinement (i.e., a 3-level GH) were allowed. The timestep 
size ∆t was much smaller than the stable limit of an 8-stage 
RKC. We evaluate the error vis-a-vis the analytical solution 
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and plot it in Figure 4 for a range of ∆t. We see that the 
error convergence is second-order in time. 

 

Figure 4   Convergence of the temporal error is the solution of the 
heat equation. A second-order spatial discretisation was used on a 
mesh with two levels of refinement. Errors show 2nd order 
convergence in time 

In Section 3 we describe the software architecture within 
which these numerical algorithms are implemented. 
Emphasis is on high performance and modularity, so as to 
enable plug-and-play and promote experimentation with 
algorithms. 

3 SOFTWARE METHODOLOGY 

Our goal is to design a flexible, modular, reusable  
toolkit. A valuable pointer for achieving modularity in  
scientific computing comes from commercial practices.  
The business world has implemented modularity by 
adopting the component model (e.g., Visual Basic, http:// 
msdn.microsoft.com/vbasic, CORBA, http://www.omg.com 
and Java Beans, Englander and Loukides, 1997). In this 
model an object implements a functionality, which is 
exploited via interfaces; an object’s adherence to a 
specification (dictated by the component model) transforms 
it into a component within the framework. Components are 
peers, i.e., they do not inherit from other components, and 
are easily extensible since components implementing an 
agreed to, well defined interface can be developed in 
complete isolation. While component-based software design 
enhances the cooperative development of applications, the 
commercial model is unsuitable for scientific computing  
 
 

(Allan et al., 2002), the main drawbacks being high latency 
and lack of support for parallel (not distributed) computing. 
The CCA (Common Component Architecture) component 
model was designed (Armstrong et al., 1999) to meet the 
high performance requirements of scientific computing; to 
date three CCA-compliant framework implementations have  
been demonstrated (Ccaffeine, Allan et al., 2002,  
Uintah, de St. Germain et al., 2000 and XCAT, 
http://www.extreme.indiana.edu/ccat/). The CCA standard 
is flexible; while allowing an evolutionary path forward for 
new scientific applications, it is also an efficient way of 
‘wrapping’ legacy codes. 

In the following we present how one identifies a class of 
significant computational scientific problems, involving 
realistic physical models, non-linear PDEs and a spectrum 
of time and length scales, and creates a CCA-compliant 
component-based software infrastructure to solve them. 
This infrastructure consists of scientific components, where 
each component has a distinct functionality in terms of 
physical modelling or implementation of a numerical 
algorithm. Components are assembled into component 
assemblies to solve numerical problems. Since most 
complex problems are solved in a hierarchical manner, 
component assemblies (for simpler problems) appear as 
sub-assemblies in the solution strategies for larger, more 
complex ones. This ease of reuse results in significant 
savings in programming effort and promotes 
experimentations with unconventional approaches, often 
contributed by experts. In this section we outline a 
description of the Common Component Architecture and 
the design rationale of our components. Section 4 illustrates 
how components are reused and two competing solution 
strategies may be tried out with little difficulty. 

3.1 The CCA component model 

The CCA model (Armstrong et al., 1999) uses the  
provides-uses design pattern. Components provide 
functionalities through interfaces that they export; they use 
other components’ functionalities via interfaces. These 
interfaces are called Ports; thus a component has 
ProvidesPorts and UsesPorts. Components are peers and are 
independent. They are created and exist inside a framework; 
this is where they register themselves, declare their 
UsesPorts and ProvidesPorts and connect with other 
components. 

Ccaffeine (Allan et al., 2002) is the CCA framework that 
we employ. It is a low latency framework for high 
performance (parallel) scientific computations. Components 
can be written in most languages within the framework; we 
develop most of our components in C++ or as sets of C or 
F77 libraries wrapped in C++. Every component is 
compiled into a shared object library, i.e., a dynamically 
loadable library. Most of the Ports we implement are 
domain specific and their design is a result of agreed-to 
interfaces.  
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One of the features of dynamically loadable libraries is 
that when loaded into memory, their symbols (variable and 
subroutine names) are preserved in a separate namespace. 
This drastically reduces the chances of symbol conflicts and 
erroneous symbol resolution at runtime. This feature is 
extremely helpful when one integrates a legacy software 
package into an existing scientific code. In its absence, one 
would have to resolve the conflicts manually, an exercise 
prone to error if the package being modified is  
ill-understood. 

3.2 Design of components and interfaces 

In this section we demonstrate the rationale for the recursive 
decomposition of the solution strategy of equation (2) into 
software subsystems and the interfaces developed. A 
software subsystem is a collection of components that 
embodies a physical or numerical functionality (e.g., an 
explicit integration subsystem includes the time integrator, 
the RHS evaluator and miscellaneous components that 
identify the largest eigenvalue of the discretisation matrix to 
enable dynamic time-step sizing). The software subsystems 
we identified are: 

• Mesh. It serves as a means of declaring and maintaining 
patches in the mesh hierarchy. It is geometric in nature, 
and determines and administers the child-parent-sibling 
relationships and the spatiotemporal location of 
patches. Load balancing and domain decomposition 
functionalities are implemented here. 

• Data object. It maintains the collection of arrays which 
contain data declared on patches, one array per patch. 
Typically a number of related variables are stored 
together in a data object; equally typically, a simulation 
would contain 2–3 data objects. This subsystem 
implements the actual movement/copying of data 
between patches and the packing/unpacking of data 
before/after message passing. Currently we have 
wrapped GrACE (http://www.caip.rutgers.edu/TASSL/; 
Parashar and Browne, 2000) into a CCA component to 
perform the data object and the mesh tasks. 

• Initial condition. This subsystem consists of a set of 
components that impose initial conditions on a data 
object. 

• Explicit integration subsystem. It consists of a recursive 
time integrator that advances a set of data objects over a 
time step as well as components that evaluate and 
assemble the right hand side (RHS), one patch at a 
time. The evaluation of the RHS can be done by one 
component or by a further subsystem of components. 
This also contains components that analyse the field to 
determine an approximation of the highest eigenvalue 
that the integrator will encounter. This information is 
used by the integrator to dynamically adjust the 
timestep. 

• Implicit integration subsystem. This consists of an 
implicit time integrator, which advances a vector of 
variables, RHS component(s), and an adaptor that 
collates data from a patch to a vector. 

• Interpolation components. These implement various 
spatial and temporal interpolation operators. 

• Boundary condition. It is applied on a patch by  
patch basis. BCs are applied at each of the stages of a 
multi-stage integration scheme; hence application of the 
boundary conditions has to be done on a finer basis 
than one data object at a time. Thus, the granularity will 
be a patch. 

• Database components. These components store certain 
parameters (e.g., mesh size, gas properties, etc.) that are 
retrieved using a key-value pair mechanism. They are 
essentially maps between the (character string) property 
name and a number. 

• Adaptors. Depending on the physical problem at hand, 
case-specific adaptors are often used to consolidate and 
filter outputs from various physics components. 

Given the functional description above, it is clear what 
types of Ports (interfaces) are needed: 

• Port(s) (provided by the mesh component) that allow 
• geometrical manipulation of the domain, 
• the declaration of fields on the mesh  

(via data objects) 
• tasks like setting/querying of domain-

decomposition details. 

Our design for such a Port is called MeshPort (http:// 
www.caip.rutgers.edu/~jaray/CCA/documentation.html). 

• An abstract interface for the data object allowing 
manipulation of patches and the data defined on them. 

• Ports that accept an array of data objects and act on 
them in a synchronised manner. Integrators usually 
support these ports. 

• Ports that accept an array from a patch. 
• Ports that accept vectors. 
• Ports that allow setting/querying of key-value pairs. 

A detailed description of our software design can be found 
in Lefantzi et al. (2003). 

In Sections 4.2 and 4.3 we will show the use and reuse of 
a set of components developed for solving mathematical 
systems like equation (2). These relate, physically,  
to a 0D/homogeneous ignition, and ignition in a  
two-dimensional (2D) reaction–diffusion system. We will 
also show how various changes in the capability of 
simulation codes may be achieved by simply 
replacing/substituting components, thus illustrating the 
power of a modular and recomposable software strategy. 

4 TEST CASES 

In this section we will seek answers to the following 
questions: 

• Can high-order stencils be used in a SAMR setting to 
achieve higher accuracies? How should discretisations 
of a certain order be paired with interpolations to 
achieve the desired accuracy? Can high order methods 
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be used to reduce run-times, i.e., are they economical 
vis-a-vis second-order approaches? 

• What design and algorithmic principles need to be 
followed so that one achieves reusable software 
modules? Can a component based software 
methodology be shown to be flexible enough for 
scientific computing? 

• Is the plug-and-play nature of CCA components 
powerful enough to enable the testing of numerical 
approaches/algorithms in non-trivial problems in a 
relatively straightforward manner? 

To answer these questions, we conduct the following tests: 

• We solve a model reaction-diffusion equation 
(FitzHugh-Nagumo equation) on SAMR meshes and 
compare the numerical results with the exact solution. 
Convergence of error with the effective grid resolution 
(finest ∆x) will be used to check if high-order accuracy 
has been achieved. 

• A 0D ignition simulation of a CH4–Air mixture using 
CCA components on 1 CPU. This test case will 
demonstrate a minimal set of components for treating 
chemical reactions. 

• A 2D parallel simulation of H2–Air reaction-diffusion 
ignition using SAMR, extended stability time-
integration and high-order schemes. This will use the 
chemistry-related component developed for the 0D 
simulation. Further, second-order and fourth-order 
spatial discretisations will be used in separate runs. 

4.1 FitzHugh-Nagumo equation 

We solve the following 1D problem: 

(1 )( )t xxU DU AU U U α= + − −  (4) 

subject to the boundary condition Ux = 0 at x = ±∞. This 
equation admits an analytical travelling wave solution: 

1( , ) 1 tanh
2 2

U t ξξ
ε

 = + 
 

 

where ξ = x + st, and 

2 and (1 2 )D ADs =
A 2

ε α= −  

Details of the derivation are in (Fall et al., 2001). We chose 
D = 1.0, A = 2 × 104 and α = 0.3, giving ε = 10–2 and s = 40. 

The problem is solved numerically in a 0 ≤ x ≤ 1 domain 
discretised with a coarse (Level 0) mesh of 100 points. The 
front is initialised at x = 0.5. The region 0.26 ≤ x ≤ 0.61 is 
covered by a Level 1 patch and 0.3 ≤ x ≤ 0.55 by a Level 2 
patch. The problem is integrated, in a time-refined manner, 
using a second-order explicit Runge-Kutta scheme (Heun’s 
method), with a ∆t on the coarse mesh of 6.25 × 10–7, 

chosen so that the O((∆t)2) temporal errors are far smaller 
than the spatial errors. The solution is advanced up to  
t = 1.25 × 10–3, corresponding to a 5ε traversal of the wave. 
Figure 5 shows the profile on the Level 0 mesh at the start 
and at the end of the run. We see that the front is defined by 
about ten grid points on the coarse mesh and better as higher 
level patches are added. The refinement factor is two. 

 

Figure 5   Profile of U at t = 0, 1.25 × 10–3 (graphs with  and 0, 
respectively) on the coarse mesh. The data at the Level 0 mesh 
points are marked with symbols; the levels refine by a factor of 
two. This particular run had three levels and the duration of 
integration was chosen to that the front would move a distance 
equal to 5ε, as shown 

In Figure 6 we plot the RMS error with respect to the 
analytical solution on the individual levels on the grid 
hierarchy. We see that second and fourth-order convergence 
is obtained. No filtering is done; with ten coarse grid points 
in the front, the Runge phenomenon was not observed. In 
Figure 6 we see that, as expected, the fourth-order 
simulation is far more accurate than the second-order one 
and the difference in accuracy increases dramatically with 
resolution. Further, a given level of error (a horizontal line 
in Figure 6) can be achieved with a coarser mesh (fewer 
levels of refinement) when the fourth-order (as opposed to a 
second-order) approach is employed. Thus, if numerical 
accuracy, to the exclusion of everything else, is the 
objective, a high-order approach is the obvious choice. 

However, the choice of a numerical scheme has to be 
tempered with its cost. We measured the floating point 
operation count on Intel Pentium III processors with 256 kB 
L2 cache and running at 1 GHz. The interpolation and 
discretisations were written in Fortran77 and compiled with 
Portland Group F77 compiler pgf77. The overarching control 
code was in C++ compiled with the GNU suite of compilers 
gcc-2.96. The problems were run on the IA-32 cluster at 
NCSA (platinum.ncsa.uiuc.edu) and the floating point 
operations were measured using PAPI (Browne et al., 2000). 

Figure 7 shows the total number of floating point 
operations, normalised by the count from a 1-level  
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second-order run, as a function of the RMS error. This data 
obtained from the runs is plotted in Figure 6. It is clear, that 
for this problem, the fourth-order simulation is cheaper  
than the second order approach, and it gets progressively 
more economical as the error tolerance becomes more 
stringent. 

 

Figure 6   The RMS error on the individual levels, as the 
simulation is run on a 1-, 2-, 3- and 4-level grid hierarchy. The 
errors on levels 0 to 3 are indicated by , ○,  and ◊. The ideal 
behaviour is given by the solid line. Results for both second and 
fourth-order discretisations are shown. A 1-level grid hierarchy 
has an effective resolution of 100 in the [0,1] domain; 2-, 3- and  
4-level grid hierarchies are correspondingly equivalent to a  
200-, 400- and 800-grid point uniform mesh 

 

Figure 7   The computational load vs. RMS error for the second 
and fourth-order approaches. Results have been normalised by the 
computational load of a second-order, 1-level grid hierarchy run 
(1,208,728,001 floating point operations). It is clear that for this 
problem, the fourth-order simulation is cheaper than the  
second-order approach, and it gets progressively more economical 
to use the high-order approach for a given level of error as the 
error tolerances become stringent 

Note that, if one chooses to operate in a marginally resolved 
manner, approaching the Trefethen and Weideman limit 
(Trefethen and Weideman, 1991), the large errors resulting 
from the two approaches may very well be comparable  
(see left extreme of Figure 6). Further, judging from the 
right limit of Figure 7, the high-order approach would not 
offer much economy either. 

We now address the issue of the correct choice of 
interpolant with a given discretisation. Since U on each grid 
is eventually the result of interpolation based on local 
polynomials, one cannot differentiate this interpolated data 
indefinitely. Interpolated data of order pI which is differentiated 
k times will not preserve its original accuracy and 
consequently care has to be exercised to ensure that the final 
differentiated term does not fall below the desired accuracy. 

We solve the same problem, but now only the region 
0.4 ≤ x ≤ 0.49 is covered by a fine mesh. As mentioned 
before (Section 2.1.1) interpolants are used to initialise a 
halo of cells at the edges of the fine mesh so that centred 
discretisations may be used everywhere. These interpolation 
errors manifest themselves in the right hand side (RHS) 
term of the equation. It thus becomes necessary that these 
interpolation-generated errors be comparable to the 
discretisation error so that their effect is observable in  
the evaluation of the RHS. In order to do so, we terminate 
the fine mesh at x = 0.49 so that these interpolations are 
performed in a region of high gradient (and consequently 
large errors). The correct choice of interpolant will ensure 
that the order of convergence of the interpolation errors is 
equal to or larger than that of the discretisation. The error 
introduced by this interpolation changes as the wave moves 
into the fine mesh and the interpolation is done in a region 
of small gradient. For that reason during our tests we 
integrate for only a small period in time, so that the gradient 
at the edge of the fine mesh remains large. Further, the 
interaction of interpolation and discretisation errors occurs 
only in the Uxx term, which in certain regions may be 
overwhelmed by the reaction term AU(1 – U)(U – α). 
Therefore, in order to measure convergence, we measure the 
error in Uxx vis-a-vis the exact solution. Experiments are 
done on a hierarchy with two levels of refinement. Errors 
are calculated (for convergence testing) by varying the 
coarse mesh resolution. 

In Figure 8 we plot the convergence of the Uxx term as a 
function of the resolution of the coarse mesh when  
different discretisation and interpolant pairs are used. For 
fourth-order discretisations (Figure 8) 6th and 8th order 
interpolants are seen to preserve the order. We did not use 
odd-ordered interpolants to restrict ourselves to dissipative 
errors. Thus, for problems where the largest spatial 
derivative is of order 2, the sufficient condition for pDth 
order convergence appears to be pI ≥ pD + 1. A similar 
study, done with 6th order discretisations (Lefantzi et al., 
2003), also corroborates this condition. Further, the 
refluxing done in (Berger and Colella, 1989; Almgren et al., 
1998) is omitted here and the overall scheme is thus  
non-conservative at the boundaries of coarse and fine 
patches. 
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Figure 8   We plot the RMS error on L0 and L1, as a function of the 
coarse-mesh resolution. The ideal and actual convergence of the 
errors in Uxx are plotted in the heavy black line and  respectively. 
Fourth-order discretisations are used. Actual errors on L1 mesh 
from a 4th order interpolant run are plotted as ο and the heavy 
dashed line is the best linear fit. The convergence (for ο) is less 
than 4th order.  and  are the results for 6th and 8th order 
interpolants. The linear fits show a convergence greater than the 
coarse mesh, i.e., 4th order 

4.2 Zero dimensional ignition 

Our next test case is a 0D/homogeneous ignition of a 
stoichiometric CH4–Air mixture described by the system: 
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where T is the gas temperature, Yi is the mass fraction of 
species i in the mixture, P0 is the stagnation pressure, N is 
the total number of species, hi is the specific enthalpy of 
species i, ωi is the chemical production rate of species i, Wi  
is the molecular weight of species i, W  is the mixture  
 
 
 

molecular weight, ρ is the mixture density, cp is the mixture 
constant-pressure specific heat and γ is the ratio of specific 
heats. Equation (5) is identical to equation (2) without the 
spatial derivative term (F). We use a CH4–Air mechanism 
(GRI-Mech 1.2, Frenklach et al., 1995). Pressure rises as the 
mixture ignites, since the entire phenomenon occurs within 
rigid walls, i.e., volume and mass are constant. These 
equations are 0D reductions of the low Mach number form 
of the Navier-Stokes, energy, and species equations; details 
about the equations and the dependence of hi, ρ, cp, γ, ωi, 
W  on Φ can be found in (Majda and Sethian, 1985;  
Najm, 1996). 

For the 0D ignition test case we designed and 
implemented six components (Figure 9): 

• an initial condition component that imposes 
stoichiometric CH4–Air mixture composition at 1500 K 
and 1 atm 

• an implicit stiff/non-stiff integrator (Cvode 
Component) that time-advances the system as it ignites 

• an adaptor (problemModeler) that assembles the RHS 
terms, i.e., the source terms and the pressure 

• a component (ThermoChemistry) that embodies the 
chemical interactions providing the source terms for 
temperature and species 

• a component (ref) which holds the reference values 
needed by ThermoChemistry and are problem 
dependent 

• a component (dpdt) that computes the pressure term 
which depends on the boundary conditions of the 
problem; for the 0D ignition we have constant mass and 
volume, i.e., rigid adiabatic walls. 

The code was tested successfully and results compared with 
results obtained with Senkin (Kee et al., 1988). After 
ignition, temperature and pressure reached their maximum 
values and the chemical system reached equilibrium 
(Lefantzi and Ray, 2003). This test case demonstrated that 
the CCA methodology was flexible enough to accommodate 
significant numerical complexity without loss of 
performance. Further, this allowed us to debug and optimise 
chemistry related components (the main source of 
computational loads) in isolation prior to their incorporation 
into a large parallel component assembly that solved  
multi-dimensional PDEs (described in the following 
section). 

4.3 2D ignition 

For this test case we expand the 0D ignition test  
case to include spatial terms to model diffusion. The 
equations are: 

∂Φ
= ∇ ⋅ ∇Φ

∂
K (B ) + R,

t
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where R is the reactive production of heat and species while 
( )∇ ⋅ ∇ΦB  is the diffusive transport (by Fick’s Law) of the 

heat and the species. λ is the thermal conductivity and Di are 
the diffusion coefficients. The chemical production of a 
species is governed by the chemical reactions it undergoes; 
heat production (by chemical reactions) is governed by the 
summation over all the species of the enthalpy change of 
each species. 

This system of PDEs models a reaction–diffusion system. 
It includes chemistry and the diffusion of heat and species. 
It does not include momentum, transport of heat by 
diffusion of species and radiation. Pressure is constant in 
time and space, i.e., burning in an open domain. A constant  
 

Lewis number model (different Le for different species) is 
used for diffusion. We use the operator-split scheme 
described in Section 2.2. Chemistry is modeled using 9 
species, 19 reversible reactions H2–Air mechanism (Dryer 
et al., 1991). The domain in 1 cm × 1 cm. 

Figure 10 shows a graphical representation of the 
component assembly for the Reaction-Diffusion equations. 
The explicit integrator subsystem includes a Runge-Kutta-
Chebyshev integrator (Integrator) and a component to 
calculate the diffusion fluxes (DiffusionPhysics). This 
component makes use of Lewis number based diffusion 
coefficients. We also see a component (ErrorEstAndRegrid) 
that estimates the error at a cell and flags regions for 
refinement/coarsening and the InitialConditions component 
which imposes the initial condition. The assembly of 
components used to solve the 0D problem in Section 4.2 
(see Figure 9) forms the ‘chemistry’ subsystem in the 2D 
problem. Thus the component architecture accommodates 
and incorporates multiple physical models into the 
simulation software in an easy and intuitive manner, a 
feature critical to the extensibility of any simulation/solution 
architecture. The code assembly shown in Figure 10 was 
used to validate second-order discretisations by running a 
problem, a H2–Air stoichiometric mixture with random  
temperature distribution hot enough in certain localised 
regions to ignite, on a 100 × 100, 200 × 200, 400 × 400 
and 800 × 800 uniform mesh on 28 CPUs. Error at a given 
resolution was defined as its RMS difference from a 
solution obtained on a mesh twice as fine. It was concluded 
that a 12.5 µm resolution was required to obtain a 6% 
difference/error, and was accepted as the resolution of 
choice (details are in Lefantzi et al., 2003)). 

 
Figure 9   A picture of the CCA component assembly to solve the 0D ignition problem. We see Initialise0 a component that imposes the 
initial condition, CvodeComponent0 which solves a set of ODEs, ThermoChemistry0 which models the chemistry and supplies the rate of 
change of temperature and species concentration due to chemistry given a thermodynamic state vector and dpdt0 which models the rise of 
pressure with temperature in a confined gas 
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Figure 10   A picture of the Reaction-Diffusion code linkage in the GUI. The 0D code is seen to be a subsystem, driven by the adaptor 
ChemIntegrator. The explicit integrator subsystem with a (Runge- Kutta-Chebyshev) Integrator, MixtureAvgdDiffCoeffs, DiffusionPhysics 
and MaxDiffCoeffEvaluator advances the spatial terms in equation (2) with dynamically adjusted timesteps. ErrEstAndRegrid is invoked 
periodically to keep the mesh correctly resolved. Sundry other components (StatisticsComponent and InitialConditions) complete the 
assembly 

 

We performed this analysis with fourth-order 
discretisations. The initial condition was a single  
Gaussian ‘hot spot’ in a uniformly distributed  
stoichiometric H2–Air mixture. In Figure 11 we plot the 
results. We see that temperature T and OH  
concentration behave as expected, while HO2 and H2O2 
deviate from fourth-order. We define an ‘error’  
E∆x at resolution ∆x as E∆x = |Φ∆x – Φ∆x/2 where || is  
some norm. Since the exact solution Φexact = Φ∆x + c(∆x)p, 
where p is the order of the discretisation error,  
one may derive an expression for p from φ(k), the kth 
element of Φ, as 

( ) ( )( ) 22
2 2( ) ( ) ( )

/ 2

( ) log log ,
φ φ

φ φ

∆∆∆

∆ ∆ ∆

−
∆ = =

−

k kk xxx
k k k
x x x

E
p x

E
 (7) 

In our case, we use the L2 norm to calculate ( )
∆
k
xE . We 

tabulate p(∆x) for temperature and the concentrations of 
OH, HO2 and H2O2 in Table 4. Clearly, p(∆x) is seen to 
approach four with increasing resolution. 

 

Table 4   Order of convergence of the error p(∆x)  
(equation (7)) of various variables as obtained by comparing 
results from two different resolutions. Variables with large 
structures like temperature and OH are seen to show nearly 
fourth-order convergence even at low resolutions, while HO2 
and H2O2 approach 4 only at higher resolutions. The errors 
used here are plotted in Figure 11 

∆x [cm] T OH HO2 H2O2 
0.005 3.81 3.76 3.27 3.07 
0.0025 3.81 3.91 3.85 3.77 

Having established a resolution requirement, i.e., the 
resolution for the finest mesh to be 800 × 800, we 
performed both second and fourth-order simulations on 
SAMR meshes. The initial condition was a H2–Air 
stoichiometric mixture with random temperature 
distribution. A 100 × 100 mesh was used as the Level 0 
mesh. A refinement factor of 2 was used with 4 mesh levels 
to achieve an effective resolution of 800, i.e., 12.5 µm. RKC 
was used with a global timestep (on the Level 0 mesh) 
limited to 500 ns to reduce splitting errors. For regriding, 
we define a ‘resolution metric’ εij such that 
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where k is the index over all variables at a given cell (i, j) 
and φ(k) are the elements of Φ. εij > 0.05 was used as the 
condition for refinement. Regions with εij < 0.0125 were 
coarsened. Second-order discretisations were paired with 
bicubic interpolations and fourth-order discretisations with 
sixth-order interpolants. In Figure 12 we see that some 
regions in the mixture ignite. The ignition fronts are seen to  
move through the mixture and annihilate sections of each 
other as they interact. The distribution of patches over 
different levels of refinement at two different time instants 
is also seen in Figure 12. As certain regions (initially with 
large temperature gradients) fail to ignite and lose their 
gradients via diffusion, the fine patches are removed, 
leaving the region with coarser meshes. In Figure 13 we see 
H2O2 profiles plotted on the finest mesh. We see that the 
resolution capability of the SAMR resolves the fine H2O2 
profile with about ten points. 

In Figure 14 we plot the HO2 and H2O2 profiles extracted 
from the second and fourth-order runs. We see that they are 
very similar. The 20 grid points in the profiles on the finest 
mesh indicate that the solution is adequately resolved. The 
fourth-order run required that an 8th order filter be applied 
at the beginning of every timestep, a consequence of using 
the sixth-order prolongation operator. Filtering was not 
required in a separate run (not shown here) where the  
sixth-order interpolant was replaced by a fourth-order one. 
Filters were not required with sixth-order discretisations in 
Section 4.1, probably because the front was quite well 
resolved even on the coarse mesh. In this particular case,  
 

where the fronts develop in time, the sixth-order interpolants 
were observed to give unphysical answers when filtering is 
not applied, during the formative stages of the fronts (when 
steep, probably unresolved, gradients, would exist, 
especially in the coarser levels). 
 

 
Figure 11   Convergence of temperature and the concentrations of 
OH, HO2 and H2O2 of runs done on 100 × 100, 200 × 200, 
400 × 400 and 800 × 800 uniform meshes. The ‘error’ of a solution 
at a given resolution is the RMS difference from a solution 
obtained on a mesh twice as fine. We see that temperature (T) and 
OH concentration behave as expected, while HO2 and H2O2 
deviate from fourth-order. Lines represent the ideal behaviour, 
while symbols correspond to the data obtained with our 
simulations. In Table 4 we show the actual convergence rate, 
which is seen to tend to four with increasing resolution 

 
 
 
 
 
 

 
Figure 12   Temperature field at time t = 0 (left) and 90 microseconds (right). Patches at different levels in the grid hierarchy are plotted 
separately. We see the vastly different hierarchy configuration at the two instants in time. Regions which have ignited and have steep 
reaction fronts are resolved with Level 3 grids. Regions which failed to ignite have had the fine meshes removed by t = 90 microseconds 
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Figure 13   H2O2 profiles plotted only on the finest mesh level. Patches on Levels 3 are shown. Inset: A zoom of the patch in black is shown 
overlayed by the mesh. We see the H2O2 profile being resolved by about ten grid points 

 
Figure 14   HO2 (left) and H2O2 (right) profiles on the 12.5 micron mesh level using the second- and fourth-order approaches, at 
x = 0.26 cm. The results are for t = 93 microseconds. We can see that the profiles are very similar. There are about 20 points in the profile 
on the finest mesh. ○ denote fourth-order results while  denote second order 

 

5 CONCLUSIONS AND FUTURE DIRECTIONS 

We have demonstrated the use of high-order spatial 
discretisations in a parallel multilevel block-SAMR 
environment to solve a set of coupled PDEs.  
Operator-splitting was used to incorporate an implicit 
integrator to integrate stiff chemical ODE systems while an 
extended stability RKC integrator was used, with 
subcycling, to advance the non-stiff component of the 
PDEs. Convergence analysis was used to determine if the 
requisite high-order accuracy was obtained in the solution. 
Timestep size was limited by splitting errors rather that the 
stability constraint of the extended stability RKC method.  
A stiff nonlinear problem was solved with second and 
fourth-order spatial discretisations and SAMR, and the 
results were compared. 

 

 

In answer to the questions posed in Section 4, we find 
• Fourth-order methods can be incorporated in a SAMR 

setting and used in realistic problems. In Section 4.1 we 
showed how a fourth-order discretisation needs to be 
coupled to a spatial interpolant of an appropriate order 
to obtain the required accuracy. Further, as shown in 
Figure 7, fourth-order methods can be more economical 
than second order approaches. 

• The advanced discretisation and meshing techniques 
described in this paper were implemented within the 
CCA (component) software framework. Thus, a 
component based software paradigm is rich enough to 
support high-performance scientific simulation codes.  
It can also be used to incorporate legacy software. The 
software decomposition strategy is basically functional 
and is influenced by the nature of the numerical scheme. 
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• The modularity and plug-and-play characteristics of the 
Ccaffeine framework were exploited to assemble 
complicated solution systems in a hierarchal manner 
(2D simulation code contains a subset 15 that was used 
to solve the 0D ignition) as well as try out various 
numerical schemes (second- and fourth-order 
discretisations) with minimal changes. Its high 
performance nature and ability to accommodate parallel 
computing were used to solve our problems on multiple 
processors. 

In the future, the current CCA toolkit will be augmented to 
solve DAEs rather than ODEs. Further, we will address the 
issue of flux conservation at coarse-fine patch boundaries to 
enable the construction of a conservative high-order 
scheme. Since the ultimate aim is to solve the low Mach 
approximation of the Navier-Stokes equation, it will involve 
a projection scheme, where the solution is projected to a 
manifold so that it satisfies an algebraic constraint. 
Mathematically it involves solving a Poisson equation on a 
SAMR mesh. Investigations are underway to determine how 
this may be achieved efficiently and in a consistent manner, 
given the dearth of literature on high-order approaches on 
block SAMR meshes. 
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