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Abstract

Structured adaptively refined meshes (SAMR) ensure efficient resolution of large computational domains by clustering
mesh points only where required. We explore the possibility of using higher-order spatial discretizations in such a setting
so as to achieve acceptable accuracies with relatively few levels of refinement and greater overall efficiency. To overcome
the stringent temporal stability limitations posed by such discretizations when used with a time-integrator, we present an
operator-split time-integration method using a Runge-Kutta-Chebyshev scheme on SAMR meshes with time-refinement.
The complete formulation is tested on a reaction-diffusion problem, using a 9-species, 19 reactions H2-Air chemical
mechanism.

Introduction

Structured Adaptive Mesh Refinement (SAMR) [1, 2] is
a powerful technique for concentrating grid resolution in re-
gions of steep spatial gradients. It is a particularly appealing
approach to geometrically simple spatial domains. Briefly,
the method consists of laying a relatively coarse Cartesian
mesh over a rectangular domain. Based on some suit-
able metric, regions requiring further refinement are iden-
tified, the grid points flagged and collated into rectangu-
lar children patches on which a denser Cartesian mesh is
imposed. The refinement factor between parent and child
mesh is usually kept constant for a given problem. The
process is done recursively, so that one ultimately obtains
a hierarchy of patches with different grid densities, with
the finest patches overlaying a small part of the domain.
The more accurate solution from the finest meshes is pe-
riodically interpolated onto the coarser ones. Time integra-
tion of PDEs on such meshes can be done with both im-
plicit [3] and explicit [2] schemes. Explicit schemes may be
modified (time-refinement [2]) or else their global timestep
is restricted by the stability constraint on the finest mesh.
Typically, this modification involves the recursive integra-
tion of the patches, starting with the coarsest level (at a
timestep determined by the stability constraint of the patch
itself), followed recursively by the integration of its chil-
dren patches, which are processed more often but at their
(smaller) stability-constrained timesteps. For example, in a
viscous CFL dominated problem on a 4-level SAMR mesh,
the finest mesh takes

���
steps for every one on the coarsest.

Generally, this constitutes what is known as subcycling but
may also be approached more rigorously using partitioned
multi-rate [4] methods. A- and L-stable [5] implicit schemes

may ignore stability restrictions and select step-sizes based
exclusively on accuracy and iteration concerns. Such meth-
ods usually result in linear systems which are solved by it-
erative techniques adapted to handle patches which do not
span the entire domain.

The simplicity and elegance of SAMR hide a number of
issues which arise in practical situations. If a constant re-
finement factor is used (e.g. 2) , the number of grid points
rises geometrically as one refines. When used with time-
refined explicit integration (where the finest grids undergo
the largest number of timesteps), SAMR-based simulations
spend almost all their time in the finest levels. Further,
in parallel simulations, the requirement of keeping parents
and children together (on the same processor) result in poor
domain-partitioning by run-of-the-mill partitioners. Thus in
practice time-refined simulations usually have shallow hier-
archies (e. g. 4 deep) with a fairly fine “coarse” mesh. The
timestep size, determined by the stability constraints of the
fine “coarse” mesh is needlessly small.

Specific Objectives

To date, second-order spatial discretizations have been the
standard for SAMR simulations on vertex- and cell-centered
grids. Accuracy has been achieved mainly by increasing
mesh density, which has exacerbated the problem of a rather
fine starting mesh (henceforth called Level0 mesh). An al-
ternative approach, which we explore in this paper, is to
use higher-order discretizations of both derivative and in-
terpolant operators on the patches. To illustrate the potential
efficiency gains of higher-order spatial discretizations, one
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� 2E 4E 6E 8E 10E

�������	� 

25.65 8.344 5.712 4.696 4.156�������	� �
45.53 11.22 7.012 5.516 4.753��� ���� 

81.07 15.03 8.572 6.444 5.412��� ���� �
144.1 20.20 10.44 7.507 6.136�������� 

256.5 26.85 12.69 8.727 6.943��� ���� �
455.3 35.70 15.44 10.12 7.834��� ���	� 

816.0 47.60 18.70 11.72 8.837

Table 1: Number of grid points per wavelength required for
a chosen error tolerance � .

may consider first-derivative operators. The qualitative con-
clusions for derivative operators may then be applied to in-
terpolant operators provided Runge phenomena are not ex-
perienced. Jameson[6] has attempted to quantify the relative
efficiencies of different orders-of-accuracy. Table 1 lists the
number of grid points needed by explicit, centered derivative
operators of various order to resolve a particular wavenum-
ber mode to a given error tolerance. Even a modest increase
in order (from

�����
to ����� ) drops the resolution requirements

in 1D by a factor of 3 for a ������� error tolerance; for tighter
tolerances a factor of 20 is achieved; and at higher orders,
one achieves almost 2 orders of magnitude. Given that these
savings will be squared and cubed as one proceeds to 2D and
3D, respectively, the advantages of a higher-order scheme
become evident.

The use of higher-order stencils is not without its draw-
backs. Higher-order stencils involve more computations to
evaluate a derivative. While this is relatively inconsequen-
tial with derivative operators, interpolant operators are eval-
uated by using a linear combination of as many as � � (where
� is the order of accuracy and  is the dimensionality) values
and their respective coefficients. However, the sparser grid
(small data size) of a higher-order formulation will benefit
tremendously from the higher cache-hit rate and it is unclear
whether the “time-to-solution” of a higher-order scheme will
be vastly different. In an explicit time integration procedure,
the larger eigenvalues of the higher-order matrix derivative
operator may reduce the maximum step-size by a third or so.
Further, derivative schemes above fourth-order may best be
closed to a lower order at the domain boundaries to remain
time-stable. Finally, higher-order derivative schemes need
to be coupled with higher-order prolongation and restriction
operators to preserve the accuracy at all levels of the grid
hierarchy.

In this study we will first empirically attempt to achieve
higher-order spatial convergence on a multiple-level SAMR
mesh to identify correct discretization-interpolation sets. This
will be followed by an adaptation of a Runge-Kutta-Chebyshev
scheme [7] for time-refined integration on SAMR meshes.
The paper ends with a demonstration in a reaction-diffusion
problem with a stiff chemical term. We will employ �!��� -

order discretizations in our exposition but "#��� - and $���� -order
results will be presented too.

Higher-Order Discretizations

A high-order spatial discretization for vertex-centered AMR
with a refinement factor of two requires derivative, coarse-
to-fine interpolant, and filter operators. We investigate �!��� -,
"���� - and $���� -order discretizations.

Derivative Operators

All derivatives used in this work will use first-derivative
operators, repeatedly if necessary. A fourth-order derivative
will be of the form
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Several examples of varying accuracies are listed in Table 2
At the domain boundaries, the derivatives can be calculated

F G�H IJH KLH M KLN I�N G�N
L.O.T.E.O�P

0 0 -1/2 0 1/2 0 0 -(1/6) Q �R�S
0 0 -1/3 -1/2 1 -1/6 0 -(1/12) Q �T S
0 0 -1/4 -5/6 3/2 -1/2 1/12 +(1/20) Q �T P
0 1/12 -2/3 0 2/3 -1/12 0 -(1/30) Q �

Table 2: Stencil coefficients for centered (E) and upwinded
(U) first-derivative operators of different orders of accuracy
on uniform grids. S is the name of the stencil, L.O.T.E is an
abbreviation of Leading Order Truncation Error and U is a
scaled wavenumber. V / � 4 stencils have V / UXW @ : 4 LOTE.

either by creating a halo of grid points around the domain
and using the same stencils or by closing, possibly to lower
order, using skewed stencils. Table 3 lists several possible
stencils. The approach for higher orders is identical, but it
omitted for brevity. We will use the second approach be-
cause of its better stability characteristics.

Interpolation Operators

SAMR simulations periodically prolong data from coarse
meshes to a halo of points around their finer children so that
centered stencils may be used throughout. This process is
skipped on a patch boundary if it abuts a domain boundary.
More accurate data are also restricted from a finer patch to
its coarser parent. In two-dimensions, interpolation blocks
take data off of a four-squared block of points (for fourth

2



+ ,
7
, 8 ,

=
8 ?

7
? + ? L.O.T.E.

0 0 0 -1 1 0 0 -(1/2) U��
0 0 0 -11/6 3 3/2 -1/3 +(1/4) U��
0 0 -1/3 -1/2 1 -1/6 0 -(1/12) U �
0 0 -1 1 0 0 0 +(1/2) U��

-1/3 3/2 -3 11/6 0 0 0 -(1/4) U �
0 1/6 -1 1/2 1/3 0 0 +(1/12) U �

Table 3: Stencil coefficients of skewed lower-order, first-
derivative operators near boundary points. These can be
used with fourth-order derivative discretizations.

order interpolations) and interpolate a value onto the ge-
ometric center a cell. Within the interior of the domain,
the interpolated point is the geometric center of the block
but near physical boundaries, the block will skew relative
to the interpolation point. Whereas second-order coarse-to-
fine interpolation requires no boundary closure, fourth-order
does. At second-order, the stencil coefficient for the points/���� ��� �	��
 � ��� � 4 ) ��� � . At fourth order, there are 3
unique stencil coefficients;

/��� ��� �	��
 � ��� � 4 ) $�� ��� " ,/���� ��� �	��
 ��� � � 4 ) /������ � ����
 � ��� � 4 )���� � ��� " , and/������ � �	��
 ��� � � 4 ) ��� ��� " . At higher order, the number of
unique stencils increases. The two required boundary blocks
for fourth-order and details of higher-order interpolants are
too long to present here.

Filter Operators

Filtering [8] is a way to cleanly remove high-wavenumber
information from the grid. There are two compelling rea-
sons to filter. The first is that any finite difference numer-
ical method has limited accuracy and higher-wavenumber
information that is unresolvable by the numerical method
needs to be removed before it interferes with the resolved
wave-numbers. Secondly, in order to avoid failure of the
interpolant operators, no wavenumber that represents less
than approximately six grid points per wavenumber may be
present [9]. Filters are an important element in the overall
numerical method.

Results and Discussion

Validation of Discretizations

We explore the feasibility of using higher-order discretiza-
tion in a SAMR setting by employing them to solve the heat
equation. We solve Eqn. 2 on a unit square with mesh-nodal
data.  "! , the initial condition is a Gaussian with a character-
istic size # ) � D � � . A $ ��%'&)(+*-,  ) � boundary condition
is imposed at the edges of the unit square. A second-order,
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Level 0 in black, 1 in red, 2 in blue. 50x50 coarse grid

Figure 1: The initial condition and the subdomain under-
going refinement. The red and blue grid are Level1 and
Level2 meshes respectively. They were purposely chosen in
a skewed manner w.r.t. the field so that a well defined gra-
dient would be present at the subdomain boundary, posing a
credible test for the prolongation operators

explicit Runge-Kutta method is used for time-advancement.

 � )/. , �  �  ! )�0 2 � / ��1 � ��# � 4 D (2)

The analytical solution in 2D

 / 1 �32 4 ) #X�
# � 5 � . 2 0

2 � / � 1 �
# � 5 � . 2

4 �
is used to evaluate the error in the numerical solution. A� �54 � � Level0 mesh was used and was refined twice by a
factor of 2 in an arbitrarily defined subdomain. Fig. 1 shows
the initial condition and the two levels of refinement. . was
set to 1.

We integrate this equation in 20 (Level0 mesh) timesteps
to
2 ) � ��76 using ����� � � "���� � and $���� � order derivative

stencils and interpolants. The error is evaluated only in the
refined section of the domain and is identical on all levels
(since the solution is restricted from the finest to the coars-
est levels). In Fig. 2 we plot the error on the finest level for
tests with zero, one and two levels of refinement and com-
pare them with the ideal case of �#��� � � "���� � and $���� � order
convergence. We see expected convergence characteristics,
except for the highest order methods at their lowest errors.
In each case, discretizations and interpolations of identical
orders are used in pairs.

Extended Stability Explicit Methods

As mentioned above, shallow grid hierarchies benefit from
explicit time-integrators capable of large timesteps. Given
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Figure 2: Convergence results using �#��� � , "���� � and $���� �
order discretizations and interpolations. The solid lines are
ideal results, the symbols are experimental results. Red,
green and blue denote � ��� � , " ��� � and $ ��� � order meth-
ods. We see that at very low errors ( ����� : ! ), the convergence
for the $���� � order discretization degrades to about 7.2.

an IVP  � )�� /  4 , one can design Runge-Kutta schemes
with extended stability regions along the negative real axis,
i. e. they are suitable for problems where the eigenvalues
of � � ���7 are near the negative real axis. We use one such
second-order Runge-Kutta-Chebyshev scheme [7] with a sta-
bility region which grows as � � D "�� � along the negative real
axis, � being the number of stages in the scheme. Local error
analysis [7] reveals that the error term is V /�� . 4 , but also a
function of � . Convergence results are in [10]. Briefly, each
timestep can be written as :

	 ! )  � (3)	
: ) 	 ! 5�
� :

� � !	� ) / � � �  � .  4 	 ! 5 � �	� � : .
�	�

� :5�
�  � �  �;: 5�
�  � � ! ��
 ) � D D D �
 � @ : ) 	��

where the time-advancement of  � to  � @ : is over a timestep�
. 
�  , 
�  , �  and .  are analytical functions of � . The stage

timestep size varies as
0 2  � � � / 
 � � � 4 � / � � � � 4 where



is the stage number.

The extension of a traditional explicit Runge-Kutta method
(second order) for time-refined stepping on SAMR grids
was outlined in [2]. The extension of RKC is conceptually
similar. Each RKC stage is first-order, requiring only linear
interpolation (from a parent mesh’s data) at the child patch
edges (where it becomes impossible to evaluate a higher-

dt

E

1E-04 0.0002 0.0003 0.0004 0.0005
10-7

10-6

10-5

10-4

{L0, L1, L2}, L0 = 50 x 50
ideal

For {L0, L1, L2} run, errors are for the L2 mesh. Dt corresponds to L0’s dt

Figure 3: Convergence of the temporal error is the solution
of the heat equation. A second-order spatial discretization
was used on a mesh with 2 levels of refinement. Errors show
� ���

order convergence in time.

order spatial stencil due to lack of grid points on one side).
Implementation details involve significant booking and tem-
poral interpolations from coarse to fine meshes based on the
stage number of the integration process on the fine mesh.

In Fig. 3 we use RKC (modified for time-refined time-
stepping on SAMR meshes) for the heat equation (Eqn. 2).
A second order discretization was chosen. Spatial refine-
ment was not limited to the subdomain shown above, rather
it included the entire Gaussian. Two levels of refinement
were allowed. The timestep size  2 was larger than the one
used in the spatial convergence test but much smaller than
the stable limit of an 8-stage RKC. We see that the error
convergence is

�����
- order in time.

Reaction-Diffusion Problem

Our ultimate aim is to design a code for the simulation of
flames with detailed chemistry. We intend to solve the low
Mach number approximation of the Navier-Stokes equation
in open domains. Mixture-averaged transport will be used.
We use SAMR so that we can resolve detailed flame struc-
ture for laboratory-sized unsteady flames. Higher-order dis-
cretizations and RKC (both validated above) will be used in
this setup. The code is being developed as CCA components
[11] which allows a modular architecture.

As a preliminary model to this problem, we consider a
reaction-diffusion problem.

���
� 2 ) � ,���/ � , � 4 5�� � (4)
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where � is the reactive production of heat and species while
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Figure 4: Temperature field at t = 0 and 0.265 ms. The black
lines show domain decomposition across 24 processors.

� , �L/ � , � 4 is the diffusive transport (by Fick’s Law) of
the heat and the species. " )$# � � , where # is the
number of chemical species.

�
is the thermal conductivity

and � ( are the diffusion coefficients. This is a very coarse
model of a flame. It includes chemistry and the diffusion of
heat and species; it neglects momentum and the transport of
heat by diffusion of species. Further, pressure is assumed to
be constant in time and space (i.e. burning in an open do-
main). Radiation is neglected too. The species are assumed
to diffuse independently into the mixture at a mesh point
i.e. the diffusion coefficient � ( of the

� ��� species is mixture

averaged. We employ operator-splitting [12] to advance dif-
fusion using RKC while using a BDF5 scheme [13] to in-
tegrate chemistry. The general procedure is similar to that
in [14], except for the projection solution, which is omitted
here.

We simulate the ignition of a stoichiometric % � �'&)(�*
mixture with three hot spots. A 9-species 19 reversible reac-
tion mechanism [15] is used for the chemistry. Second-order
derivative stencils with bicubic interpolations were used. The
domain was �,+.- 4 �/+.- with a ���L� 4 ���L� Level0 mesh. 3
levels of refinement were allowed, with a refinement factor
of 2. RKC timestep size was limited to 500 nanoseconds
to reduce splitting errors. This is still more than a order of
magnitude than what could be achieved by a traditional RK2
method, adapted for time-refinement.

In Fig. 4 we see the got spots ignite the mixture. The
ignition fronts are seen to move through the mixture and an-
nihilate sections of each other as they interact. In Fig. 5 we
see % �10 � profiles plotted on the finest mesh as well as the
distribution of patches over different levels of refinement. In
Fig. 5 we see the resolution capability of the SAMR resolv-
ing the fine % � 0 � profile by about 10 points.

Conclusions

We have presented results of higher-order discretized so-
lutions of the heat equation. For moderate order (fourth and
sixth), the results are as expected on a 3-level SAMR mesh.
No numerical instability was noticed due to the lower-order
closure of higher-order derivative schemes at boundaries.
The sixth order scheme (closed to fourth order at domain
boundaries) could drop an order in the presence of gradients
near boundaries. However, the test was stopped before this
could happen.

The extension of RKC to SAMR did not reveal any hid-
den numerical issues. Its similarity with second-order Runge-
Kutta allowed the treatment in [2] to be applied successfully
in a straightforward manner.

The reaction-diffusion problem was solved successfully.
It is safe to say that resolution of structures was achieved. A
stable global timestep of � 1000 ns (achievable by a 8-stage
RKC scheme) was never tested because of the splitting er-
rors at such a timestep - an artificial limit of 500 ns (at which
splitting errors were empirically found to be acceptable) was
used.

Future work will concentrate on the mesh-density / or-
der trade-offs as well as a more rigorous convergence anal-
ysis in the presence of thin fronts. Incorporation of convec-
tive terms into the equations (which introduce a small but
purely imaginary component to the eigenvalues of the Jaco-
bian) will be used to test the stability of the RKC.
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