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Abstract

Bioterrorist attacks involving an undetected release of an
aerosolized pathogen have gained credibility and significance
in national security, especially after the anthrax attacks of
2001. We address the problem of characterizing the release—
i.e., inferring the number of index cases, the time of infec-
tion and the dosage of the pathogen—exclusively from clin-
ical/patient data. We formulate this as a Bayesian inverse
problem and develop probability density functions for the un-
knowns, conditioned on a short (3–4 day) time-series of diag-
nosed patient data. We assume (1) a single-focus epidemic,
(2) identical dosages for all the infected people, and (3) a non-
contagious disease, i.e., anthrax. The method is tested against
simulated epidemics and the anthrax outbreak of Sverdlovsk
in 1979. We also examine the impact of the data collection
frequency on the quality of the estimates.
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1 Introduction

Criminal releases of aerosolized pathogens may not always be
detected via environmental sensors. Examples include small
releases which do not travel far, releases where the formula-
tion is coarse (and heavy) enough to precipitate quickly, and
releases in areas which are not well-instrumented with sen-
sors. In such cases, the first intimation of the attack will be
the definitive diagnosis of the first patient, but by then the
pathogen may have already established itself in the population.
The ability to infer the characteristics of the release then plays
an important part in formulating a medical response. The in-
ferred characteristics can also serve as the initial condition for
various epidemic models which can then be used to predict
the evolution and spread of the disease in a population as well
as its ramifications on society. In case of such an attack, es-
pecially with a non-contagious disease such as anthrax, this
involves estimating the number of index cases, the time of the
attack, and the doses received by the infected people.

Drawing these inferences can be challenging; one can only
exploit the distribution of the incubation period of the disease,
which in some cases is dependent on the dose received. To be
relevant in an operational, consequence management sense, as
opposed to forensics, inferences must be made early in the
epidemic; a time-series of patient data, 3–4 days long, should
thus be considered representative. Estimates are therefore ex-
pected to be rather uncertain, and quantifying this uncertainty

becomes a key requirement of the inference process.
In this paper, we explore how such attacks may be char-

acterized. This preliminary study targets single-focus attacks
(i.e., a single release) with a non-contagious disease, anthrax.
We also assume that the dose received by the index cases is
uniform. We study how the inferences of the size, time and
dosage behave with the time-resolution of the observed data
by collecting data over 6- and 24-hour intervals. We adopt a
Bayesian approach since it allows us to develop the inferred
quantities as PDFs (probability density functions), thus quan-
tifying uncertainty, and also allows a straightforward accom-
modation of additional information from disparate sources us-
ing prior distributions and sequential Bayesian learning. We
operate within a self-imposed limit of 4 days of patient time-
series. The results of this study will indicate whether more
detailed questions, such as dose distributions and multiple at-
tack foci, can be addressed satisfactorily by such an approach.

2 Previous Work

The exact question of estimating the size and time of an attack
from a time-series of patient data has not been studied exten-
sively. Walden & Kaplan [9] developed a Bayesian formula-
tion and tested it on a low-dose anthrax attack corresponding,
roughly, to the Sverdlovsk outbreak [5] of 1979. They also
demonstrated the use of Bayesian priors—prior belief regard-
ing the number

�
of people infected—to develop a smooth
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, even for a small infected population (
�����	�
�

)
and a 5-day time-series with data collected on a daily basis.
Alternatively, a maximum likelihood method was employed
by Brookmeyer & Blades [3] to infer the size of the infected
population in the 2001 anthrax attacks in the US [4], prepara-
tory to estimating the reduction of casualties by the timely ad-
ministration of antibiotics. Both [3] and [9] developed similar
expressions for the probability of observing a time-series of
patients given a particular attack using the low-dose anthrax
incubation model in [1].

A significant amount of work has focused on characteriz-
ing the incubation period of anthrax. Brookmeyer et al [1]
developed a low-dose incubation period model applicable to
the Sverdlovsk outbreak; their more recent work, based on a
competing risks formulation, includes dose-dependence [2].
A more empirical approach, but based on significantly more
data, was proposed recently by Wilkening [10]. He also com-
pared four different models, including the dose-dependent
model of Brookmeyer [2] (referred to as Model D); while
Wilkening’s Model A agreed with Model D at the high-dose
limit, their low-dose behavior was different.
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In this paper, in Sec. 3, we adapt the formulation in [9] to
interval-aggregated data. Tests are in Sec. 4 and conclusions
in Sec. 5.

3 Formulation of the problem

Consider an attack at time � where
�

people are infected,
with each of the

�
people receiving the same dose of

�
an-

thrax spores. The incubation period obeys a dose-dependent
log-normal distribution; we refer to its cumulative distribution
function (CDF) as ������� �
	 . For a few days � (say 3–5 days)
we can expect (1) a series ����� � ������� ��� of times, perhaps
the endpoints of 24-hr intervals, when patients’ symptoms are
observed and (2) the time-series ������ � ������� � , of new pa-
tients who turned symptomatic between ��������� and ��� where����������� � � ������! � � , and ��� is a constant. We define survival
probability as "$#&%('�)*�+��� �
	 � � �,������� �-	 .

We can state the problem as such: Given a time series�+� � ��� � 	 ��� � ������� � , of patients showing symptoms over a
few days � , estimate � � ��.� �
	 from these data. � � patients
are assumed to have developed symptoms over the time inter-
val between � ��� � and � � .

Below we reproduce from [8] the likelihood function / —
the probability of observing a 0�� � �� �1 �2� � �!����� ��� series
given a � � ���.� �
	 attack:

/3� � ��.� �
	 �
��4� � �65 	�487:9�<;�= � � 4 0(">#&%('?)*��� 9 �:�.� �
	 1(@9A�<;�= 0(���+� � �6�.� �
	 �,����� �+� � �:�B� �
	 1DCFE

where 5 ��G 9�H;I= , J � � �K5 and

���+��� �
	 � �LNM �PO,Q�RSUTWV<X �+��Y(� = 	Z LF[]\�^ � (1)

with �&= � �	�B� _ � �`� _ba V<c`d � = � �
	 and
[ � �B� e �Ff ��B� �hgji V<c`d � = � �
	 [10].

By Bayes rule, the probability kl� � ��B� �3m 0�� � ��� �&1 ��� �������� � 	
of a � � ��.� �
	 attack, conditioned on the data, can

be written askl� � ���.� �:m������ 	ln /2� � ��B� �
	 kpo�� �3	 kpqp��� 	 ksr�� �
	 (2)

where kso�� �3	 , kpqp��� 	 and ksrt� �
	 are the priors for
� �� and�

. In the absence of additional information, we use broad uni-
form distributions as priors for all three parameters. The joint
posterior kl� � ��B� �3mu�����v	 from (2) is then marginalized to ob-
tain one-dimensional PDFs for

� �� and
�

. Each marginal-
ization, which involves integrating out the effect of the two
other variables, is performed using the VEGAS algorithm [7]
for Monte Carlo integration, as encoded in the GNU Scientific
Library (http://www.gnu.org/software/gsl/)

4 Test cases

We first consider a simulated anthrax attack where
�	�xw

peo-
ple are infected with a dose of

� � �
spores each. The first
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Figure 1: PDFs for
�

, � and VHcbd � = � �
	 calculated from the
time series of clinical data as generated by a (data) collection
interval of 24 hours (left) and 6 hours (right). The higher res-
olution data, which captures the structure of the observables
better, results in sharper PDFs.

patient exhibits symptoms 0.75 days after the attack. The
time series of new patients exhibiting symptoms, collected
over successive 24-hour intervals is 0 � L � ��ehg � a`yba � e`ibi � iFeba 1 ;
the corresponding series collected over 6-hour intervals
is 0 _ � i � �
� � _`y � y L � gFe � �	�F_ � � L a � �Dy � � �Dgjy � L �Fy � L � L � L _Fi � L f L �L`LbL � L fb_ � L yb_ � L abg � L a L � L aF_ 1 . We will try to infer the correct
values of � � ���.� �
	 , which are � � �`w ��� �.�vgFa � �	� � 	 .

In Fig. 1, on the left side, we plot the PDFs for
� �� andVHcbd � = � �
	 as calculated using the low-resolution (24-hour in-

tervals) data; on the right are the corresponding plots from
the high-resolution series. We see that the time of attack � is
easily inferred even with 3 days of data. However the low res-
olution time-series does not allow us to identify � �.�vgFa days as
the MAP (maximum a posteriori) estimate for � due to coarse-
ness of the resolution; instead the PDF peaks at � �b� � day. The
PDFs for

�
calculated from the two time series are somewhat

different in shape, but the MAP estimate for
�

by day 5 is
around

�	�`w
. The high resolution data provides a more peaked

PDF, as expected. The dosage is harder to infer, but by day
5, the MAP estimate for V<c`d � = � �
	 is around 2. The higher
resolution data results in sharper PDFs and tighter confidence
intervals since it captures the structure of the observed data



better. A more detailed analysis is in [8].
Next, we apply this technique to the Sverdlovsk anthrax

outbreak of 1979 [5]. The cause is suspected to be an acci-
dental release of aerosolized spores from a military facility
on April 2 �

�
, 1979 in the erstwhile Soviet Union. 70 people

died and it is estimated that 80 were infected [10]. The first
symptoms were exhibited on April 4

���
, i.e. � � � L days.

Around April 15
���

prophylaxis was distributed, suppressing
symptoms and lengthening the incubation period. The time
series of patients showing symptoms was obtained from [6];
data were collected on a daily basis. A low dose exposure is
conjectured, and estimates in the literature vary between 2–
300 spores [5, 10]. In Fig. 2 we develop PDFs for

�
and � .

The time of attack � is again inferred easily, with the MAP
estimate peaking at � � � L within 3 days. The MAP estimate
of
�

is less well behaved, peaking around 40 after 3–5 days
and around 60 after 10 days. The dosage curve (omitted in this
paper) reveals little except that the dosage was small; even af-
ter 10 days of data, no apparent peak is observed. However,
given the small size of the infected population (80), the effect
of prophylaxis (which is not captured in our model of the in-
cubation period), and the noise in the data (which had to be
reconstructed from grave markers), this statistical reconstruc-
tion of the event is remarkably similar to the best available
analysis of the outbreak [5].
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Figure 2: PDFs for
�

and � as calculated from the time series
of clinical data from the Sverdlovsk outbreak

The PDFs developed above clearly demonstrate the effect
of data in reducing uncertainty. In Fig. 1, the PDFs from the
6-hour time series indicate tighter ranges for the inferred quan-
tity, while in Fig. 2, the sudden shift in the inference of

�
to-

wards the more accurate MAP estimate of 60 is accompanied
by a reduction in uncertainty as shown by the steeper PDF.

5 Conclusions

We have developed a promising approach to reconstructing
a bioterrorist attack purely from clinical data. Based on
Bayesian inference, we see that very little data (3–4 days of
observations) suffice to infer the size, time, and dosage re-
ceived in such attacks. Improvements in the inference do not
necessarily require more data from longer observation peri-
ods; instead, better resolved data—collected over 6 hour in-
tervals, for instance—can tighten confidence intervals signif-
icantly. Nimble reporting protocols may prove sufficient in
achieving this aim. Further, the inferences drawn here are

“good enough” for operational purposes, e.g., to plan a re-
sponse. In addition, the Bayesian construction allows for a
straightforward incorporation of prior information in case one
has additional knowledge affecting

�
, � and/or

�
, such as via

atmospheric dispersion modeling.

Acknowledgments

This work was funded as a Laboratory Directed Research and
Development project. Sandia is a multiprogram laboratory op-
erated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nu-
clear Security Administration under Contract DE-AC04-94-
AL85000.

References

[1] R. Brookmeyer, N. Blades, M. Hugh-Jones, and D. A.
Henderson. The statistical analysis of truncated data: ap-
plication to the Sverdlovsk anthrax outbreak. Biostatis-
tics, 2:233–247, 2001.

[2] R. Brookmeyer, E. Johnson, and S. Barry. Modelling
the incubation period of anthrax. Statistics in Medicine,
24:531–542, 2005.

[3] Ron Brookmeyer and Natalie Blades. Statistical models
and bioterrorism : Application to the U.S. anthrax at-
tacks. Journal of the American Statistical Association,
98(464):781–788, 2003.

[4] John A. Jernigan et al. Bioterrorism-related innhalational
anthrax: The first 10 cases reported in the United States.
Emerging Infectious Diseases, 7(6):933–944, 2001.

[5] Matthew Meselson et al. The Sverdlovsk anthrax out-
break of 1979. Science, 266:1202–1208, 1994.

[6] Thomas V. Inglesby et al. Anthrax as a biological
weapon - Medical and public health management. J. Am.
Med. Assoc., 281(18):1735–1745, 1999.

[7] G. Peter Lepage. A new algorithm for adaptive mul-
tidimensional integration. Journal of Computational
Physics, 27:192–203, 1978.

[8] J. Ray, Y. M. Marzouk, H. N. Najm, M. Kraus, and
P. Fast. A Bayesian method for characterizing dis-
tributed micro-releases: I. The single-source case for
non-contagious diseases. SAND Report SAND2006-
1491, Sandia National Laboratories, Livermore, CA
94551-0969, March 2006. Unclassified unlimited re-
lease.

[9] J. Walden and E. H. Kaplan. Estimating time and
size of bioterror attack. Emerging Infectious Diseases,
10(7):1202–1205, 2004.

[10] D. Wilkening. Sverdlovsk revisted : Modeling human in-
halational anthrax. Proceedings of the National Academy
of Science, 103(20):7589–7594, May 2006.


