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Abstract

The design and analysis of computer experiments
(DACE) usually envisions performing a single exper-
iment, then replacing the expensive simulation with
an approximation. When the simulation is a nonlin-
ear function to be optimized, DACE may be ineffi-
cient, and sequential strategies that synthesize ideas
from DACE and numerical optimization may be war-
ranted. We consider several such strategies within
a unified framework in which sequential approxima-
tions constructed by kriging are used to accelerate a
conventional direct search method. Computational
experiments reveal that hybrid strategies outperform
both DACE and traditional pattern search.

1 Introduction

Computer experiments are planned evaluations of de-
terministic functions. In a typical application, the
function f incorporates an expensive computer simu-
lation of a physical phenomenon, e.g. the aeroelastic
and dynamic response simulation of a helicopter rotor
blade studied by Booker (1996). The notion that f is
expensive to evaluate can be formalized by imposing
an upper bound, V , on the number of evaluations of
f that are practicable. When V is restrictive, then
a computer experiment is performed for the purpose
of efficiently obtaining information about f . Com-
prehensive surveys of computer experiment method-
ology have been provided by Sacks, Welch, Mitchell,
and Wynn (1989) and by Koehler and Owen (1996).

In design optimization, f is a performance criterion
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and the arguments of f are design parameters. The
goal is to discover better products, e.g. rotor blades,
by varying product design. We formalize this goal by
considering the problem of minimizing f : <p → <
subject to bound constraints, i.e.

minimize f(x)
subject to x ∈ [`, u],

(1)

where `, x, u ∈ <p and we write x ∈ [`, u] to denote
`i ≤ xi ≤ ui for i = 1, . . . , p. We are concerned
with special cases of Problem (1) for which V is too
small for the use of standard numerical optimization
algorithms to be practicable. Notice that the present
study restricts attention to simple bound constraints,
although actual engineering design problems often in-
volve more complicated constraints.

When trying to minimize an objective function f
that is too expensive for standard algorithms to suc-
ceed, a common practice is to replace f with an in-
expensive surrogate f̂ and minimize f̂ instead. (For
example, one might evaluate f at V −1 carefully selec-
ted sites, construct f̂ from the resulting information,
use a standard algorithm to minimize f̂ , and eval-
uate f at the site thus obtained.) Although many
authors have remarked that one reason for perform-
ing a computer experiment may be to facilitate op-
timizing f , their remarks are usually followed by the
same suggestion, that one might minimize f̂ instead
of f . Frank (1995) offered an optimizer’s perspective
on this practice, suggested that the “minimalist ap-
proach” of minimizing a single f̂ is not likely to yield
satisfactory results, and proposed several sequential
strategies as alternatives. Booker (1996) studied sev-
eral industrial applications of this practice and two al-
ternative approaches. Trosset (1998) argued that, be-
cause optimizing computer simulations is usually less
expensive than optimizing industrial processes, the
former should entail at least as much sequential ex-
perimentation as response surface methodology. The



merits of sequential experimentation versus one mas-
sive experiment are often discussed when comparing
response surface and Taguchi methods for robust de-
sign, as in the panel discussion edited by Nair (1992)
and by Trosset (1996).

The first optimization strategy to appear in the
literature on computer experiments was proposed
by Welch and Sacks (1991) for the (more compli-
cated) purpose of quality improvement. Adapting
their generic seven-step strategy to Problem (1) re-
sults in the prescription displayed in Figure 1, which
has gained considerable currency in the engineering
design community. Notice that Step 6 admits the
possibility of sequential experimentation, but on the
basis of the adequacy of the global approximation f̂
rather than the behavior of f at a minimizer of f̂ .

1. Postulate a model for f .

2. Plan and perform an initial computer experiment.

3. Construct f̂ . “Before proceeding further, the ad-
equacy of the predictors should be assessed and,
if necessary, improved.”

4. Perform diagnostics.

5. Perform a tentative optimization of f̂ to obtain a
putative minimizer x∗.

6. “If Step 3 indicated that the predictor is not accu-
rate enough yet,” then restrict the feasible region
to a subregion deduced from Steps 4 and 5, and
return to Step 2.

7. Evaluate f(x∗).

Figure 1: The generic optimization strategy of Welch
and Sacks (1991).

In contrast, a naive sequential optimization strat-
egy is displayed in Figure 2. This strategy constructs
an initial approximation of f , minimizes the approxi-
mation to obtain a new design site xt, evaluates f(xt),
uses f(xt) to update the approximation, and contin-
ues. It is our impression that this simple strategy
has already been assimilated into the computer ex-
periment folklore, but it has not been adequately dis-
cussed in the computer experiment literature.

Closely related to the naive strategy in Figure 2.
are several heuristic search strategies for global opti-
mization. Both the Sequential Design Optimization
algorithm proposed by Cox and John (1997) and the
expected improvement algorithm developed in Schon-
lau and Welch (1996), Schonlau, Welch, and Jones
(1997, 1999), and Jones, Schonlau, and Welch (1999)
adapt methods for designing and analyzing computer

1. Postulate a model for f .

2. Perform an initial computer experiment:

(a) Select initial design sites x1, . . . , xN ∈ [a, b].

(b) Compute f(x1), . . . , f(xN ).

(c) Construct f̂0 by kriging.

3. Let xc = argmin(f(x1), . . . , f(xN )) and f̂c = f̂0.

4. Do until convergence:

(a) Apply an optimization algorithm to f̂c to
obtain xt.

(b) Compute f(xt) and update f̂c.

(c) If f(xt) < f(xc), then let xc = xt.

Figure 2: A naive sequential optimization strategy.

experiments to the task of global optimization. The
latter authors have emphasized that “the key to us-
ing response surfaces for global optimization lies in
balancing the need to exploit the response surface
(by sampling where the surface is minimized) with
the need to improve the surface (by sampling where
prediction error may be high).” As noted by Tros-
set (1998), the same needs must be balanced when
developing efficient local search strategies. Torczon
and Trosset (1998) provide a simple example that il-
lustrates this theme.

This paper reports some of our computational ex-
periments with different optimization strategies for
solving Problem (1) when V is small. Fundamen-
tal questions include: Is sequential experimentation
better than performing one massive experiment? Do
strategies that use computer experiments improve on
conventional strategies for numerical optimization?
How should a sequential strategy select new design
sites? To answer these questions we will first embed
several different strategies in a common framework,
described in Section 2. In Section 3 we describe our
numerical experiments, present some results, and of-
fer some conclusions.

2 The MAPS Framework

The output of a complicated computer simulation
is often affected by a great many approximation,
rounding, and truncation errors. These errors are
not stochastic—repeating the simulation will repro-
duce them—but their accumulation introduces high-
frequency, low-amplitude distortions of the idealized



objective that we would have liked to optimize. In
consequence, optimization algorithms that compute
or approximate (by finite differencing) derivatives of
f often fail to exploit general trends in the objec-
tive function and become trapped in local minimiz-
ers created by high-frequency oscillations. In order
to develop effective algorithms for such applications,
we restrict attention to derivative-free methods for
numerical optimization.

None of the optimization strategies described in
Section 1 are guaranteed to converge to even a local
minimizer of Problem (1). Just as we would prefer to
use consistent estimation procedures even with small
samples, so would we prefer to use provably conver-
gent optimization algorithms even when we expect
to terminate because we have expended our small
budget of function evaluations. Hence, we rely on
a class of derivative-free methods for which a conver-
gence theory exists, the pattern search methods expli-
cated by Torczon (1997) for the case of optimization
without constraints and extended by Lewis and Tor-
czon (1999) to the respective cases of optimization
with bound constraints. Torczon and Trosset (1997)
provide an elementary introduction to pattern search
methods and an account of their origins in the liter-
ature on response surface methodology; Lewis, Torc-
zon, and Trosset (1998) provide an accessible exposi-
tion of the convergence theory.

Unfortunately, pattern search methods typically
require large numbers of function evaluations. Be-
cause our budget, V , is severely limited, we want to
use these evaluations as efficiently as possible. Den-
nis and Torczon (1997) suggested the possibility of
using low-fidelity simulations of f to guide a pattern
search for a minimizer of f . This idea was extended
to a comprehensive framework for managinging sur-
rogate information by Booker et al. (1999), who used
previous function values to construct a current global
approximation, f̂c, of f , then used f̂c to predict trial
points xt at which f(xt) < f(xc). This optimization
strategy is similar to the naive strategy displayed in
Figure 2, but with the guarantees provided by pat-
tern search convergence theory.

Trosset and Torczon (1997) described a particu-
lar implementation of Booker et al.’s more general
surrogate management framework. This implementa-
tion was subsequently extended and refined by Siefert
(2000), who called it Model-Assisted Pattern Search
(MAPS). The logic of MAPS, detailed in Figure 3,
can accommodate natural variants of the optimiza-
tion strategies described in Section 1, thereby afford-
ing meaningful comparisons of six different strategies:

1. Postulate a model for f , i.e. specify the family of
functions from which {f̂k} will be selected.
Specify an initial grid G0 that conforms to the
feasible region ` ≤ x ≤ u.
Choose N < V and set k = 0.

2. Perform an initial computer experiment:

(a) Select initial design sites x1, . . . , xN ⊂ G0.

(b) Compute f(x1), . . . , f(xN ).

(c) Construct f̂0, the initial approximation, by
kriging.

(d) Specify S0, the initial search criterion.

3. Set x0 = argmin {f(x1), . . . , f(xN )}.
Set Eval0 = {x1, . . . , xN}.

4. Terminate if N + k ≥ V . Otherwise:

(a) Apply an optimization algorithm to Sk to
obtain xt ∈ Gk \ Evalk.

(b) Compute f(xt). Set Evalk = Evalk ∪ {x
t}.

(c) If f(xt) < f(xk), then xk = xt.
Else if Core(xk) ⊂ Evalk, then refine Gk.

(d) Update f̂k and then Sk.

(e) Set k = k + 1.

Figure 3: Model-Assisted Pattern Search.

1—DACE Our implementation of the strategy de-
scribed in Figure 1. We postulate that each f was
a realization of a second-order stationary Gaussian
stochastic process with unknown mean β ∈ < and
covariance function of the form c(s, t) = σ2rθ(s, t),
where σ2 > 0 was unknown and rθ was an unknown
element of the family of isotropic correlation func-
tions

rθ(s, t) = exp
(
−θ‖s− t‖2

)
. (2)

We select V − 1 design sites by Latin hypercube
(LHC) sampling, then construct f̂ by kriging. We
estimate the unknown parameters (β, σ2, θ) by the
method of maximum likelihood, set

R(θ) = [rθ(xi, xj)],

r(x; θ) = [rθ(xi, x)],

and compute

f̂(x) = β̂ + (y − 1β̂)′R(θ̂)−1r(x; θ̂).

Multiple compass searches (see below) are used to

locate a putative global minimizer of f̂ .



2—Compass A simple pattern search, described
by Lewis, Torczon, and Trosset (1998), started from
a randomly sampled x0 ∈ G0. The set Core(xk) com-
prises the ≤ 2p feasible grid points that are adjacent
(in the coordinate directions) to xk. If there is no
xt ∈ Core(xk) for which f(xt) < f(xk), then the
mesh of the current grid is halved.

3—LHC-Compass A variant of compass search.
For N < V , we select x1, . . . , xN ∈ G0 by LHC sam-
pling, then start a compass search from the xi at
which f(xi) was minimal.

4—MAGS A variant of the naive sequential strat-
egy described in Figure 2. The family of models is
identical to DACE, the initial design sites are se-
lected by LHC sampling, the current search criterion
Sk = f̂k, and the underlying pattern search is Com-
pass. This strategy was implemented by Trosset and
Torczon (1997), except that we now use a compass

search to minimize f̂k.

5—MAPS-SDO A variant of the SDO algorithm
proposed by Cox and John (1997) for global optimiza-
tion. MAPS-SDO is identical to MAGS, except that
the current search criterion is

Sk(x) = f̂k(x)− wc

√
M̂SE

[
f̂k(x)

]
,

where wc = 2 and

M̂SE
[
f̂k(x)

]
=

σ2 − σ2 [1, r(x; θ)′]

[
0 1′

1 R(θ)

]
−1 [

1
r(x; θ)

]
.

As noted in Section 1, this strategy balances the need
to exploit f̂k and the need to construct a better f̂k+1.

6—MAPS-Dynamic A variant of MAPS-SDO.
Instead of setting wc = 2, wc is dynamically adjusted
according to a scheme proposed by Siefert (2000).

3 Numerical Experiments

We studied two sets of objective functions, one com-
prising five classic objective functions from the global
optimization literature, one comprising forty ran-
domly generated objective functions. The Shekel and
Hartman families of functions are described by Dixon
and Szegö (1978); we used three Shekel functions
(n = 4, m = 5, 7, 10), denoted gm, and two Hartman
functions (n = 3, 6, m = 4), denoted hn. Here n = p

is dimension and m is a parameter that controls the
number of local minimizers. The randomly generated
functions were produced by drawing pseudorandom
samples of spatially correlated function values, inter-
polating the observed values by kriging, then adding a
trend. See Trosset (1999), Padula (2000), and Trosset
and Padula (2000) for details and software. For each
of p = 2, 3, 4, 5, we generated five samples of func-
tion values using isotropic correlation functions of the
form (2). From each sample, we obtained two func-
tions, by kriging and then adding either a constant
or a quadratic trend. We identified the local minima
of each objective function by starting a large number
of pattern searches from randomly chosen points and
running each until it converged.

By a run we mean a randomly initialized opti-
mization strategy applied to an objective function f
with a budget V = 50 function evaluations. Each
run returns a putative minimum, the best value of
f observed during the run. By observing 1000 runs,
we obtained a random sample of 1000 putative min-
ima. Our preferred way of displaying these samples,
described by Trosset and Padula (2000), is to con-
struct nonparametric estimates of the corresponding
probability density functions, e.g. by kernel methods.
These density plots clearly reveal many salient fea-
tures of algorithmic performance: the probability of
finding a small function value, the tendency to con-
verge to a local (or global) minimizer, etc. Density
plots also permit striking visual comparisons of dif-
ferent algorithms; unfortunately, space precludes pre-
senting them in this forum.

Here we focus on two specific attributes of each
run: absolute success in finding a global minimum
and relative success in finding a small function value.
Absolute success means that the run returned a func-
tion value less than (y1+y2)/2, where y1 is the global
minimum of f and y2 is the smallest nonglobal min-
imum. Relative success means that the run returned
a function value less than the 25th percentile of the
1000 putative minimizers returned by DACE on the
same objective function. For the Shekel and Hartman
objective functions, the numbers of absolute and rel-
ative successes are displayed in Tables 1 and 2. We
summarize similar tables, included in Appendices C
and B of Siefert (2000), for the 40 randomly gener-
ated objective functions.

For p = 2, DACE often produced absolute suc-
cesses (259–583), always more often than Compass,
usually more often than MAGS (9 of 10 functions),
and sometimes more than LHC-Compass (5 of 10).
However, MAPS-SDO typically (7 of 10) and MAPS-
Dynamic always produced more absolute successes
than DACE. Compass (2 of 10) and MAGS (3 of



g5 g7 g10 h3 h6

DACE 0 0 0 629 0
Compass 28 25 19 525 0
LHC-Compass 13 17 12 812 0
MAGS 261 213 181 897 566
MAPS-SDO 260 293 280 954 664
MAPS-Dynamic 276 374 369 983 621

Table 1: Absolute success: number of runs in 1000
trials that each optimization strategy bettered the
average of the two smallest minima for the Shekel (g)
and Hartman (h) objective functions.

g5 g7 g10 h3 h6

DACE 250 250 250 249 250
Compass 989 997 995 385 172
LHC-Compass 987 991 985 467 169
MAGS 1000 1000 1000 897 960
MAPS-SDO 1000 1000 1000 954 1000
MAPS-Dynamic 1000 1000 999 981 999

Table 2: Relative success: number of runs in 1000
trials that each optimization strategy bettered the
25th percentile of 1000 putative minimizers returned
by DACE for the Shekel (g) and Hartman (h) objec-
tive functions.

10) rarely produced more than 250 relative suc-
cesses; LHC-Compass (6 of 10) did somewhat better.
MAPS-SDO (245–855) and MAPS-Dynamic (389–
927) typically produced considerably more than 250
relative successes.

For p = 3, DACE produced fewer than 10 abso-
lute successes for 8 of the 10 objective functions, 39–
40 for the other two. Both pattern searches always
produced more absolute successes than DACE and
usually bettered q25, the 25th percentile of DACE.
For one objective function, Compass produced 151
absolute successes to DACE’s 39, but only bettered
q25 on 201 runs. MAGS usually produced more ab-
solute successes than Compass (7 of 10 functions)
and always produced more relative successes. MAGS
usually produced more absolute successes than LHC-
Compass (6 of 10 functions, 1 tie), but LHC-Compass
often produced more relative successes (6 of 10).
MAPS-SDO and MAPS-Dynamic typically produced
more absolute successes than MAGS (9 of 10) and
always produced more relative successes. MAPS-
Dynamic typically produced the most absolute suc-
cesses of any algorithm (8 of 10 functions, 1 tie) and
always produced the most relative successes.

For p = 4, DACE never produced more than
1 absolute success. Both Compass (0–61) and
LHC-Compass (0–82) always produced more absolute
successes than DACE. Furthermore, both Compass
(485–654) and LHC-Compass (603-725) consistently
bettered q25. MAGS always outperformed the pat-
tern searches, both absolutely and relatively. MAPS-
SDO and MAPS-Dynamic produced more absolute
successes than MAGS for 8 of the 10 objective func-
tions and always produced more relative successes.

For p = 5, DACE never succeeded absolutely
and the pattern searches rarely did. However, both
Compass (626–687) and LHC-Compass (683–776)
consistently bettered q25. MAGS always outper-
formed the pattern searches, both absolutely and
relatively. MAPS-SDO and MAPS-Dynamic always
outperformed MAGS, except in one case that MAGS
bettered q25 on 891 runs versus 870 runs for MAPS-
Dynamic.

We offer the following conclusions:

1. Sequential experimentation is desirable for opti-
mization. Except for p = 2, DACE was dramatically
outperformed by the sequential optimization strate-
gies. Auxiliary experiments suggest that constructing
and minimizing f̂ rarely improves on the initial V −1
design sites. Thus, DACE succeeds by randomly sam-
pling [`, u], a strategy that is more susceptible than
most to the curse of dimensionality. Because the se-
quential strategies only draw N ¿ V −1 initial design
sites (N = 1 for Compass), they are less likely than
DACE to place an initial design site near a global
minimizer. Usually, however, their ability to improve
on the initial design sites is crucial. DACE occasion-
ally performs reasonably well when p is quite small
and the basin that contains the global minimizer is
hard to find, but it generally performs abysmally.

2. Using interpolating approximations to guide a
pattern search does improve performance. This was
the premise that motivated Booker et al. (1999),
but Siefert (2000) appears to have been the first re-
searcher to document this phenomenon with exten-
sive numerical experimentation.

3. The best sequential strategies intelligently balance
the need to exploit f̂k and the need to construct a bet-
ter f̂k+1. Again, this point has already been made by
Frank (1995), by Trosset (1998), and by Jones, Schon-
lau, and Welch (1999), but Siefert (2000) provides the
most comprehensive documentation to date.
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