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Source Inversion / Identification in Climate Systems

» The identification of sources in climate systems is a vital problem for attribution and
prediction of climate states.

» We cannot isolate sources in nature and climate simulators are expensive.

v

Surrogate models enable the many-query algorithms required for inverse problems.

» Inversion for a source is an ill-posed problem so it is natural to treat it as a
probabilistic problem.

» We utilize a probability model for the most probable source and uncertainty.

» Our framework identifies the source characteristics from an SOy plume by

1. Calibrating deep operator network surrogates to the flow map,
2. Setting up a Bayesian framework for a distribution over the forcing profiles,
3. Optimizing to identify sources from sparse and noisy observations.

» The model we test on includes diffusion, wind, gravity, chemistry, and a volcano
source with O(10%) degrees of freedom.

» Our results open the door for applications such as inverting for the Mt. Pinatubo
source profile — the largest volcano eruption in the 20th century.



Basic Variables and Problem Statement

> State: represents concentration on the domain Q = (0, L;) x (0, L3), and maps
u: Qx[0,7] - R, (x,t)— u(x,t). (1)
» Forcing function: represents injection of concentration on {2, and maps
f:Ox[0,7T] =R, (x,1t)— f(x,0). (2)
» Forcing amplitude: the forcing function is written as

fxt) = 2(t) F (%), (3)

where F' is a known spatial profile that is fixed in time, and z is a function in time
that is decaying. We refer to z(t) as the forcing amplitude.

» Problem statement: Given a training set of M = O(10) observed/simulated
{(z™,u™)}M_, | predict a forcing amplitude 2 from noisy and sparse observations of a
concentration u not in the training set.



The SOy Plume Synthetic Model: Qualitative Properties
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Figure 1: Illustration of the SO5 concentration modeled by the Gaussian Plume synthetic
model at various times.

» 2D model in longitude z; and altitude x5.

v

We have studied models in latitude and longitude, and plan to work in 3D.

> Based on Stockie’s “The Mathematics of Atmospheric Dispersion Modeling” (SIAM
Review 2011).

» Simulated numerically using a similar number of degrees of freedom in spacetime as a
3D Energy Exascale Earth System Model (E3SM) run for a single quantity of interest.



The SO5 Plume Synthetic Model: Equations and Formulae

» We take Ly = 200 (km), Ly = 20 (km), and generate u as the solution to the equations

%—HAu—l—v-Vu—Seg-Tu:R(u)—i—f on Q x [0,T]
Vu-n=0 on 99 x [0, T
u=20 on Q x {0}

where kAu represents diffusion, v - Vu represents wind drift, Se, - Vu represents
gravity, R(u) = —~yu represents reaction, and f the forcing.

> We generate data using the forcing term

(@_5)2>

f(t,z1,y2) = z(t) exp (—100(3:1 — 5)2) exp (— T:

with forcing amplitude
2(t) = A\ exp (—Aat) (4)
to model SO5 injection. Ay and A5 are user controlled.
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Surrogate Model Problem Statement

> State vector: discretized over a spatial grid of d = O(10°) points in Q and N times,
the state u is represented by a series of vectors

u, eRY n=0,1,2,..,N. (5)

» Forcing amplitude vector: discretized at the same times as the state vector, z is
represented by a vector

z € RV, (6)
> Surrogate model problem statement: we seek a data-driven approximation to
B: (ug,z) = {ua )y, (7)

that is trained using data generated by solving the above differential equations.
» Evaluation of B(+,z) will allow for inverting for z given observations of the state.

» We have small ensemble {(z™,u™)}M_, so rather than approximate B directly, we

m=1>
construct a surrogate for the flow map
A:(uy,2zp) = upy1, n=012..,N-1 (8)

Then, B(-,z) is given by compositions of A(-, z,).



Ensemble of (forcing amplitide, solutions) to train the surrogate
» Given M initial conditions/forcing functions and concentrations:
up ul, . umw eRY and 2" eRY, m=1,.., M. 9)
» Superscript m indexes different pairs of forcing and simulated concentration

» For each m, the subscript n indexes different time steps of the concentration.

> In the examples presented here, we take ug® = 0 for each m, and vary z.

3000 —— Training Data 1
Training Data 2

Q 27504 —— Training Data 3
=P s Figure 2: Ensemble of forcing amplitudes
= used to generate data.
%m} The training data is generated with
= 20004 A1 € {2000, 3000} and Ay € {0.005,0.01}.
gm& The testing data is generated using
3 1s00] (A1, A2) = (2500, 0.0075).
D Recall z(t) = Ay exp (—Aat)




PCA for dimension reduction

» PCA dimension reduction: given a target dimension r = O(10), we assemble the
O(10°)-dimensional concentration data and perform an SVD decomposition as

[ud] .. Julu?] .. k] [udf] ] = US (10)

m.
n -

» Then we obtain the assembly of r-dimensional reduced state vectors c
> In other words, the c]' represent the coeflicients of the state u]’ in the PCA basis.

» We seek A,cq such that A~ U, 0 Ajeq © UTT i.e., so that the following diagram
approximately commutes:

A(~,Zn) 7
m m
un un+1

PCA projection = U;rl TPCA reconstruction = U,. (11)

cm —— c®
n Ared('vzn) n+l

» We refer to A,.q as the surrogate flow map between reduced spaces.



Deep Neural Network Operator Surrogate for A,eq

» We consider a family of neural networks NN : R” x R — R" consisting of L hidden
layers of width r composed with a final linear layer:

NN(c,z &) =W o®(c, 2 D), (12)

W and &M are the parameters corresponding to the final linear layer and the hidden
layers, respectively; their union is &.

»> Given a neural network architecture for NA/, we model
Cnt1 = Ared(Cn, 203 €) = € + ALNN(Cpy 203E), n=1,2,... (13)
where At is the time difference between steps n and n + 1.

» This amounts to a ResNet-like skip connection for the final output of the DNN that is
informed by the time step At and is suggested by the forward Euler discretization.

» Since our networks have 4 or less layers, we use a plain neural network architecture
@plain:UOTLO"'Oo’OTl (14_)

where @ is the vector of the r functions ®;, o the vector of r copies of o.



Prediction, Loss, and Training

» For p > 1, we define the prediction in reduced space after p timesteps as
AL (e, 21,0 2] €) = Arca( 293 €) © - © Aveal, 215 €) (€). (15)
» The predicted concentration at timestep p is given by

wrt = U, AP (e, [21, e 2] €) (16)

14

» Multistep Loss: given forcings z and corresponding solutions [c{’, ¢, ...,c}] in
reduced space for m =1,2,..., M,

M N-1 P 2
Loss(g) = Z Z Z ity — Ara(en z€))|| (17)

» The DNN is initialized using default Glorot initialization, and trained using the adam
gradient descent optimizer with an exponentially decaying learning rate schedule.
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Surrogate Flow Map Training Example

1010
— Train
— Val

100 Figure 3: Loss vs number of steps of
adam optimizer (Epochs) for an ensemble
of 3 forcing, concentration pairs (Train).
The same loss function is monitored for
. a different forcing, concentration pair
(Val) to watch for overfitting.
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» This was performed by training in a reduced space of » = 56 dimensions.

» There are many options for the selection of data, DNN architectures, and
hyperparameters related to training.

» With appropriate choices, we are able to achieve O(1%) relative ¢? reconstruction
error in the predicted flow using the trained surrogate.
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Bayesian Model

502 concentration at time = 60.0

Figure 4: Sparsely scattered observations of the
concentration, expressed by an observation operator
O :R?% — RY, where ¢ ~ 10 is the number of sensors.
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» Assuming observed data D = [O(uy), ..., O(un)] is contaminated with mean zero Gaussian
noise with a covariance matrix I'noise € R?7*9, the likelihood function is

Tie (2[D) o exp <—§iHO<un>—O(U A (v 2)) ) (18)

noise

» Assuming a Gaussian distribution mprior(2) with mean z and covariance prior € Rka, the
posterior distribution is then given by Tpost(z|D)  Tike (2| D) Tprior (2).
» The MAP point z for which the posterior PDF mpos¢ found via

min J(z) = min - Z HO u,) ( AE:L ( ug’, ))H . ||Z —ZHF, (19)

z€RN ZGRN prior

no)sc
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Optimization, codebase, and posterior sampling algorithm

>

>

TensorFIOW RAPID OPTIMIZATION LIBRARY

We minimize J(z) to find zyap using a truncated CG trust region algorithm in the
Rapid Optimization library (ROL), part of the Trilinos project developed by SNL.

The gradient is computed by solving the adjoint equation corresponding to the
discrete time stepping algorithm.

The DNN Jacobians are computed using the automatic differentiation tools in
Tensorflow, which then interfaces with ROL via PyROL.

A Gauss-Newton Hessian approximation is used to leverage DNN Jacobians for an
efficient Hessian approximation.

To sample posterior, use Laplace approximation: samples from 7. generated by
assuming that mpest is the PDF for a Gaussian distribution the mean of which is
zvap and with covariance given by the inverse Hessian of J evaluated at zyiap.

1 ROL i iNOS Nt
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Prior Samples Posterior Samples
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Figure 5: Prior (left) and posterior (right) distribution over z, predicted using the
observations illustrated in Figure 4 and the data shown in Figure 2. Grey curves are
samples from distributions.

> Observations u are contaminated with multiplicative (~ 2%) Gaussian noise.

» An ensemble of 4 simulations was used for surrogate, and the wall-time for this
complete run was roughly 1 hour.

» With a few noisy observations, the predicted zyap shows significant improvement
over the prior z with decreased uncertainty.



Conclusions and Future work

» The method provides efficient and reasonably accurate source inversion and UQ given
scattered, noisy observations and utilizing a surrogate model trained on only a limited
ensemble of simulations.

» We plan to explore the effect of increasing data and noise on the source prediction
fidelity.
» There are a vast array of options for all stages of constructing the surrogate operator.

> We are developing an optimization suite to automate the architecture, loss, and
training hyperparameters.

» Proceed to study 3D simulation datasets, including E3SM simulations of the Mt.
Pinatubo eruption.
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