
Facilitating Atmospheric Source Inversion via Deep Operator
Network Surrogates

Mamikon Gulian, Joseph Hart, Indu Manickam, and Laura Swiler

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525. SAND number: SAND2022-7855 C

1

Source Inversion / Identification in Climate Systems

I The identification of sources in climate systems is a vital problem for attribution and
prediction of climate states.

I We cannot isolate sources in nature and climate simulators are expensive.

I Surrogate models enable the many-query algorithms required for inverse problems.

I Inversion for a source is an ill-posed problem so it is natural to treat it as a
probabilistic problem.

I We utilize a probability model for the most probable source and uncertainty.

I Our framework identifies the source characteristics from an SO2 plume by

1. Calibrating deep operator network surrogates to the flow map,
2. Setting up a Bayesian framework for a distribution over the forcing profiles,
3. Optimizing to identify sources from sparse and noisy observations.

I The model we test on includes diffusion, wind, gravity, chemistry, and a volcano
source with O(105) degrees of freedom.

I Our results open the door for applications such as inverting for the Mt. Pinatubo
source profile – the largest volcano eruption in the 20th century.

2

Basic Variables and Problem Statement

I State: represents concentration on the domain Ω = (0, L1)× (0, L2), and maps

u : Ω× [0, T]→ R, (x, t) 7→ u(x, t). (1)

I Forcing function: represents injection of concentration on Ω, and maps

f : Ω× [0, T]→ R, (x, t) 7→ f(x, t). (2)

I Forcing amplitude: the forcing function is written as

f(x, t) = z(t)F (x), (3)

where F is a known spatial profile that is fixed in time, and z is a function in time
that is decaying. We refer to z(t) as the forcing amplitude.

I Problem statement: Given a training set of M = O(10) observed/simulated
{(zm, um)}Mm=1, predict a forcing amplitude z from noisy and sparse observations of a
concentration u not in the training set.

3

The SO2 Plume Synthetic Model: Qualitative Properties

Figure 1: Illustration of the SO2 concentration modeled by the Gaussian Plume synthetic
model at various times.

I 2D model in longitude x1 and altitude x2.

I We have studied models in latitude and longitude, and plan to work in 3D.

I Based on Stockie’s “The Mathematics of Atmospheric Dispersion Modeling” (SIAM
Review 2011).

I Simulated numerically using a similar number of degrees of freedom in spacetime as a
3D Energy Exascale Earth System Model (E3SM) run for a single quantity of interest.

4

The SO2 Plume Synthetic Model: Equations and Formulae

I We take L1 = 200 (km), L2 = 20 (km), and generate u as the solution to the equations

∂u

∂t
− κ∆u+ v · ∇u− Se2 · ∇u = R(u) + f on Ω× [0, T]

∇u · n = 0 on ∂Ω× [0, T]

u = 0 on Ω× {0}

where κ∆u represents diffusion, v · ∇u represents wind drift, Se2 · ∇u represents
gravity, R(u) = −γu represents reaction, and f the forcing.

I We generate data using the forcing term

f(t, x1, y2) = z(t) exp
(
−100(x1 − 5)2

)
exp

(
− (x2 − 5)2

16

)
with forcing amplitude

z(t) = λ1 exp (−λ2t) (4)

to model SO2 injection. λ1 and λ2 are user controlled.

5

Surrogate Model Problem Statement

I State vector: discretized over a spatial grid of d = O(105) points in Ω and N times,
the state u is represented by a series of vectors

un ∈ Rd, n = 0, 1, 2, ..., N. (5)

I Forcing amplitude vector: discretized at the same times as the state vector, z is
represented by a vector

z ∈ RN . (6)

I Surrogate model problem statement: we seek a data-driven approximation to

B : (u0, z) 7→ {un}Nn=1 (7)

that is trained using data generated by solving the above differential equations.

I Evaluation of B(·, z) will allow for inverting for z given observations of the state.

I We have small ensemble {(zm, um)}Mm=1, so rather than approximate B directly, we
construct a surrogate for the flow map

A : (un, zn) 7→ un+1, n = 0, 1, 2, ..., N − 1. (8)

Then, B(·, z) is given by compositions of A(·, zn).

6

Ensemble of (forcing amplitide, solutions) to train the surrogate

I Given M initial conditions/forcing functions and concentrations:

um
0 ,u

m
1 , ...,u

m
N ∈ Rd and zm ∈ RN , m = 1, ...,M. (9)

I Superscript m indexes different pairs of forcing and simulated concentration

I For each m, the subscript n indexes different time steps of the concentration.

I In the examples presented here, we take um
0 = 0 for each m, and vary z.

Figure 2: Ensemble of forcing amplitudes
used to generate data.
The training data is generated with
λ1 ∈ {2000, 3000} and λ2 ∈ {0.005, 0.01}.
The testing data is generated using
(λ1, λ2) = (2500, 0.0075).
Recall z(t) = λ1 exp (−λ2t)

7

PCA for dimension reduction

I PCA dimension reduction: given a target dimension r = O(10), we assemble the
O(105)-dimensional concentration data and perform an SVD decomposition as[

u1
1| . . . |u1

N |u2
1| . . . |u2

N | . . . |uM
1 | . . . |uM

N |
]
≈ UrΣrV

>
r . (10)

I Then we obtain the assembly of r-dimensional reduced state vectors cmn :[
c11| . . . |c1N |c21| . . . |c2N | . . . |cM1 | . . . |cMN |

]
= U>r

[
u1
1| . . . |u1

N |u2
1| . . . |u2

N | . . . |uM
1 | . . . |uM

N |
]

I In other words, the cmn represent the coefficients of the state um
n in the PCA basis.

I We seek Ared such that A ≈ Ur ◦Ared ◦ U>r i.e., so that the following diagram
approximately commutes:

um
n um

n+1

cmn cmn+1

A(·,zn)

PCA projection=U>r

Ared(·,zn)

PCA reconstruction=Ur
(11)

I We refer to Ared as the surrogate flow map between reduced spaces.

8

Deep Neural Network Operator Surrogate for Ared

I We consider a family of neural networks NN : Rr × R→ Rr consisting of L hidden
layers of width r composed with a final linear layer:

NN (c, z; ξ) = W ◦Φ(c, z; ξH), (12)

W and ξH are the parameters corresponding to the final linear layer and the hidden
layers, respectively; their union is ξ.

I Given a neural network architecture for NN , we model

cn+1 = Ared(cn, zn; ξ) = cn + ∆tNN (cn, zn; ξ), n = 1, 2, ... (13)

where ∆t is the time difference between steps n and n+ 1.

I This amounts to a ResNet-like skip connection for the final output of the DNN that is
informed by the time step ∆t and is suggested by the forward Euler discretization.

I Since our networks have 4 or less layers, we use a plain neural network architecture

Φplain = σ ◦ TL ◦ · · · ◦ σ ◦ T1 (14)

where Φ is the vector of the r functions Φi, σ the vector of r copies of σ.

9

Prediction, Loss, and Training

I For p ≥ 1, we define the prediction in reduced space after p timesteps as

A
[p]
red(c, [z1, ..., zp]; ξ) = Ared(·, zp; ξ) ◦ . . . ◦Ared(·, z1; ξ)(c). (15)

I The predicted concentration at timestep p is given by

um,∗
p = Ur A

[p]
red(cm0 , [z1, ..., zp]; ξ) (16)

I Multistep Loss: given forcings zm and corresponding solutions [cm0 , c
m
1 , ..., c

m
N] in

reduced space for m = 1, 2, ...,M ,

Loss(ξ) =

M∑
m=1

N−1∑
n=0

P∑
p=1

∥∥∥cmn+p −A
[p]
red(cmn , z; ξ)

∥∥∥2
`2

(17)

I The DNN is initialized using default Glorot initialization, and trained using the adam

gradient descent optimizer with an exponentially decaying learning rate schedule.

10

Surrogate Flow Map Training Example

Figure 3: Loss vs number of steps of
adam optimizer (Epochs) for an ensemble
of 3 forcing, concentration pairs (Train).
The same loss function is monitored for
a different forcing, concentration pair
(Val) to watch for overfitting.

I This was performed by training in a reduced space of r = 56 dimensions.

I There are many options for the selection of data, DNN architectures, and
hyperparameters related to training.

I With appropriate choices, we are able to achieve O(1%) relative `2 reconstruction
error in the predicted flow using the trained surrogate.

11

Bayesian Model

0 25 50 75 100 125 150 175 200
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
S02 concentration at time = 60.0

0

25

50

75

100

125

150

175

200

Figure 4: Sparsely scattered observations of the
concentration, expressed by an observation operator
O : Rd → Rq, where q ∼ 10 is the number of sensors.

I Assuming observed data D = [O(u0), ...,O(uN)] is contaminated with mean zero Gaussian
noise with a covariance matrix Γnoise ∈ Rq×q, the likelihood function is

πlike(z|D) ∝ exp

(
−1

2

N∑
n=1

∥∥∥O(un)−O
(
Ur A

[n]
red

(
U>r um

0 , z
))∥∥∥2

Γ−1
noise

)
(18)

I Assuming a Gaussian distribution πprior(z) with mean z and covariance Γprior ∈ Rk×k, the
posterior distribution is then given by πpost(z|D) ∝ πlike(z|D)πprior(z).

I The MAP point z for which the posterior PDF πpost found via

min
z∈RN

J(z) = min
z∈RN

1

2

N∑
n=1

∥∥∥O(un)−O
(
Ur A

[n]
red

(
U>r um

0 , z
))∥∥∥2

Γ−1
noise

+
1

2
‖z− z‖2

Γ−1
prior

(19)

12

Optimization, codebase, and posterior sampling algorithm

I We minimize J(z) to find zMAP using a truncated CG trust region algorithm in the
Rapid Optimization library (ROL), part of the Trilinos project developed by SNL.

I The gradient is computed by solving the adjoint equation corresponding to the
discrete time stepping algorithm.

I The DNN Jacobians are computed using the automatic differentiation tools in
Tensorflow, which then interfaces with ROL via PyROL.

I A Gauss-Newton Hessian approximation is used to leverage DNN Jacobians for an
efficient Hessian approximation.

I To sample posterior, use Laplace approximation: samples from πpost generated by
assuming that πpost is the PDF for a Gaussian distribution the mean of which is
zMAP and with covariance given by the inverse Hessian of J evaluated at zMAP.

13

Figure 5: Prior (left) and posterior (right) distribution over z, predicted using the
observations illustrated in Figure 4 and the data shown in Figure 2. Grey curves are
samples from distributions.

I Observations u are contaminated with multiplicative (∼ 2%) Gaussian noise.

I An ensemble of 4 simulations was used for surrogate, and the wall-time for this
complete run was roughly 1 hour.

I With a few noisy observations, the predicted zMAP shows significant improvement
over the prior z with decreased uncertainty.

14

Conclusions and Future work

I The method provides efficient and reasonably accurate source inversion and UQ given
scattered, noisy observations and utilizing a surrogate model trained on only a limited
ensemble of simulations.

I We plan to explore the effect of increasing data and noise on the source prediction
fidelity.

I There are a vast array of options for all stages of constructing the surrogate operator.

I We are developing an optimization suite to automate the architecture, loss, and
training hyperparameters.

I Proceed to study 3D simulation datasets, including E3SM simulations of the Mt.
Pinatubo eruption.

15

