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Abstract

A method is described for applying a sequence of peridynamic models with different
length scales concurrently to subregions of a body. The method allows the smallest
length scale, and therefore greatest spatial resolution, to be focused on evolving defects
such as cracks. The peridynamic horizon in each of the models is half of that of the
next model in the sequence. The boundary conditions on each model are provided
by the solution predicted by the model above it. Material property characterization
for each model is derived by coarse-graining the more detailed resolution in the model
below it. Implementation of the multiscale method in the PDMS code is described.
Examples of crack growth modeling illustrate the ability of the method to reproduce
the main features of crack growth seen in a model with uniformly small resolution.
Comparison of the multiscale model results with XFEM and cohesive elements is also
given for a crack growth problem.
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1 Introduction

The peridynamic theory of solid mechanics [1, 2] is designed to unify the mathematical and
computational modeling of continuous media, crack growth, and discrete particles. It accom-
plishes this by using integro-differential equations, rather than partial differential equations,
as the basic mathematical tools. The integro-differential equations do not require the evalu-
ation of spatial derivatives of the deformation or of a stress field. Hence, they are applicable
even when the deformation contains discontinuities such as cracks. Using generalized func-
tions, the same peridynamic equations also apply to systems of discrete particles, including
molecular dynamics.

In the peridynamic theory, the equation of motion is given by

ρ(x)ü(x, t) =

∫
Hx

f(q,x, t) dVq + b(x, t) (1)

where ρ is the density field, u is the displacement field, x is any material point in the body
B, b is a prescribed body force density field, and t is time. Hx is a neighborhood of x called
the family of x. The radius of Hx is called the horizon, denoted by δ. The function f is
the pairwise bond force density field and has dimensions of force/volume2. The integral in
(1) sums up the force on x due to interactions with each material point q within its family
(Figure 1).

The values of f are determined by the deformation and the material model. These values
include contributions from the material model at both x and q:

f(q,x, t) = t(q,x, t)− t(x,q, t)

where each term on the right hand side represents a bond force density from the material
model at x and q respectively. These bond forces are related to the deformation of the
families of each point:

t(q,x, t) = T(Y[x, t])〈q− x〉, t(x,q, t) = T(Y[q, t])〈x− q〉

where Y[x, t] and Y[q, t] represent the deformations of Hx and Hq respectively. The vector
q− x is called the bond from x to q. The values of each t therefore depend on the bond.

The abstract relations described above allow for very general material modeling. The
force density t in each bond is determined not only by the deformation of that particular
bond, but also by all the other bonds in its family. To allow this generality is the purpose of
the abstract representation of peridynamic material models described above. The functions
Y and T are examples of peridynamic states , which are simply vector-valued mappings
defined on families.

A great simplification is achieved by giving up some of this generality, and assuming
that each bond force density depends only on the deformation of that particular bond.
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Figure 1. Family of a material point x.

This restriction of the general theory is called bond-based peridynamics. In bond-based
peridynamics, the equation of motion and material model simplify to

ρ(x)ü(x, t) =

∫
Hx

f(η, ξ) dVξ + b(x, t) (2)

where the bond and the relative displacement vector at its endpoints are given by

ξ = q− x, η = u(q, t)− u(x, t).

A further simplification results from assuming that a bond-based material model is linearly
elastic. In this case, we can write

f = c(ξ)sM, s =
|ξ + η|
|ξ|

− 1, M =
ξ + η

|ξ + η|
,

where s is the bond strain (change in bond length divided by its initial length), and M is
the deformed bond direction unit vector.
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Damage can be incorporated into a bond-based peridynamic model using the idea of
bond breakage. When a bond’s deformation reaches some critical condition, the bond breaks
irreversibly, meaning that it no longer carries any load. One way of expressing this is through
a history-dependent bond damage variable µ that changes irreversibly from 1 to 0 at the
time of bond breakage:

c(ξ, t) = c0(ξ)µ(ξ, t), (3)

where c0 is the undamaged spring constant. In the special case of constant c0 independent
of ξ (that is, constant within the family), the calibration of the model for three-dimensional
formulations [3] leads to

c0 =
18k

πδ4
. (4)

The resulting bond-based material model is called the prototype elastic brittle (PMB) model.
Although many bond damage laws are possible, the most widely used is based on critical
bond strain:

s(ξ, t∗) > s∗ =⇒ µ(ξ, t) = 0 for all t ≥ t∗ (5)

where s∗ is a prescribed critical bond breakage strain and t∗ is the time of bond breakage
(usually not known in advance of modeling an application).

The horizon δ represents the maximum interaction distance for material points. Points
x and q that are separated by an initial distance greater than δ do not interact, and are
therefore excluded from the volume of integration Hx in the equation of motion. When the
scale of the modeling resolves the materials structure, the horizon is treated like a material
property – a length scale correlated with the underlying material structure. When the scale of
the modeling represents the material as a homogenous continuum, the horizon is a numerical
parameter that is frequently chosen as a matter of convenience, since a peridynamic material
model can usually be fitted to measurable material properties for any given value of δ.

Because the peridynamic equation of motion involves a volume integral over the family
of each point, rather than local values of spatial derivatives of a stress field, boundary
conditions are treated differently than in the standard theory of solid mechanics. Instead of
prescribing displacement on the boundary, as in the standard theory, displacement must be
prescribed in a layer with finite volume underneath the surface (Figure 2). This boundary
region (more properly called a constrained volume) containing prescribed displacements is
denoted R, with R ⊂ B. The prescribed displacement field within R is denoted w. Thus, a
boundary-initial value problem with prescribed displacements for the PMB material model
is defined by

ρ(x)ü(x, t) =

∫
Hx

cs(ξ, t)M dVξ + b(x, t), x ∈ B −R, t ≥ 0,

u(x, t) = w(x, t), x ∈ R, t ≥ 0,

u(x, 0) = u0(x), u̇(x, 0) = v0(x),

where w, u0, and v0 are given functions.
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Figure 2. Boundary conditions (volume constraints) are
applied to a peridynamic body B in a subregion of finite vol-
ume R.
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2 Multiscale method

Any application of peridynamics involves a choice of the horizon δ. Unlike more typical
nonlocal models, the length parameter (the horizon in the case of peridynamics) influences
the region of integration Hx in the equation of motion and the material model. This raises
the possibility that by varying δ, a multiscale method could be obtained. It is this possibility
that motivates the method development described in the remainder of this report.

It would be convenient if δ could be prescribed arbitrarily as a function of position and
time within a mathematical model of a body, allowing the smallest length scale to be applied
in the vicinity of small features of interest such as crack tips or other defects. Unfortunately,
non-constant values of δ(x, t) result in undesirable artifacts in the predicted displacement
field except in a few special cases.

Therefore, we pursue a different strategy for multiscale peridynamics. In this approach, a
sequence of L+ 1 distinct models called levels is applied to different subregions of the body.
Each level, which occupies the subregion B`, has a distinct but constant value of horizon
denoted δ`, ` = 0, 1, . . . , L. The level 0 model provides the most detailed resolution and is
assumed to contain the “best physics” at the smallest applicable length scale. Successive
levels become progressively more smeared and continuum-like by applying larger length
scales, and it is assumed that

δ0 < δ1 < · · · < δL.

Each level is a subset of the level above it:

B0 ⊂ B1 ⊂ · · · ⊂ BL.

(Figure 3.) The highest level is identical to the full body:

BL = B.

Let u` denote the displacement field in level `. All the levels obey the global initial conditions.
Global body force densities are also applied identically in all levels.

Displacement boundary conditions on each level ` < L are derived from the level above
it:

u` = u`+1 on R` ⊂ B`+1.

In other words, the boundary displacements in level ` are identical to whatever displacements
are computed in the level above it. In summary, the levels obey a coupled set of initial
boundary value problems:

ρ(x)ü`(x, t) =

∫
Hx

`

c`s`(ξ, t)M dVξ + b(x, t), x ∈ B` −R`, t ≥ 0,

u`(x, t) = u`+1(x, t), x ∈ R`, t ≥ 0,

u`(x, 0) = u0(x), u̇`(x, 0) = v0(x).
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Crack process zone 

Level 2 

Level 1 

Level 0 
Voids 

Figure 3. Levels surrounding a crack tip process zone.

Here, the family Hx
` has horizon δ`. The spring constant c` is obtained using the same

scaling law as in (4):
c`(ξ, t) = c`0(ξ)µ`(ξ, t),

c`0 =
18k

π(δ`)4
. (6)

Bond damage is mapped from level ` < L to the level above it by scaling the bond lengths.
The damage variable µ0 is “actively” computed from the deformation according to (5):

s0(ξ, t∗) > s∗ =⇒ µ0(ξ, t) = 0 for all t ≥ t∗.

Higher levels have their bond damage determined not by their own deformation, but by
coarse graining damage from the levels immediately below:

µ`+1(ξ, t) = µ`

(
δ`

δ`+1
ξ, t

)
, ` = 0, 1, . . . , L.

In summary, the general outline of the hierarchical multiscale method is as follows:

• Each level solves its own equation of motion.

• The boundary condition on each level comes from the solution at the level above it.
(Exception: level L obeys only the global boundary condition.)
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Figure 4. Higher levels have larger horizons.
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Figure 5. Schematic of interactions between levels.
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• The damage at each level is coarse-grained up from the level below it. (Exception:
damage in level 0 is determined by the deformation and material damage law.)
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3 Numerical implementation

Sandia’s PDMS (“PeriDynamic MultiScale”) code solves the concurrent, hierarchical mul-
tiscale system described in the preceding section. In each level, it uses the discretization
described in [3]. In this numerical method, the integral in (1) colorblue(in the absence of
body loads) is evaluated using midpoint quadrature in a meshless discretization of the body:

ρüi =
∑
j∈Hi

cisi,jMi,j∆Vj

where i and j are node numbers, ∆Vj is the volume associated with node j, and si,j is the
bond strain in the bond from node i to node j:

si,j =
(xj + uj)− (xi + ui)

|xj − xi|
− 1.

The acceleration at node i is approximated with a central difference formula:

üi =
ui

+ − 2ui + ui
−

∆t2

where ∆t is the time step size and ui
− and ui

+ denote the values at the previous and next
time steps respectively. As discussed in [3], a stability restriction applies to the time step
size. This restriction can be expressed in the form

∆t ≤ αδ (7)

where α is a constant, independent of δ, that is proportional to the wave speed of the
material. Thus, the stability restriction is similar to the Courant-Friedrichs-Levy condition,
with horizon playing the role of mesh spacing. The current method is “meshless” in the
sense that there are no geometrical connections, such as finite elements, that connect the
nodes.

In PDMS, each level B` is represented by its own numerical grid. The region of space
occupied by this grid changes with time, as B` evolves. Each level has a horizon that differs
from neighboring levels by a factor of 2:

δ` = 2`δ0.

This exponential increase in horizon permits δ` to be used as a parameter that adaptively
controls the mesh discretization. For example, higher levels could be applied away from
some critical region such as a crack tip. Within these higher levels, a coarse discretization
would provide sufficient accuracy to compute the nonlocal interactions with the larger value
of δ` that is present there. The grids generated by PDMS occupy a cubic lattice with grid
spacing in each level a factor of 2 greater than the one below it:

∆x` = 2`∆x0.

15



Thus, the families in all levels contain the same number of nodes. The coupling between
levels through boundary conditions and coarse-graining of damage is the same as described
in the previous section.

Since the grid spacing differs by a factor of 2 between levels, the stability restriction (7)
dictates that the time step also differ:

∆t` = 2`∆t0.

Let the displacements at the start of a level L time step be denoted uL(n). In each time
step, the level L velocities and displacements are computed for the next time step, resulting
in values for uL(n + 1). The boundary conditions in level L − 1 are applied by applying
linear interpolation to the level L displacements. Thus, in RL−1,

uL−1(n) = uL(n),

uL−1(n+ 1/2) = (uL(n) + uL(n+ 1))/2,

uL−1(n+ 1) = uL(n+ 1).

A similar interpolation determines the boundary conditions in each lower level from the
solution in the level above it.

16



4 Node creation and deletion

As a crack grows, the process zone where a high level of resolution is needed moves with
the crack tip. Therefore, PDMS redefines the level 0 subregion, along with the higher level
regions up to L−1, as a function of time. To define B0 at any given time, it is first necessary
to identify where the crack tip is located. There are three methods available in PDMS for
doing this:

• Assume that the crack tip is located where damage is currently increasing. This method
suffers from the limitation that it works for growing cracks but not static cracks (which
might start growing due to subsequent loading).

• Assume that the crack tip is located where bond strains are comparable to the pre-
scribed critical bond strain for the material. This method does not become effective
until a crack is on the verge of growing. It also suffers from “false positives,” that is,
locations where there are large bond strains that never turn into growing cracks.

• Define through user input the locations where high resolution is needed. This method
is effective near strong boundary loading, such as the impact point of a projectile
against a target, but it is not useful for growing cracks whose location is not known in
advance.

All of these methods can be used with PDMS, but none are completely general.

Once the location of a crack tip or other growing defect is identified at a given time t,
the level 0 region B0 is chosen to extend a fixed distance from this location. This distance is
typically chosen to be 5δ0. Of this B0, the outer layer of thickness δ0 comprises the boundary
region R0. As discussed in the previous sections, displacements within this boundary region
are taken from the solution in the next higher level, ` = 1. At all other points in B0, the
level 0 equation of motion is applied to find u0 as a function of time.

As the crack tip moves, level 0 nodes are created according to the current definition of
B0. Level 0 nodes are also deleted as the subregion moves away from them.

Higher levels are defined similarly based on the current geometry of the level immediately
below them. Level 1 is defined to include all of level 0 as well as material out to an additional
distance 5δ1. Thus, as B0 changes, B1 and all higher levels up to ` = L− 1 change with it.
Note that the highest level never changes, since BL = B by definition.
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5 Example

Consider the plate with a pre-existing edge crack shown in Figure 6. This compact tension
type specimen was inspired by a recent problem for a ductile fracture modeling challenge
[4]. While this specimen might more typically be used to measure the fracture energy of
a material, here we focus on the crack propagation predicted by the method. Simplified
displacement boundary conditions, applied to the lower edges, were substituted for the more
complex pin connections of the actual specimen. Both boundary conditions produce an
increasing crack opening displacement along the specimen’s edge that causes the crack to
grow. As with a double cantilever specimen, one would expect the crack path to be unstable.
To compare PDMS model results with those of FE methods using cohesive zone and XFEM
crack growth models, we only consider propagation of a straight crack. The FEM analyses
constrain the crack to a straight path, while the PDMS simulations produce a straight crack
path due to the model symmetry and homogeneity of the material parameters.

In the peridynamics formulation, we do not have an equivalency between the bond failure
model and a corresponding cohesive zone representation. However, under the assumption
made in linear elastic fracture mechanics (LEFM) of a small process zone, we expect the
two formulations to approximate each other, because the results should depend upon the
fracture energy alone and not upon the specific traction separation behavior. (In contrast,
a “quasi-brittle” problem is characterized by a relatively large process zone for which the
traction separation response can have a significant effect upon the specimen’s response.)

In comparing the PDMS model with FE models, it should be noted that the two ap-
proaches approximate LEFM in different senses. To obtain results representative of LEFM
for a cohesive crack model, one would typically hold the fracture energy constant while ex-
amining the predicted response for analyses with increasing strength (peak traction in the
cohesive zone model). The corresponding critical crack opening would decrease with the
increase of strength eventually yielding results where the size of the cohesive zone is suffi-
ciently small to closely approximate LEFM. For the peridynamics analyses one could obtain
results approaching those of LEFM by reducing the size of the level 0 horizon. In this exam-
ple problem, the “limiting studies” that one could conduct with the different computational
methods to approach LEFM are not addressed, so we only anticipate that the results will
be qualitatively close but not as close as the two FEM results (both of which use cohesive
zone models).

For a brittle fracture model problem, we assume properties representative of a soda-lime-
silicate glass. The assumed fracture energy is 6.5 J/m2, and for the FEM models used in
comparison [5] we start with a strength of 27 MPa, which is toward the low end of nominal
strengths for the material. In the FEM results the size of the cohesive zone remained close
to 0.5 mm during the crack propagation [5]. This length was about 10 percent of the original
crack length and thus about 5 percent of the crack length by the time it had grown another
5 mm. Figure 7 depicts the simulated growth of the crack with the PDMS formulation,
showing both the bond strains and damage process zone.

18



Figure 8 shows computational results for boundary load as a function of boundary dis-
placement. As shown in the figure, essentially the same results are obtained for multiscale
PDMS simulations with L = 0 (fine resolution throughout) and with L = 1 or 2. Also,
as noted in the figure, the multiscale model with L = 2 results in significant reduction in
computation time, provided a sufficiently large geometry is modeled. For smaller models,
the overhead required to perform the communications between multiscale levels tends to
outweigh the savings in reducing the total number of nodes.

Figure 9 compares the peridynamic results with finite element results using XFEM and
cohesive (interface) elements. The two finite element curves agree with each other very
closely, principally because both formualtions use the same cohesive zone model to represent
the crack surface evolution. The two peridynamic curves are both obtained with the PDMS
code with slightly different definitions of the boundary regions. The peridynamic results
are for L = 0 (that is, without the multiscale capability available in PDMS). Differences of
about 10% are evident between the peridynamic and finite element results. However, it is not
possible to determine which of these results are more accurate, since an exact solution is not
available and (as previsouly noted) complete parameter studies to make each formulation
approach LEFM have not been conducted. Figure 10 shows a limited convergence study
where the size of the horizon is scaled down with grid refinements. The peridynamic results
for the finest grid and smallest horizon differ the least with the finite element results.

Figure 11 illustrates a similar demonstration problem at a higher rate of loading using
PDMS with L = 2. In this problem, the crack grows dynamically and branches. The
predicted crack growth velocities are found to be admissible physically, that is, less than the
Rayleigh wave speed.

Crack branching can also occur due to heterogeneity of a material, as illustrated in
Figure 12. In this PDMS simulation with L = 2, an edge crack grows into a medium with
a dense distribution of hard inclusions. This type of phenomenon may be related to the
observed diffusion or smearing of cracks in heterogeneous materials such as concrete and
other composites.
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Figure 6. Compact tension specimen with a 5 mm pre-
existing edge crack. This schematic of the model does not
include extensions of the domain on the bottom to apply
displacement boundary conditions to the PDMS model.
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Damage process zone 

Figure 7. Simulated growth of an edge crack. Left: colors
indicate bond strain. Right: crack process zone and sur-
rounding higher-level subregions.

21



Level Wall clock time (min) with  

28K nodes in coarse grid 

Wall clock time (min) with  

110K nodes in coarse grid 

0 30 168 

2 8 16 

𝐿 = 0 

B
o

u
n

d
ar

y 
lo

ad
 

Boundary displacement  

𝐿 = 1 

𝐿 = 2 

Figure 8. Comparison of predictions for the edge crack
growth problem using different numbers multiscale levels.
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Figure 9. Comparison of predictions for growth of an edge
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two PDMS results show the minor effect of changing the size
of the boundary region.
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Figure 10. Comparison of predictions for growth of an
edge crack in a brittle plate using PDMS and finite elements.
The three PDMS results show the minor effect of changing
the size of the grid and the grid-scaled horizon.
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Figure 11. High-rate loading of a plate with an edge crack
results in crack branching.
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Figure 12. Crack branching in a heterogeneous medium
with hard inclusions.
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6 Discussion

The multiscale approach discussed in this report has the following advantages:

• The same equations are used at each level; only the value of the horizon changes.

• Levels interact only with the level immediately above and below.

• Each level solves only its own equation of motion. This is important because it avoids
the difficulty of solving all the levels simultaneously.

• Each level uses its own time step. Higher levels use larger time steps than lower levels.
In this sense, the method is multiscale in time as well as space.

• Small scale phenomena such as crack tip process zones can interact with larger scale
structural response. The computational cost of increasing the size of a structure being
modeled is small, provided that most of it is in level L (thereby requiring only the
coarsest discretization.

The method has the disadvantage of involving computational complexity in programming the
communications between levels, but this is perhaps true of all available multiscale techniques.
Another disadvantage is that if there are many cracks that are widely distributed throughout
a structure, the multiscale method treats nearly the whole body as level 0, negating any
savings in computational cost.
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