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Abstract

A method is obtained for deriving peridynamic material models
for a sequence of increasingly coarsened descriptions of a body. The
starting point is a known detailed, small scale linearized state-based
description. Each successively coarsened model excludes some of the
material present in the previous model, and the length scale increases
accordingly. This excluded material, while not present explicitly in the
coarsened model, is nevertheless taken into account implicitly through
its effect on the forces in the coarsened material. Numerical examples
demonstrate that the method accurately reproduces the effective elas-
tic properties of a composite as well as the effect of a small defect in a
homogeneous medium.

1 Introduction

The problem of how to represent a complex microstructure with a reduced
number of degrees of freedom is an important aspect of multiscale method
development. For example, in molecular biology, one would like to represent
a macromolecule by tracking a relatively small number of locations on the
molecule, rather than simulating every atom in detail. In the mechanics
of materials, the bulk properties of a continuum are determined by several
length scales spanning many orders of magnitude. It would therfore be desir-
able have a rigorous and mathematically consistent technique for deriving
the properties at each length scale from the one below it. For purposes
of this paper, the process of deriving such a simplified model from a fully
detailed model will be called coarsening.
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The peridynamic theory of solid mechanics [10, 2] has been proposed
as means of treating discontinuous media through a mathematical model
that does not require a smooth distribution of mass or differentiability of
the deformation. The starting point of the theory is that the internal forces
acting on a material point are determined through interactions between the
point and all others within a finite distance of it. The resulting mathematical
model relies on integral equations that apply regardless of the smoothness
of the mass distribution or of the deformation. The peridynamic model has
a close resemblance to molecular dynamics in that it sums up forces on a
point, or particle, acting across nonzero distances.

The linearized version of the peridynamic theory has been investigated
in [11, 13, 4, 15, 6, 5, 14] and elsewhere. The equation of motion in the
linearized theory is given by

ρ(x)ü(x, t) =
∫
Nx

C(x,q)(u(q, t)− u(x, t)) dVq + b(x, t)

where ρ is the mass density, u is the displacement field, b is the body force
density, x is position in the reference configuration, and t is time. Nx is a
neighborhood of x in which direct interactions with x are modeled.1 C is a
tensor-valued function called the micromodulus function. If the interaction
between x and q is through a pair potential, then the form of C can be
shown to be

C(x,q) = λ(x,q)(q− x)⊗ (q− x) + F0(x,q)1 (1)

where λ and F0 are symmetric, scalar valued functions. Under this assump-
tion of pair potentials, the bulk properties of a linear peridynamic material
correspond to a Poisson ratio of 1/4. A significant generalization of the lin-
ear peridynamic theory was presented in [9], in which it is shown that any
Poisson ratio, as well as various other material response, can be represented
by a more general choice of C than (1). Alali and Lipton [1] considered
the problem of homogenization within linear peridynamics. They obtained
relations governing the displacement field within a periodic microstructure
in the limit of small length scales.

The present paper addresses the problem of how to solve an equilibrium,
linear peridynamic problem with a reduced level of geometrical detail. The
method considers a succession of increasingly coarsened bodies derived from
an original, detailed description. Each coarsening step involves the deriva-
tion of material properties from the previous step. The coarsened material

1As discussed in [9], the radius of Nx is in general 2δ, where δ is the horizon. The
horizon is the length scale of the constitutive model from which C is derived through
linearization.
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properties are determined so that the effect of the excluded material is im-
plicitly included in the internal forces. In other words, deformation of the
more detailed material affects the forces between the points in the coars-
ened model, even though it no longer appears explicitly. It is shown that
by this procedure, the forces between points in the coarsened model agree
with those that would be computed in the fully detailed model, but with
much less computational effort. The process of coarsening can be repeated
many times, until the model has sufficiently few degrees of freedom that an
economical simulation can be performed.

The problem of coarsening a geometry is different from, but related to,
mesh adaptivity, which was discussed in [3]. In mesh adaptivity, a given
numerical model is refined where additional resolution is needed. In coars-
ening, the detailed geometry of a body is replaced by a succession of different
geometries, with different properties, in such a way as to give essentially the
same result as in the original detailed problem.

In the remainder of this paper, the theoretical development for the coars-
ening method is given. A discretized form of the coarsening method is pre-
sented, with example problems. The examples illustrate that after multiple
coarsening steps, the method continues to reproduce the bulk properties of
a one-dimensional composite material with a periodic microstructure. It is
also demonstrated that the coarsening method, when applied in the vicin-
ity of a material defect, continues to reproduce the essential features of the
defect in a boundary value problem.

2 Coarsening a detailed model

Consider a linear elastic peridynamic body B0, and let A0 be the set of
admissible displacement fields on B0. Let C0 : B0 × B0 → L be the micro-
modulus tensor field associated with the material, where L is the set of all
second order tensors. Suppose there is a positive number r0 representing
the maximum interaction distance for points in B0:

|q− x| > r0 =⇒ C0(x,q) = 0 ∀q,x ∈ B0.

Let B1 ⊂ B0, and let A1 be the set of admissible displacement fields on B1.
B0 and B1 will be called the level 0 body and the level 1 body respectively
(Figure 1). Our objective is to express the internal forces on B1 purely in
terms of its own displacements, while taking into account forces that points
in B0 − B1 exert on points in B1 due to their own displacements.

To do this, choose an arbitrary point x ∈ B1. Let r1 be a positive
number, and let N 1

x be the closed neighborhood of x in B0 with radius r1

(Figure 2):
N 1

x =
{
q ∈ B0

∣∣ |q− x| ≤ r1
}
.
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Let R1
x = N 1

x ∩ B1. Suppose u1 ∈ A1 is given, and let u0 ∈ A0 satisfy the
compatibility condition

u0(p) = u1(p) ∀p ∈ R1
x. (2)

Outside of R1
x, assume that u0 satisfies the equilibrium equation, neglecting

interactions between N 1
x and its exterior:

L0(z) + b(z) = 0 ∀z ∈ N 1
x −R1

x (3)

where

L0(z) =
∫
N 1

x

C0(z,p)(u0(p)− u0(z)) dVp ∀z ∈ N 1
x . (4)

Also assume that there is no body force density applied outside of R1:

b(z) = 0 ∀z ∈ N 1
x −R1

x. (5)

Further assume that for a given u1 field, (2) and (3) have a unique solution
u0 on N 1

x , and let S0,1
x be the resolvent kernel that generates this solution:

u0(p) =
∫
R1

x

S0,1
x (p,q)u1(q) dVq ∀p ∈ N 1

x . (6)

From (2) and (6), we infer that

S0,1
x (p,q) = 1∆(p− q) ∀p ∈ R1

x, ∀q ∈ N 1
x (7)

where 1 is the identity tensor and ∆ is the three dimensional Dirac delta
function. For the special case of u1 representing a rigid translation of R1

through an arbitrary displacement vector, say ū, then all the points in N 1
x−

R1
x must also translate by the same vector. Therefore, from (6),

ū =

[∫
R1

x

S0,1
x (p,q) dVq

]
ū ∀ vectors ū, ∀p ∈ N 1

x ,

hence the following identity is obtained:∫
R1

x

S0,1
x (p,q) dVq = 1 ∀p ∈ N 1

x . (8)

Subtracting u0(z) from both sides of (6), and using (8),

u0(p)− u0(z) =
∫
R1

x

S0,1
x (p,q)(u1(q)− u1(z)) dVq ∀p, z ∈ N 1

x .
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Using this result in (4),

L0(z) =
∫
N 1

x

C0(z,p)

[∫
R1

x

S0,1
x (p,q)(u1(q)− u1(z)) dVq

]
dVp ∀z ∈ N 1

x .

Reversing the order of integration and rearranging,

L0(z) =
∫
R1

x

[∫
N 1

x

C0(z,p)S0,1
x (p,q) dVp

]
(u1(q)−u1(z)) dVq ∀z ∈ N 1

x .

Recalling that x is an arbitrary point in B1, denote the force density at any
such choice of x by

L1(x) = L0(x) ∀x ∈ B1. (9)

From this and the previous equation,

L1(x) =
∫
R1

x

C1(x,q)(u1(q)− u1(x)) dVq ∀x ∈ B1 (10)

where C1 : B1 × B1 is defined by

C1(x,q) =
∫
N 1

x

C0(x,p)S0,1
x (p,q) dVp ∀x,q ∈ B1. (11)

Equation (10) involves quantities that are defined only in the level 1 body
B1. Therefore, it provides a coarsened description of the internal forces
in the level 0 body. The coarsened micromodulus function defined in (11)
takes into account the equilibrium of points in B0 − B1 and their effect on
the forces in B1.

Restricting the volume of integration in the above steps to a sphere of
radius r1 in effect assumes that the internal forces on any x ∈ B1 can be
obtained accurately while neglecting all interactions between the interior and
exterior of the sphere centered at x. The value of r1 must be chosen large
enough so that this is true. To find a suitable value, the procedure described
above can be repeated with increasing choices of r1. At some point in this
process, the values of C1(x,q) computed from (11) will become negligible
for all q such that |q−x| > r1. This implies that further increases to r1 will
have no effect on C1; therefore this value of r1 is sufficiently large to satisfy
the assumptions in the analysis.

Equations (2) and (9) assert that the displacements and the force den-
sities agree between the level 0 and level 1 models on B1. This implies that
the solution in B1 to any equilibrium boundary value problem, in which
boundary data b or u are specified on part of B1, is independent of whether
we use the level 0 or level 1 model. In this sense, the level 1 model exactly
duplicates the level 0 model, but with fewer degrees of freedom.
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3 Successive coarsening levels

Recall that the micromodulus function in the level 1 model given by (11)
involve only points x and q in B1. So, the level 1 equilibrium problem has
exactly the same mathematical structure as the original level 0 problem, but
with quantities defined on B1 instead of B0. Therefore, the entire coarsening
process can be repeated over and over in the same way, each time increasing
the length scale.

Define BM ⊂ BM−1 ⊂ · · · ⊂ B0 (Figure 1). Each Bm is called the level
m body. For any x ∈ Bm, let Nm

x be the closed neighborhood in Bm−1 with
radius rm, and let Rm

x = Nm
x ∩ Bm. Then, following the steps (2) through

(11), for any M ≥ m ≥ 1,

um−1(p) = um(p) ∀p ∈ Rm
x ,

Lm−1(z) + b(z) = 0 ∀z ∈ Nm
x −Rm

x ,

b(z) = 0 ∀z ∈ Nm
x −Rm

x .

For this choice of x ∈ Bm, evaluate the resolvent kernel Sm−1,m
x :

um−1(p) =
∫
Rm

x

Sm−1,m
x (p,q)um(q) dVq ∀p ∈ Nm

x . (12)

The level m force density is then

Lm(x) =
∫
Rm

x

Cm(x,q)(um(q)− um(x)) dVq ∀x ∈ Bm

where Cm : Bm × Bm is defined by

Cm(x,q) =
∫
Nm

x

Cm−1(x,p)Sm−1,m
x (p,q) dVp ∀x,q ∈ Bm.

With each successive coarsening, more material is excluded, and the length
scale is increased.

4 Discretized method

To carry out the coarsening numerically, the level 0 body B0 is discretized
into nodes which, for simplicity, all have equal volume v. Each node i has
position xi and level mi. For any nodes i and j, let

C0
i,j = vC0(xi,xj).

To find the coarsened micromodulus for node i, it is first necessary to find the
resolvent kernel defined by (6). A convenient way to do this numerically is
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Figure 1: Levels 0, 1, and 2 in a peridynamic body.

Figure 2: Neighborhood N 1
x with coarsened subset R1

x.
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to use a vector of unknowns {u0} in which the nodes within R1
i are grouped

at the top. The corresponding displacements are forced to coincide with the
values of u1 according to the compatibility condition (2). This condition is
enforced by placing 0’s on the rows of the matrix for these degrees of freedom,
with 1 on the diagonal. The remaining degrees of freedom, which correspond
to nodes in N 1

i −R1
i , are determined by the equilibrium conditions (3), (4),

and (5). The resulting matrix equation has the following form:

1 0 0 0 . . .
...

. . . 0 1 0 0 . . .
...

. . . C0
i,i−1 −Pi C0

i,i+1 . . .
...

. . . C0
N,N−1 −P0

N





u0
1
...

u0
R
...

u0
i
...

u0
N


=



u1
1
...

u1
R
...
0
...
0


where R is the number of nodes in R1

i and N is the number of nodes in N 1
i .

The diagonal matrix elements Pi are defined by

Pi =
∑
j 6=i

C0
i,j .

The above matrix equation will be abbreviated as

[A]{u0} = {b}. (13)

where [A] is an N × N matrix. Let [A]−1 be the inverse of this matrix,
therefore

[A]−1{b} = {u0}.

Now define a N × R matrix [S0,1] to be the leftmost R columns of [A]−1.
Then

{u0} = [S0,1]{u1} (14)

where

{u1} =


u1

1
...

u1
R


Equation (14) provides the discretized representation of (6).

To evaluate the coarsened micromoduli C1
i,j , (11) is discretized as follows:

C1
i,j = v

N∑
k=1

C0
i,kS

0,1
k,j
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where the S0,1
k,j are the elements of the matrix [S0,1] found above, each of

which is a second order tensor.
Successive coarsenings to higher levels are done in the same way, thus,

for any m ≥ 1,

Cm
i,j = v

Nm∑
k=1

Cm−1
i,k Sm−1,m

k,j

where the [Sm−1,m] components are found by inverting the [A] matrix

[A] =



1 0 0 0 . . .
...

. . . 0 1 0 0 . . .
...

. . . Cm−1
i,i−1 −Pm−1

i Cm−1
i,i+1 . . .

...
. . . Cm−1

N,N−1 −Pm−1
N


.

Note that each new coarsening only uses quantities from the previous level.

5 Examples

These numerical example problems illustrate the general form of the coars-
ened micromodulus function (Example 1), the effect of a periodic microstruc-
ture (Example 2), and the properties of the method applied to a defect in
an otherwise homogeneous body (Example 3). In all cases, the coarsened
micromulus functions are evaluated for every discretized node i. Gaussian
elimination is used to find the matrix inverse [A]−1 as discussed in the previ-
ous section. The discretized boundary value problems are also solved using
Gaussian elimination.

5.1 Micromodulus in a homogeneous bar

This example illustrates the typical form of coarsened micromodulus func-
tions. A homogeneous, one dimensional bar of length 1.0 has a tent-shaped
micromodulus function C0 as shown in Figure 3:

C0(x, q) =
{

1− |q − x|/r0 if 0 < |q − x| < r0,
0 otherwise.

The level 0 interaction distance is r0 = 0.05. The bar is discretized into
nodes with spacing v = 0.005, thus r0 = 10v.

Coarsening is carried out as shown schematically in Figure 4. Every
fourth node in level 0 is also in level 1. Every second node in level 1 is also
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Figure 3: Micromodulus functions C0, C1, and C2 in a homogeneous one-
dimensional bar. The level 1 and 2 curves have peaks because they are not
defined everywhere, only in the coarsened grids.

in level 2. The coarsened micromodulus functions C1 and C2 are shown
as functions of bond distance q − x in the figure. These curves have sharp
peaks because they are defined only in their respective coarsened regions,
i.e., every fourth or eighth node in the grid.

5.2 Bar with periodic microstructure

This example illustrates the properties of the coarsening procedure when
applied to a composite material. A bar with length 1.0 is composed of
alternating stripes Shard and Ssoft. (These represent the physical properties
of the level 0 model and should not be confused with the coarsening levels.)
Each stripe has width 0.05. The interaction distance r0 is also 0.05. The
micromodulus is given by

C0(x, q) =


10 if 0 < |q − x| < r0 and (x ∈ Shard and q ∈ Shard),
1 if 0 < |q − x| < r0 and (x ∈ Ssoft or q ∈ Ssoft),
0 otherwise.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Level

Distance
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2

Figure 4: Coarsening levels 0, 1, and 2 for the one dimensional bar in Exam-
ples 1 and 2. Each box in the figure represents one node in the discretized
model. Nodes in level m also belong to all levels lower than m.
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Figure 5: Displacement fields for coarsening levels 0, 1, and 2 within the
composite material in Example 2.

In other words, bonds that have both ends in a hard stripe have hard prop-
erties. Bonds that have either end or both ends in a soft stripe have soft
properties.

The level 0 interaction distance is r0 = 0.05. The discretized model has
a spacing of 0.005. The coarsened levels are the same as in the previous
example and shown in Figure 4.

The boundary conditions are as follows. The leftmost three level 2 nodes
are constrained to have zero displacement. The rightmost three level 2
nodes have an applied body force density of b = 0.001. The computed
displacements with the identical boudary conditions for coarsening levels 0,
1, and 2 are shown in Figure 5. As expected, the level 0 solution contains the
greatest level of detail due to the microstructure. Levels 1 and 2 smooth out
these features. However, both coarsened levels have the same global stretch
as the detailed solution. This demonstrates that the effective properties
produced by the coarsening method accurately reflect the bulk properties of
the composite.
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5.3 Homogeneous bar with a defect

This example illustrates the response of a coarsened model when the level 0
body contains a small defect. The material model is the same as in Exam-
ple 1, but with a term µ that degrades the stiffness of bonds that cross the
location of a defect xd:

C0(x, q) = µ(x, q)
{

1− |q − x|/r0 if 0 < |q − x| < r0,
0 otherwise.

where

µ(x, q) =
{

0.1 if x ≤ xd ≤ q or q ≤ xd ≤ x
1 otherwise.

The level 0 interaction distance is r0 = 0.05. The bar is discretized into
nodes with spacing v = 0.005, thus r0 = 10v. The defect is located at the
center of the bar.

The level 1 grid contains every third node of the level 0 grid. The level
2 grid contains every third node of the level 1 grid (Figure 6). Prescribed
displacement boundary conditions are applied to three leftmost level 2 nodes
and to the three rightmost level 2 nodes. The values of the prescribed
displacements at these nodes are given by u0

i = u1
i = u2

i = xi where xi is
the position of the node.

The resulting fields u0, u1, and u2 near the defect are shown in Figure 7.
The three levels give nearly identical results except that the jump in dis-
placement across the defect reflects the wider spacing between nodes in the
coarsened grids.

6 Computational cost

To determine the implications of coarsening for the computational effort
in a numerical model, consider the effect of increasing the total volume of
the level 0 body. Assuming the discretization spacing and level 0 material
model are constant, let the total number of level 0 nodes in the model be K0,
which is proportional to the total volume of material. Suppose the linear
solver, which is applied to the fully coarsened level M grid, uses J = aKn

M

arithmetic operations, where a and n are constants, and KM is the total
number of nodes in level M . (For Gaussian elimination, n = 3, although
more efficient methods are available.) Suppose each the grid for each level
has 1/L as many nodes as in the previous level, where L is a constant. (In
Example 3, L = 3. If this example were three dimensional, then we would
have L = 33.) So, KM = K0/LM .

The computational effort in determining the level m+1 properties from
the level m properties is proportional to Km, since the inverse matrix [A]−1
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Figure 6: Coarsening levels 0, 1, and 2 for the one dimensional bar in Ex-
ample 3.
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Figure 7: Coarsened displacement fields in a bar with a defect, Example 3.
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must be computed for each level m node. Therefore, we can write, for some
positive constant b,

J = a

(
K0

LM

)n

+
M−1∑
m=0

bK0

Lm

= a

(
K0

LM

)n

+ bK0
1− 1/LM

1− 1/L

< a

(
K0

LM

)n

+ bK0
L

L− 1
.

The conclusion is that by coarsening up to level M , the computational effort
in the linear solve for a boundary value problem is reduced by a factor of
LnM over what it would be if the whole problem were solved in level 0. In
a three dimensional version of Example 3, with Gaussian elimination, this
factor would be 81M . The price paid in determining the coarsened properties
is a computational effort of less than bK0L/(L− 1), independent of M .

7 Discussion

The coarsening method described above involves an increase in the length
scale rm at each step in the process. In this sense, it provides a tool for
multiscale analysis. Although it involves derivation of material properties
at variable length scales, the method is different from rescaling of mate-
rial properties as discussed in [3, 8]. In these references, the technique for
changing length scales starts with a small-scale material model and maps
each bond explicitly into a rescaled bond strictly according to bond length.
Such a rescaling approach would not be expected to accurately reproduce
the effective properties of a heterogeneous material, such as a composite,
because it does not account for the rearrangement of material at the small
scale in response to deformation at the large scale. The present approach to
coarsening does account for this rearrangement, as demonstrated in Exam-
ple 2.

The development in this paper treats only the linearized, equilibrium
case. However, the coarsened material properties developed here are ex-
pected to be useful in dynamic problems as well. Future work will investi-
gate the implications for the time scale of the material when the length scale
is increased from r0 to rm. It is expected that there is a strong connection
between length and time scales in the peridynamic model because the length
scale dictates the highest vibrational frequencies that can be sustained by
the continuum. Future work will also attempt to treat nonlinearities in the
coarsening method through an incremental approach in which the linearized
material properties C0 are re-evaluated as the problem evolves.
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The coarsening method proposed here is similar in some ways to a
method investigated by Eom [7] for coarse-graining an elastic network model
of a protein molecule [12]. In Eom’s coarse graining approach, atoms in a
macromolecular structure are designated as master and slave atoms, the
latter of which are in equilibrium but coupled to the former.

Since a system of discrete particles can be represented exactly as a peri-
dynamic body [8], it is plausible that the method presented here could be
applied to atomic systems, resulting in a coarse-graining of atomistics. Such
an application would require the thermal motion of particles to be incorpo-
rated into the detailed material properties C0. Molecular dynamics simula-
tion may provide a means to accomplish this by providing time averages of
forces between atoms.
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