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• Triangular solver is important numerical kernel 
– Essential role in preconditioning linear systems 

• Difficult algorithm to parallelize  

• Trend of increasing numbers of cores per socket 
• Threaded or hybrid approach potentially beneficial 

• Focus of work: threaded triangular solve on each 
node/socket 

Motivation 
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•  Inflation in iteration count due to number of 
subdomains (MPI tasks) 

• With scalable threaded triangular solves 
– Solve triangular system on larger subdomains 
– Reduce number of subdomains (MPI tasks) 

Motivation 
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Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009) 



• Initially, focus attention on level set triangular 
solver (J. Saltz, 1990) 
– Level set approach exposes parallelism 

• First, express data dependencies for triangular 
solve with a directed acyclic graph (DAG) 

Level Set Triangular Solver 
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• Determine level sets of this DAG 
– Represent sets of row operations that can be 

performed independently 

Level Set Triangular Solver 
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• Permuting matrix so that rows in a level set are 
contiguous 
– Di are diagonal matrices 
– Row operations in each level set can be performed 

independently 

Level Set Triangular Solver 
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• Resulting operations for triangle solve 
– Row operations in each level can be performed 

independently (parallel for) 

Level Set Triangular Solver 
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• Simple prototype of level set threaded triangular solve 
– Assumes fixed number of rows per level 
– Assumes matrices preordered by level 
–  Pthreads 

• Allowed us to explore factors affecting performance 
• Run experiments on two platforms 

–  Intel Nehalem: two 2.93 GHz quad-core Intel Xeon processors 
– AMD Istanbul: two 2.6 GHz six-core AMD Opteron processors 

Simple Prototype 
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• Implemented two different barriers 
– “Passive” barrier 

• Mutexes and conditional wait statements 
– “Active” barrier 

• Spin locks and active polling 

Factor 1: Type of Barrier 
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Algorithm 1 Passive Barrier.
void passiveBarrier()
{

pthread_mutex_lock(&mutex);
numArrived++;
if(numArrived < NUM_THREADS) {

pthread_cond_wait(&barrCond,&mutex);
}
else {

pthread_cond_broadcast(&barrCond);
numArrived = 0;

}
pthread_mutex_unlock(&mutex);

}

Algorithm 2 Active Barrier.
void activeBarrier()
{

pthread_spin_lock(&lock);
actNumArrived++;
if(actNumArrived==NUM_THREADS) {

actLoopFlag = false;
}
pthread_spin_unlock(&lock);

while(actLoopFlag) {}
}

Algorithm 1 Passive Barrier.
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pthread_mutex_lock(&mutex);
numArrived++;
if(numArrived < NUM_THREADS) {

pthread_cond_wait(&barrCond,&mutex);
}
else {

pthread_cond_broadcast(&barrCond);
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Algorithm 2 Active Barrier.
void activeBarrier()
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Barriers 
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• Results for good data locality matrices 
• Active/aggressive barriers essential for scalability 



• Studied the importance of thread affinity 
• Thread affinity allows threads to be pinned to 

cores 
– Less likely for threads to be switched (beneficial for 

cache utilization) 
– Ensures that threads are running on same socket 

Factor 2: Thread Affinity 
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Thread Affinity 
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• Results for good data locality matrices, active 
barrier 

• Thread affinity not as important as active barrier 
– But can be beneficial for some problem sizes 



• Examined three different types of matrices 
–  Same number of rows per level 
–  Same number of nonzeros per row 

• Allowed us to explore how data locality affects 
performance 

Factor 3: Data Locality 
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Data Locality: Good vs. Bad 
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• Results for good  (GD) vs. bad data (BD) locality 
matrices 

• Active barrier 
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Data Locality: Good vs. Bad 
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• Results for good  (GD) vs. bad data (BD) locality 
matrices 

• Active Barrier 



Data Locality: Good vs. Random 
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• Results for good data locality vs. random 
matrices 

• Active barrier 
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Data Locality: Good vs. Random 
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• Results for good data locality (GD) vs. random 
(RN) matrices 

• Active Barrier 



More Realistic Problems 
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Name N nnz N / nlevels Application area 
asic680ks 682,712 2,329,176 13932.9 circuit simulation 

cage12 130,228 2,032,536 1973.2 DNA electrophoresis 
pkustk04 55,590 4,218,660 149.4 structural engineering 
bcsstk32 44,609 2,014,701 15.1 structural engineering 

• Symmetric matrices 
• Incomplete Cholesky factorization (no fill) 
• Average size of level important 



Realistic Problems:  Barriers 
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• Problems with larger average level size scale 
fairly well 

• Active/aggressive barrier important 



Realistic Problems: Thread Affinity 
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• Problems with larger average level size scale 
fairly well 

• Thread affinity not particularly important 



• Algorithm scales when average level size is high 
• Couple factors hurt performance for small 

average level size 
– Many levels, many synchronization points 
– Not enough work in small levels (barrier cost 

significant) 

• Implemented simple extension to address these 
problems 
– Serialize small levels below a certain threshold 
– Merge consecutive serialized levels 
– Reducing levels reduces synchronization points 

Level Set Triangular Solver Extension 
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Level Set Triangular Solver Extension 
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Original Extension 

• Very slight improvement for problem that scale 
well 
– Not many small levels 
– Can reduce speedup if too aggressive in 

serialization 



Level Set Triangular Solver Extension 
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Original Extension 

• Slight improvement for problem that originally did 
not scale quite so well 
– More small levels 



Level Set Triangular Solver Extension 
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Original Extension 

• Significant improvement for problem that 
originally did not scale well 
– Many small levels 
– Great reduction in synchronization points 

• Still does not scale well for 8 threads 



• Presented threaded triangular solve algorithm 
– Level scheduling algorithm 

• Studied impact of three factors on performance 
– Barrier type most important 

•  Good scalability for simple matrices and two 
realistic problems 

• Scalability related to average level size 
– Simple extension to improve results when level 

sizes are small 
– Better algorithms needed for matrices with small 

average level size 
• Algorithms being implemented in Trilinos 

– http://trilinos.sandia.gov 

Summary/Conclusions 
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