
Factors Impacting Performance of
Multithreaded Triangular Solve

VECPAR’10

June 23, 2010

Michael Wolf, Mike Heroux, Erik Boman
Extreme-scale Algorithms and Software Institute

(EASI)

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.!

• Triangular solver is important numerical kernel
– Essential role in preconditioning linear systems

• Difficult algorithm to parallelize

• Trend of increasing numbers of cores per socket
• Threaded or hybrid approach potentially beneficial

• Focus of work: threaded triangular solve on each
node/socket

Motivation

2

•  Inflation in iteration count due to number of
subdomains (MPI tasks)

• With scalable threaded triangular solves
– Solve triangular system on larger subdomains
– Reduce number of subdomains (MPI tasks)

Motivation

3

Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)

• Initially, focus attention on level set triangular
solver (J. Saltz, 1990)
– Level set approach exposes parallelism

• First, express data dependencies for triangular
solve with a directed acyclic graph (DAG)

Level Set Triangular Solver

4

1

2

3

45 6

L DAG

• Determine level sets of this DAG
– Represent sets of row operations that can be

performed independently

Level Set Triangular Solver

5

1

2

3

4

5

6

• Permuting matrix so that rows in a level set are
contiguous
– Di are diagonal matrices
– Row operations in each level set can be performed

independently

Level Set Triangular Solver

6

L̃ = PLPT =

�

⇧⇧⇧⇧⇧⇤

D1

A2,1 D2

A3,1 A3,2 D3
...

...
...

. . .
Al,1 Al,2 Al,3 . . . Dl

⇥

⌃⌃⌃⌃⌃⌅

• Resulting operations for triangle solve
– Row operations in each level can be performed

independently (parallel for)

Level Set Triangular Solver

7

x̃1 = D�1
1 ỹ1

x̃2 = D�1
2 (ỹ2 �A2,1x̃1)

...
...

...
x̃l = D�1

l (ỹl �Al,1x̃1 � . . .�Al,l�1x̃l�1)

• Simple prototype of level set threaded triangular solve
– Assumes fixed number of rows per level
– Assumes matrices preordered by level
–  Pthreads

• Allowed us to explore factors affecting performance
• Run experiments on two platforms

–  Intel Nehalem: two 2.93 GHz quad-core Intel Xeon processors
– AMD Istanbul: two 2.6 GHz six-core AMD Opteron processors

Simple Prototype

8

• Implemented two different barriers
– “Passive” barrier

• Mutexes and conditional wait statements
– “Active” barrier

• Spin locks and active polling

Factor 1: Type of Barrier

9

Algorithm 1 Passive Barrier.
void passiveBarrier()
{

pthread_mutex_lock(&mutex);
numArrived++;
if(numArrived < NUM_THREADS) {

pthread_cond_wait(&barrCond,&mutex);
}
else {

pthread_cond_broadcast(&barrCond);
numArrived = 0;

}
pthread_mutex_unlock(&mutex);

}

Algorithm 2 Active Barrier.
void activeBarrier()
{

pthread_spin_lock(&lock);
actNumArrived++;
if(actNumArrived==NUM_THREADS) {

actLoopFlag = false;
}
pthread_spin_unlock(&lock);

while(actLoopFlag) {}
}

Algorithm 1 Passive Barrier.
void passiveBarrier()
{

pthread_mutex_lock(&mutex);
numArrived++;
if(numArrived < NUM_THREADS) {

pthread_cond_wait(&barrCond,&mutex);
}
else {

pthread_cond_broadcast(&barrCond);
numArrived = 0;

}
pthread_mutex_unlock(&mutex);

}

Algorithm 2 Active Barrier.
void activeBarrier()
{

pthread_spin_lock(&lock);
actNumArrived++;
if(actNumArrived==NUM_THREADS) {

actLoopFlag = false;
}
pthread_spin_unlock(&lock);

while(actLoopFlag) {}
}

Barriers

10

Sp
ee
du

p	

Matrix	 Size	

• Results for good data locality matrices
• Active/aggressive barriers essential for scalability

• Studied the importance of thread affinity
• Thread affinity allows threads to be pinned to

cores
– Less likely for threads to be switched (beneficial for

cache utilization)
– Ensures that threads are running on same socket

Factor 2: Thread Affinity

11

Thread Affinity

12

Sp
ee
du

p	

Matrix	 Size	

• Results for good data locality matrices, active
barrier

• Thread affinity not as important as active barrier
– But can be beneficial for some problem sizes

• Examined three different types of matrices
–  Same number of rows per level
–  Same number of nonzeros per row

• Allowed us to explore how data locality affects
performance

Factor 3: Data Locality

13

“Good” data locality “Bad” data locality
0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

1000

Random

Data Locality: Good vs. Bad

14

• Results for good (GD) vs. bad data (BD) locality
matrices

• Active barrier

10
0

10
2

10
3

10
4

P

R
u

n
ti
m

e
 (

u
s
)

L10 data locality: active barrier

100000 good locality

500000 good locality

100000 bad locality

500000 bad locality

threads
1 2 4 8

Data Locality: Good vs. Bad

15

Sp
ee
du

p	

Matrix	 Size	

• Results for good (GD) vs. bad data (BD) locality
matrices

• Active Barrier

Data Locality: Good vs. Random

16

• Results for good data locality vs. random
matrices

• Active barrier

10
0

10
2

10
3

10
4

P

R
u

n
ti
m

e
 (

u
s
)

L10 data locality: active barrier

100000 good locality

500000 good locality

100000 random

500000 random

threads
1 2 4 8

Data Locality: Good vs. Random

17

Sp
ee
du

p	

Matrix	 Size	

• Results for good data locality (GD) vs. random
(RN) matrices

• Active Barrier

More Realistic Problems

18

Name N nnz N / nlevels Application area
asic680ks 682,712 2,329,176 13932.9 circuit simulation

cage12 130,228 2,032,536 1973.2 DNA electrophoresis
pkustk04 55,590 4,218,660 149.4 structural engineering
bcsstk32 44,609 2,014,701 15.1 structural engineering

• Symmetric matrices
• Incomplete Cholesky factorization (no fill)
• Average size of level important

Realistic Problems: Barriers

19

Sp
ee
du

p	

• Problems with larger average level size scale
fairly well

• Active/aggressive barrier important

Realistic Problems: Thread Affinity

20

Sp
ee
du

p	

• Problems with larger average level size scale
fairly well

• Thread affinity not particularly important

• Algorithm scales when average level size is high
• Couple factors hurt performance for small

average level size
– Many levels, many synchronization points
– Not enough work in small levels (barrier cost

significant)

• Implemented simple extension to address these
problems
– Serialize small levels below a certain threshold
– Merge consecutive serialized levels
– Reducing levels reduces synchronization points

Level Set Triangular Solver Extension

21

Level Set Triangular Solver Extension

22

Sp
ee
du

p	

Sp
ee
du

p	

Original Extension

• Very slight improvement for problem that scale
well
– Not many small levels
– Can reduce speedup if too aggressive in

serialization

Level Set Triangular Solver Extension

23

Sp
ee
du

p	

Sp
ee
du

p	

Original Extension

• Slight improvement for problem that originally did
not scale quite so well
– More small levels

Level Set Triangular Solver Extension

24

Sp
ee
du

p	

Sp
ee
du

p	

Original Extension

• Significant improvement for problem that
originally did not scale well
– Many small levels
– Great reduction in synchronization points

• Still does not scale well for 8 threads

• Presented threaded triangular solve algorithm
– Level scheduling algorithm

• Studied impact of three factors on performance
– Barrier type most important

•  Good scalability for simple matrices and two
realistic problems

• Scalability related to average level size
– Simple extension to improve results when level

sizes are small
– Better algorithms needed for matrices with small

average level size
• Algorithms being implemented in Trilinos

– http://trilinos.sandia.gov

Summary/Conclusions

25

