

2010 Post-Convention Workshop

High Performance Implementation of Geophysical Applications

October 21, 2010

Michael Wolf, Mike Heroux, Chris Baker (ORNL)
Extreme-scale Algorithms and Software Institute (EASI)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.!

Obtaining Parallelism on Multicore and
GPU Architectures in a Painless Manner

• Work is part of Extreme-scale Algorithms and
Software Institute (EASI)
– DOE joint math/cs institute
– Focused on closing the architecture-application

performance gap
• Work primarily with Mike Heroux, Chris Baker
(ORNL)

• Additional contributors
– Erik Boman (SNL)
– Carter Edwards (SNL)
– Alan Williams (SNL)

EASI

2

• Object-oriented software framework to enable the
solution of large-scale, complex multi-physics
engineering and scientific problems
– Open source, implemented in C++

• Current work on new capabilities
– Templated C++ code

• Ordinal, scalar types
• Node type

– Better parallel abstraction
• Abstract inter-node communication
• Generic shared memory parallel node
• Template meta-programming for
 write-once, run-anywhere kernel support

Trilinos Framework

3

• HPC shift in architectures (programming models?)
• CPUs increasingly multicore

– Clock rates have peaked
– Processors are becoming more NUMA

• Impact of accelerators/GPUs
– #2 (Nebulae), #3 (Roadrunner) on Top500 list
– Will play a role in or at least impact future supercomputers

• Complications
– More diverse set of promising architectures
– Heterogeneous architectures
 (e.g., multicore CPUs + GPUs)

Shift in High Performance Computing (HPC)

4

• HPC shift in architectures (programming models?)
– CPUs increasingly multicore
–  Impact of accelerators/GPUs
– Heterogenous architectures

• Complications
– More diverse set of promising architectures
– Heterogeneous architectures

• Challenges
– Obtaining good performance with our numerical kernels

on many different architectures (w/o rewriting code)
– Modifying current MPI-only codes

Challenges in High Performance Computing (HPC)

5

Obtaining good performance with our
kernels on many different architectures

6

API for Shared Memory Nodes

• Goal: minimize effort needed to write scientific codes for
a variety of architectures without sacrificing performance
– Focus on shared memory node (multicore/GPU)
– Abstract communication layer (e.g., MPI) between nodes
– Our focus: multicore/GPU support in Trilinos distributed linear

algebra library, Tpetra

7

API for Shared Memory Nodes

• Find the correct level for programming the node architecture
– Too low: code numerical kernel for each node

• Too much work to move to a new platform

– Too high: code once for all nodes
• Difficult to exploit hardware features
• API is too big and always growing

• Somewhere in the middle (Trilinos package Kokkos):
–  Implement small set of parallel constructs (parallel for, parallel

reduce) on each architecture
– Write kernels in terms of constructs

8

Num. Implementations
m kernels * n nodes = mn

Num. Implementations
m kernels + c constructs * n nodes = m + cn

Trilinos: c=2

Kokkos Compute Model

• Trilinos package with API for programming to a generic
parallel node
– Goal: allow code, once written, to run on any parallel node,

regardless of architecture
• Kokkos compute model

– User describes kernels for parallel execution on a node
– Kokkos provides common parallel work constructs

• Parallel for loop, parallel reduction

• Different nodes for different architectures

• Support new platforms by implementing new node classes

– Same user code

•  TBBNode •  TPINode
•  CUDANode •  SerialNode

9

Intel Thread Building Blocks

CUDA (via Thrust)

Pthread based

Kokkos Compute Model

• Kokkos node provides generic parallel constructs:
–  Node::parallel_for() and Node::parallel_reduce()	
– Currently implemented for several node architectures

• TBBNode,	 TPINode,	 CUDANode,	 SerialNode	

• User develops kernels in terms of these parallel
constructs

• Template meta-programming does the rest
– Produces kernels tailored for the specific architecture

10

template	 <class	 WDP>	
void	 Node::parallel_for(int	 beg,	 int	 end,	 WDP	 workdata);	

struct	 AxpyOp	 {	
	 	 const	 double	 *x;	
	 	 double	 *y;	
	 	 double	 a;	
	 	 void	 execute(int	 i)	 	
	 	 {	 	 y[i]	 =	 a*x[i]	 +	 y[i];	 }	
};	

Kokkos: axpy() with Parallel For

void	 exampleFn(double	 *x,	 double	 *y,	 double	 a)	
{	
	 	 	 AxpyOp	 op1;	
	 	 	 op1.y	 =	 y;	
	 	 	 op1.x	 =	 x;	
	 	 	 op1.a	 =	 a;	
	 	 	 node-‐>parallel_for<AxpyOp>(0,n,op1);	
}	

11

Data needed for operation

Serial op for index i

WDP

Kokkos

Shared Memory Timings for Simple Iterations

•  Power method: one SpMV op, three vector operations
•  Conjugate gradient: one SpMV op, five vector operations

•  Matrix is a simple 3-point discrete Laplacian with 1M rows
•  Wrote kernels once in terms of constructs

–  Got different architecture implementations for “free”

12

Node Power method
(mflop/s)

CG iteration
(mflop/s)

SerialNode 101 330

TPINode(1) 116 375

TPINode(2) 229 735

TPINode(4) 453 1,477

TPINode(8) 618 2,020

TPINode(16) 667 2,203

CUDANode 2,584 8,178

•  Physical node:
–  One NVIDIA Tesla C1060
–  Four 2.3 GHz AMD

 Quad-core CPUs

Modifying Current MPI-Only Codes
(Bimodal MPI and MPI+Threads Programming)

13

• Multithreading can improve some numerical kernels
–  E.g., domain decomposition preconditioning with incomplete factorizations

• For flat MPI, inflation in iteration count due to number of subdomains
• By introducing multithreaded triangular solves on each node

–  Solve triangular system on larger subdomains
–  Reduce number of subdomains (MPI tasks), mitigate iteration inflation

Motivation: Why Not Flat MPI?

14

Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)

Memory

Core 0 Core n-1

Node 0

Memory

Core 0 Core n-1

Node 1

Memory

Core 0 Core n-1

Node m-1

• Parallel machine with p = m * n processors:
- m = number of nodes
- n = number of shared memory cores per node

•  Two typical ways to program
- Way 1: p MPI processes (flat MPI)

- Massive software investment in this programming model
- Way 2: m MPI processes with n threads per MPI process

- Requires ubiquitous change when starting from “way 1”

Bimodal MPI and MPI+Threads Programming

15

Memory

Core 0 Core n-1

Node 0

Memory

Core 0 Core n-1

Node 1

Memory

Core 0 Core n-1

Node m-1

•  Two typical ways to program
- Way 1: p MPI processes (flat MPI)
- Way 2: m MPI processes with n threads per MPI process

•  Third way (bimodal MPI and hybrid MPI+threads)
- “Way 1” in some parts of the execution (the app)
-  “Way 2” in others (the solver)

•  Challenges for bimodal programming model
- Utilizing all cores (in Way 1 mode)
- Threads on node need access to data from all MPI tasks on node

•  Solution: MPI shared memory allocation

Bimodal MPI and MPI+Threads Programming

16

Idea:
•  Shared memory alloc/free functions:

–  MPI_Comm_alloc_mem
–  MPI_Comm_free_mem

•  Architecture-aware communicators:
MPI_COMM_NODE – ranks on node
MPI_COMM_SOCKET – UMA ranks
MPI_COMM_NETWORK – inter node

•  Status:
–  Available in current development

branch of OpenMPI
–  Under development in MPICH
–  Demonstrated usage with threaded

triangular solve
–  Proposed to MPI-3 Forum

int n = …;
double* values;
 MPI_Comm_alloc_mem(
 MPI_COMM_NODE, // comm (SOCKET works too)

 n*sizeof(double), // size in bytes
 MPI_INFO_NULL, // placeholder for now
 &values); // Pointer to shared array (out)

// At this point:
// - All ranks on a node/socket have pointer to a shared buffer.
// - Can continue in MPI mode (using shared memory algorithms)
// - or can quiet all but one rank:
int rank;
MPI_Comm_rank(MPI_COMM_NODE, &rank);

// Start threaded code segment, only on rank 0 of the node
if (rank==0)
{
…
}
 MPI_Comm_free_mem(MPI_COMM_NODE, values);

Collaborators: B. Barrett, R. Brightwell - SNL; Vallee, Koenig - ORNL

MPI Shared Memory Allocation

17

• Simple MPI application
– Two distributed memory/MPI kernels

• Want to replace an MPI kernel with more efficient
hybrid MPI/threaded kernel
– Threading on multicore node

Simple MPI Program

18

double *x = new double[n];
double *y = new double[n];

MPIkernel1(x,y);
MPIkernel2(x,y);

delete [] x;
delete [] y;

• Very minor changes to code
– MPIKernel1 does not change

• Hybrid MPI/Threaded kernel runs on rank 0 of each
node
–  Threading on multicore node

Simple Bimodal MPI + Hybrid Program

19

MPI Comm size(MPI COMM NODE, &nodeSize);
MPI Comm rank(MPI COMM NODE, &nodeRank);

double *x, *y;

MPI Comm alloc mem(MPI COMM NODE,n*nodeSize*sizeof(double),
. MPI INFO NULL, &x);
MPI Comm alloc mem(MPI COMM NODE,n*nodeSize*sizeof(double),
. MPI INFO NULL, &y);

MPIkernel1(&(x[nodeRank * n]),&(y[nodeRank * n]));

if(nodeRank==0)
{
. hybridKernel2(x,y);
}

MPI Comm free mem(MPI COMM NODE, &x);
MPI Comm free mem(MPI COMM NODE, &y);

double *x = new double[n];
double *y = new double[n];

MPIkernel1(x,y);
MPIkernel2(x,y);

delete [] x;
delete [] y;

• Many sections of parallel applications scale extremely
well using flat MPI

• Approach allows introduction of multithreaded kernels
in iterative fashion
–  “Tune” how multithreaded an application is

• Focus on parts of application that don’t scale with
 flat MPI

Iterative Approach to Hybrid Parallelism

20

• Can use 1 hybrid kernel

Iterative Approach to Hybrid Parallelism

21

MPI Comm size(MPI COMM NODE, &nodeSize);
MPI Comm rank(MPI COMM NODE, &nodeRank);

double *x, *y;

MPI Comm alloc mem(MPI COMM NODE,n*nodeSize*sizeof(double),
. MPI INFO NULL, &x);
MPI Comm alloc mem(MPI COMM NODE,n*nodeSize*sizeof(double),
. MPI INFO NULL, &y);

MPIkernel1(&(x[nodeRank * n]),&(y[nodeRank * n]));

if(nodeRank==0)
{
. hybridKernel2(x,y);
}

MPI Comm free mem(MPI COMM NODE, &x);
MPI Comm free mem(MPI COMM NODE, &y);

• Or use 2 hybrid kernels

Iterative Approach to Hybrid Parallelism

22

MPI Comm size(MPI COMM NODE, &nodeSize);
MPI Comm rank(MPI COMM NODE, &nodeRank);

double *x, *y;

MPI Comm alloc mem(MPI COMM NODE,n*nodeSize*sizeof(double),
. MPI INFO NULL, &x);
MPI Comm alloc mem(MPI COMM NODE,n*nodeSize*sizeof(double),
. MPI INFO NULL, &y);

if(nodeRank==0)
{
. hybridKernel1(x,y);
. hybridKernel2(x,y);
}

MPI Comm free mem(MPI COMM NODE, &x);
MPI Comm free mem(MPI COMM NODE, &y);

Work in Progress: PCG Algorithm

23

Mantevo miniapp: HPCPCG

Use multithreading
for precondtioning

Shared memory
variables

PCG Algorithm

24

Flat MPI operations

PCG Algorithm – MPI part

25

Multithreaded block
preconditioning to reduce
number of subdomains

PCG Algorithm – Threaded Part

26

Ite
ra
&o

ns
	

Flat MPI PCG Threaded Preconditioning

Preliminary PCG Results

Runtime relative to flat MPI PCG

Ru
n&

m
e	

27

Summary: Kokkos Package in Trilinos

• Goal: To help obtain good performance of numerical
kernels on different architectures (w/o rewriting code)

• API for programming generic shared-memory nodes
– Allows write-once, run-anywhere portability
– Support new nodes by writing parallel constructs for new node

• Nodes implemented support
–  Intel TBB, Pthreads, CUDA-capable GPUs (via Thrust), serial

• For more info about Kokkos, Trilinos:
– http://trilinos.sandia.gov/

28

• How to modify current MPI-only codes
– Massive investment in MPI-only software

• MPI shared memory allocation will be important
– Allows seamless combination of traditional MPI

programming with multithreaded or hybrid kernels

• Iterative approach to multithreading
• Work-in-progress: PCG implementation using
MPI shared memory extensions
– Effective in reducing iterations
– Runtime did not decrease much
– Need more scalable multithreaded triangular solver

algorithm

Summary: Bimodal MPI and MPI+Threads Programming

29

