Recent Advances in Two-Dimensional Sparse Matrix Partitioning

SIAM PP10

2/26/2010

Michael Wolf, Erik Boman, Cédric Chevalier

Sparse Matrix Partitioning Motivation

- Sparse matrix-vector multiplication (SpMV) is common kernel in many numerical computations
 - Iterative methods for solving linear systems
 - PageRank computation

. . .

 Need to make parallel SpMV kernel as fast as possible

Parallel Sparse Matrix-Vector Multiplication

- Partition matrix nonzeros
- Partition vectors

- Ideally we minimize total run-time
- Settle for easier objective
 - Work balanced
 - Minimize total communication volume
- Can partition matrices in different ways
 1D
 - 2D
- Can model problem in different ways
 - Graph
 - Bipartite graph
 - Hypergraph

No.

Parallel Matrix-Vector Multiplication

Alternative way of visualizing partitioning

Parallel SpMV Communication

• x_j sent to remote processes that have nonzeros in column j

• Partial inner-products sent to process that owns vector element y_i

1D Partitioning

1D Column

 Each process assigned nonzeros for set of columns

1D Row

 Each process assigned nonzeros for set of rows

When 1D Partitioning is Inadequate

- For any 1D bisection of nxn arrowhead matrix:
 nnz = 3n-2
 - Volume ≈ (3/4)n

When 1D Partitioning is Inadequate

- 2D partitioning
- O(k) volume partitioning possible

- More flexibility in partitioning
- No particular part for given row or column
- More general sets of nonzeros assigned parts
- Several methods of 2D partitioning
 - -Fine-grain hypergraph
 - -Coarse-grain hypergraph
 - -Mondriaan

-Nested dissection symmetric partitioning method

- Catalyurek and Aykanat (2001)
- Nonzeros represented by vertices in hypergraph

- Rows represented by hyperedges
- Hyperedge set of one or more vertices

 Columns represented by hyperedges

2n hyperedges

- Partition vertices into k equal sets
- For k=2
 - Volume = number of hyperedges cut
- Minimum volume partitioning when optimally solved
- Larger NP-hard problem than 1D

2D Coarse-Grain Partitioning

- Catalyurek and Aykanat (2001)
- Two stages:
 - -1D hypergraph partitioning
 - 1D multi-constraint hypergraph partitioning (ensures load balance)
- Bound on number of messages

- Vastenhouw and Bisseling (2005)
- Recursive bisection hypergraph partitioning
- Each level: 1D row or column partitioning

Nested Dissection Partitioning - Bisection

- Suppose A is structurally symmetric
- Let G(V,E) be graph of A
- Find small, balanced separator S
 Yields vertex partitioning V = (V0,V1,S)
- Partition the edges such that
 - E0 = {edges incident to a vertex in V0}
 - E1 = {edges incident to a vertex in V1}

Nested Dissection Partitioning - Bisection

- Vertices in S and corresponding edges
 - Can be assigned to either part
 - Can use flexibility to maintain balance
- Communication Volume = 2*|S|
 - Regardless of S partitioning
 - |S| in each phase

Nested Dissection (ND) Partitioning Method

- Recursive bisection to partition into >2 parts
- Use nested dissection!

- Structurally symmetric matrices
- k = 4, 16, 64 parts using
 - 1D hypergraph partitioning
 - Fine-grain hypergraph partitioning (2D)
 - Good quality partitions but slow
 - Nested dissection partitioning (2D)
- Hypergraph partitioning for all methods
 - Zoltan (Sandia) with PaToH (Catalyurek, serial)
 - Allows "fair" comparison between methods
- Vertex separators derived from edge separators
 MatchBox (Purdue: Pothen, et al.)

Communication Volume - Symmetric Matrices

Sandia

Runtimes of Partitioning Methods

Communication Volume: 1D is Inadequate

- c-73: nonlinear optimization (Schenk)
 - UF sparse matrix collection
 - n=169,422 nnz=1,279,274

Communication Volume: 1D is Inadequate

asic680ks: Xyce circuit simulation (Sandia)
 n=682,712 nnz=2,329,176

Parallel Sparse Matrix Partitioning Software

- Developing HPC software for sparse matrix partitioning
 - 1D
 - -2D
- Idea is to implement sparse matrix partitioning algorithms in parallel
 - Efficient/fast
 - Simple to use
- Leverage existing software
 - Graph/hypergraph partitioners
 - Linear algebra packages
- Trilinos framework

- Trilinos
 - Framework for solving large-scale scientific problems
 - Focus on packages (independent pieces of software that are combined to solve these problems)
 - Epetra: parallel linear algebra package
- Isorropia
 - Trilinos package for combinatorial scientific computing
 - Partitioning, coloring, ordering algorithms applied to Epetra matrices
 - Utilizes many algorithms in Zoltan
 - "Zoltan for sparse matrices"

Isorropia: Sparse Matrix Partitioning Methods

- Parallel partitioning methods
- Currently exist
 - 1D linear/block, cyclic, random (New!)
 - 1D hypergraph
 - 1D graph
 - -2D fine-grain hypergraph (New!)
- Planned
 - -2D linear/block, cyclic, random
 - -2D RCB partitioning (of nonzeros)
 - -2D nested dissection
 - Vector partitioning (for 2D matrix partitioning)

Isorropia: Partitioning Example 1

using Isorropia :: Epetra :: Partitioner ;

```
ParameterList params;
params.set("PARTITIONING_METHOD", "HYPERGRAPH");
params.set("BALANCE_OBJECTIVE", "NONZEROS");
params.set("IMBALANCE_TOL", "1.03");
```

```
// rowmatrix is an Epetra_RowMatrix
Partitioner partitioner(rowmatrix, params, false);
partitioner.partition();
```

- Simple partitioning of rowmatrix
 - 1D row hypergraph partitioning
 - Balancing number of nonzeros
 - Load imbalance tolerance of 1.03


```
using Isorropia :: Epetra :: Partitioner2D;
```

```
ParameterList params;
params.set("PARTITIONING_METHOD", "HGRAPH2D_FINEGRAIN");
params.set("IMBALANCE_TOL","1.03");
```

// rowmatrix is an Epetra_RowMatrix
Partitioner2D partitioner(rowmatrix, params, false);
partitioner.partition();

- 2D partitioning of rowmatrix
 - -2D fine-grain hypergraph partitioning
 - Balancing number of nonzeros (implicit)
 - Load imbalance tolerance of 1.03

partitioner -> partition ();

// Set up Redistributor based on partition
Isorropia :: Epetra :: Redistributor rd(partitioner);

// Redistribute data
newmatrix = rd.redistribute(*rowmatrix, true);

- After partitioning matrix
 - Build Redistributor from new partition
 - Redistribute data based on new partition
 - Obtain new matrix


```
using Isorropia :: Epetra :: createBalancedCopy;
ParameterList params;
params.set("IMBALANCE_TOL","1.03");
params.set("BALANCE_OBJECTIVE","NONZEROS");
params.set("PARTITIONING_METHOD", "HYPERGRAPH");
```

// crsmatrix and newmatrix are Epetra_CrsMatrix
newmatrix = createBalancedCopy(*crsmatrix, params);

- Shortcut
 - -Combines partitioning/redistibution of data

- Isorropia and Epetra can be used to study matrix partitioning
 - -Easy to experiment with different matrix partitionings
 - Can see impact of partitionings on different Epetra parallel linear algebra kernels
- Numerical experiments
 - -Runtime of SpMV for different matrix partitionings
 - 3 different methods: 1D linear, 1D hypergraph,
 2D fine-grain
 - -Parallel implementations of partitioning methods
 - -Test problems: bcsstk30, bcsstk32, c-73, asic680ks

Isorropia: Preliminary results

- Platforms
 - –NERSC Franklin (Cray XT4, Opteron 2.3 GHz quad core)
 - -SNL Odin cluster (dual 2.2GHz Opteron, Myrinet)

Isorropia: SpMV Timings (Franklin)

4

35

Sandia National

aboratories.

SpMV Timings (Franklin, normalized)

36

Sandia National

aboratories.

Isorropia: SpMV Timings (Odin)

- Motivation for and overview of 2D partitioning
- New 2D matrix partitioning algorithm
- ND matrix partitioning algorithm
 - -ND used in new context
 - Good trade off between communication volume and partitioning time
 - Communication volume (comparable to fine-grain)
 - Partitioning time (comparable to 1D)
- Presented simple framework for sparse matrix partitioning for Trilinos/Epetra applications
 - -First production code that supports parallel 2D sparse matrix partitioning

- Mixed results for SpMV runtimes
 - Decrease not proportional to decrease in communication volume
 - Results for bcsstk30 and bcsstk32 not significantly better than linear
 - 2D FG worse than 1D hypergraph
 - Improvement over linear for asic680k and c-73
 - 2D FG significantly better than 1D hypergraph for some k
- 2D partitioning can be effective for some matrices
- Improvements needed to make 2D methods viable —Room for improvement (e.g., PHG for FG)
 - 2D fine-grain partitioning in next Trilinos release

2D Partitioning:

U. Catalyurek and C. Aykanat, "A fine-grain hypergraph model for 2d decomposition of sparse matrices," In *Proc. IPDPS 8th Int'I Workshop on Solving Irregularly Structured Problems in Parallel* (Irregular 2001), April 2001.

U. Catalyurek, C. Aykanat, and B. Ucar. On two-dimensional sparse matrix partitioning: Models, methods, and a recipe. To appear in *SIAM Journal on Scientific Computing*.

B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribution method for parallel sparse matrix-vector multiplication. *SIAM Review*, 47(1):67–95, 2005.

Nested Dissection Partitioning:

E.G. Boman and M.M. Wolf, "A Nested Dissection Approach to Sparse Matrix Partitioning for Parallel Computations," SANDIA Technical Report 2008-5482J. (Submitted for publication)

M. Wolf, E. Boman, and C. Chevalier, "Improved Parallel Data Partitioning by Nested Dissection with Applications to Information Retrieval," SANDIA Technical Report 2008-7908J.

Trilinos/Isorropia:

http://trilinos.sandia.gov/packages/isorropia/

