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Sparse Matrix Partitioning Motivation 

•  Sparse matrix-vector multiplication (SpMV) is 
common kernel in many numerical 
computations 
-  Iterative methods for solving linear systems 
-  PageRank computation 
- … 

•  Need to make parallel SpMV kernel as fast as 
possible 
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Parallel Sparse Matrix-Vector Multiplication 

•  Partition matrix nonzeros 
•  Partition vectors 

1
2
4
3
1
4
2
1

1
5
0
0
0
4
0
0

6
1
8
0
0
0
0
0

0
9
1
2
0
0
0
0

0
0
7
1
0
0
6
0

0
5
0
0
1
3
0
0

0
0
0
0
8
1
9
0

0
0
0
0
0
3
1
2

0
0
0
7
0
0
4
1

y1
y2
y3
y4
y5
y6
y7
y8



4 

Objective 

•  Ideally we minimize total run-time 
•  Settle for easier objective 

–  Work balanced 
–  Minimize total communication volume 

•  Can partition matrices in different ways 
–  1D 
–  2D  

•  Can model problem in different ways 
–  Graph 
–  Bipartite graph 
–  Hypergraph 
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Parallel Matrix-Vector Multiplication 

•  Alternative way of visualizing partitioning 
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Parallel SpMV Communication 

•        sent to remote  
 processes that have  
 nonzeros in column 

•  Partial inner-products sent 
 to process that owns  
 vector element  
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1D Partitioning 

•  Each process  
 assigned nonzeros  
 for set of columns 

1D Column 

•  Each process  
 assigned nonzeros  
 for set of rows 

1D Row 
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When 1D Partitioning is Inadequate 

n=12 
nnz=34 (18,16) 
volume = 9 

“Arrowhead” matrix 

•  For any 1D bisection of nxn arrowhead matrix: 
– nnz = 3n-2 
– Volume ≈ (3/4)n 
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When 1D Partitioning is Inadequate 

n=12 
nnz=34 (16,18) 
volume = 2 

“Arrowhead” matrix 

•  2D partitioning 
• O(k) volume partitioning possible 
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1D is Inadequate 
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•  c-73: nonlinear optimization (Schenk) 
- UF sparse matrix collection   
- n=169,422     nnz=1,279,274 
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1D is Inadequate 
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•  asic680ks: Xyce circuit simulation (Sandia) 
- n=682,712     nnz=2,329,176 
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2D Partitioning 

• More flexibility in partitioning 
• No particular part for given row or column 
• More general sets of nonzeros assigned parts 
•  Several methods of 2D partitioning 

– Fine-grain hypergraph, Mondriaan, … 

•  Fine-grain hypergraph  
• Graph model for symmetric 2D partitioning 
• Nested dissection symmetric partitioning method 
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Fine-Grain (FG) Hypergraph Model 

• Catalyurek and Aykanat 
(2001)  

• Nonzeros represented 
by vertices in 
hypergraph 
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Fine-Grain Hypergraph Model 

• Rows represented by 
hyperedges 

• Hyperedge - set of one or 
more vertices 
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Fine-Grain Hypergraph Model 

• Columns represented 
by hyperedges 
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Fine-Grain Hypergraph Model 

• 2n hyperedges 
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Fine-Grain Hypergraph Model 

• Partition vertices into 
k equal sets 

• For k=2 
– Volume = number of 

hyperedges cut 
• Minimum volume 

partitioning when 
optimally solved 

• Larger NP-hard 
problem than 1D k=2, volume = cut = 2 
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Graph Model for Symmetric 2D Partitioning 

• Exact model of communication for symmetric 
2D partitioning  

• Given matrix A with symmetric nz structure 
• Symmetric partition  

– a(i,j) and a(j,i) assigned same part 
– Input and output vectors have same distribution 

• Corresponding graph G(V,E) 
– Vertices correspond to vector elements 
– Edges correspond to off-diagonal nonzeros 
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Graph Model for Symmetric 2D Partitioning 

• Corresponding graph G(V,E) 
– Vertices correspond to vector elements 
– Edges correspond to off-diagonal nonzeros 
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Graph Model for Symmetric 2D Partitioning 

• Symmetric 2D partitioning 
– Partition both V and E 
– Gives partitioning of both matrix and vectors 
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Communication in Graph Model 

•  Communication is assigned to vertices 
•  Vertex incurs communication iff incident edge is in 

different part 
•  Want small vertex separator -- S={V8} 
•  For bisection, volume = 2 |S| 
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Nested Dissection Partitioning - Bisection 

•  Suppose A is structurally symmetric 
•  Let G(V,E) be graph of A 
•  Find small, balanced separator S 

–  Yields vertex partitioning V = (V0,V1,S) 
•  Partition the edges such that 

–  E0 = {edges incident to a vertex in V0} 
–  E1 = {edges incident to a vertex in V1} 
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Nested Dissection Partitioning - Bisection 

•  Vertices in S and corresponding edges 
–  Can be assigned to either part 
–  Can use flexibility to maintain balance 

•  Communication Volume = 2*|S| 
–  Regardless of S partitioning 
–  |S| in each phase 
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Nested Dissection (ND) Partitioning Method 

•  Recursive bisection to partition into >2 parts 
•  Use nested dissection! 
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Extension to Nonsymmetric Matrices 

•  Bipartite graph gives exact model of 
communication volume 
-  Trifunovic and Knottenbelt (2006) 

•  Apply nested dissection method to A’  
   (adjacency matrix for bipartite graph) 

–  Use same algorithm as for symmetric case 
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Initial Numerical Experiments 

•  Structurally symmetric matrices 
•  k = 4, 16, 64 parts using 

–  1D hypergraph partitioning 
–  Fine-grain hypergraph partitioning (2D) 

•  Good quality partitions but slow 
–  Nested dissection partitioning (2D) 

•  Hypergraph partitioning for all methods 
–  Zoltan (Sandia) with PaToH (Catalyurek) 
–  Allows “fair” comparison between methods 

•  Vertex separators derived from edge separators 
–  MatchBox (Purdue: Pothen, et al.) 

•  Heuristic used to partition separators 
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Communication Volume - Symmetric Matrices 
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Test matrices from Rob Bisseling (Utrecht) 
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Runtimes of Partitioning Methods 
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Communication Volume: 1D is Inadequate 

c-73: nonlinear optimization 
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Communication Volume: 1D is Inadequate 

asic680ks: Xyce circuit simulation 
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Improving Separator Partitioning 

•  Flexibility in how we partition separator vertices and 
separator-separator edges 

• Original implementation used simple heuristic 
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Improved Separator Partitioning 

•  Phase 2: partition separator vertices and edges 
•  Solve a second, much smaller partitioning problem 

– Fixed vertices/edges (1 vertex for each part) 
– Fine-grain hypergraph partitioning 
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Summary of Improved (2-Phase) Method 

•  Use heuristic to reduce partitioning problem (phase 1) 
– Heuristic = general ND partitioning algorithm 
– Heuristic is optimal for bisection 

•  Apply fine-grain hypergraph partitioning with fixed 
vertices to much smaller problem (phase 2) 

– One fixed vertex per part 
•  Smaller problem means fine-grain hypergraph will do 

excellent job of partitioning 
– Fast (relative to FG partitioning of original graph) 
– Better relative solution 
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Improved Method - Communication Volume 
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Information Retrieval Matrices 

•  Results for 2 types of matrices 
– Web-link matrices  

•  R-MAT (Chakrabarti, et al.) 
•  Stanford_Berkeley (Kamvar) 

– Term-by-term (Dunlavy, Sandia) 
•  5 different partitioning methods 

– 1D hypergraph partitioning 
– Fine-grain hypergraph partitioning (2D) 
– Nested dissection partitioning (2D) 

•  Original heuristic implementation 
•  Improved implementation (2-phase method) 
•  Improved implementation with SCOTCH (LaBRI, INRIA) 
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Vertex Separator from SCOTCH 

•  Originally vertex separators obtained from edge 
separators  
– 1D hypergraph partitioning 
– Smaller separators perhaps possible using nested 

dissection algorithms 

•  SCOTCH (LaBRI, INRIA) 
– Multilevel graph/sparse matrix ordering algorithm 
– Attempts to find smallest balanced vertex separator 
– Used to reorder matrices to reduce fill 
– Used Zoltan interface to SCOTCH 

•  Pro: focus on finding small vertex separators 
•  Con: does not naturally balance nonzeros 
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Web-link Results 

•  Communication volume relative to 1D* partitioning 
– Average for rmat18, rmat19, Stanford_Berkeley 
 

** load imbalance for ND SCOTCH (k=256), FG failure to converge (RMAT19) 
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Term-by-Term Results 

•  Communication volume relative to 1D partitioning 
– Average for tbtlinux, tbtspock, tbtsandia2 
 

** load imbalance for ND SCOTCH (k=64, k=256) 
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Runtimes -- Select Matrices 
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Summary 

•  New 2D matrix partitioning algorithm 
•  ND matrix partitioning algorithm 

– ND used in new context 
– Good trade off between communication volume and 

partitioning time 
• Communication volume (comparable to fine-grain) 
• Partitioning time (comparable to 1D) 

– Extensions for nonsymmetric matrices 
– Method shows promise for information retrieval 

•  Work with Erik Boman, et al. to implement 2D 
partitioning algorithms in Trilinos 
– Isorropia, package for CSC 
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