Partitioning for Parallel Sparse Matrix-Vector Multiplication

August 7, 2007

Michael Wolf University of Illinois at Urbana-Champaign
(Org. 1415)

Parallel Computing

- Motivation: large scientific problems
-Memory on single processor too small
-Runtime too long
- Need to distribute data across multiple processors
-Parallel sparse matrix-vector multiplication
-Distribute matrices
-Distribute vectors

Parallel Matrix-Vector Multiplication

$$
\left[\begin{array}{l}
{\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5} \\
y_{6} \\
y_{7} \\
y_{8}
\end{array}\right]=\left[\begin{array}{llllllll}
1 & 6 & 0 & 0 & 0 & 0 & 0 & 0 \\
5 & 1 & 9 & 0 & 5 & 0 & 0 & 0 \\
0 & 8 & 1 & 7 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 & 1 & 8 & 0 & 0 \\
4 & 0 & 0 & 0 & 3 & 1 & 3 & 0 \\
0 & 0 & 0 & 6 & 0 & 9 & 1 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
4 \\
3 \\
1 \\
4 \\
2 \\
1
\end{array}\right]}
\end{array}\right.
$$

- Vectors partitioned identically

Objective

- Ideally we minimize total run-time
- Settle for easier objective
- Work balanced
- Minimize total communication volume
- Can partition matrices in different ways
-1-D
-2-D
- Can model problem in different ways
- Graph
- Bipartite graph
- Hypergraph

Parallel Matrix-Vector Multiplication

A

Parallel Mat-Vec Multiplication Communication

- x_{j} sent to remote processes that have nonzeros in column j

Parallel Mat-Vec Multiplication Communication

"fan-in"

- Send partial inner-products to process that owns corresponding vector element y_{i}

1-D Column Partitioning

- Each process assigned nonzeros for set of columns

1-D Row Partitioning

- Each process assigned nonzeros for set of rows

Hypergraph Model of 1-D (row) Partitioning

(4)
(2)

- Nonzero pattern can be unsymmetric
- Rows represented by vertices in hypergraph

Hypergraph Model of 1-D (row) Partitioning

- Columns represented by hyperedges in hypergraph

Hypergraph Model of 1-D (row) Partitioning

- Partition vertices into k equal sets
- Hyperedge cut = communication volume
-Aykanat and Catalyurek (1996)
- NP-hard to solve optimally

When 1-D Partitioning is Inadequate

- For nxn matrix for any 1-D bisection:
$-n n z=3 n-2$
- Volume $\approx 3 / 4^{*} n$

2-D Partitioning Methods

- More flexibility in partitioning
- Mondriaan
- Fairly fast
- Generally gives good partitions

2-D Method: Fine-grain Hypergraph Model

- Catalyurek and Aykanat (2001)
- Assign each nz separately
- Nonzeros represented by vertices in hypergraph

2-D Method: Fine-grain Hypergraph Model

- Rows represented by hyperedges

2-D Method: Fine-grain Hypergraph Model

- Columns represented by hyperedges

2-D Method: Fine-grain Hypergraph Model

- $2 n$ hyperedges

2-D Method: Fine-grain Hypergraph Model

- Partition vertices into k equal sets
- Volume = hypergraph cut
- Minimum volume partition when optimally solved
- Larger NP-hard problem

$$
\mathrm{k}=2 \text {, volume }=3
$$

2-D Method: Fine-grain Hypergraph Model

- Loosening load-balancing restriction we can obtain a nontrivial partition of minimum cut

New 2-D Method: "corner" partitioning

- Optimal partitioning of arrowhead matrix suggests new partitioning method

New 2-D Method: "corner" partitioning

-1-D partitions reflected across diagonal

New 2-D Method: "corner" partitioning

- Take lower triangular part of matrix

New 2-D Method: "corner" partitioning

-1-D (column) hypergraph partition of lower triangular matrix

New 2-D Method: "corner" partitioning

- Reflect partition symmetrically across diagonal

New 2-D Method: "corner" partitioning

- Optimal partition

Comparison of Methods -- Arrowhead Matrix

p	1D column	Mondriaan	Corner	Fine grain				
2	29101	29102	$\mathbf{2}^{*}$	$\mathbf{2}^{*}$				
4	40001	29778	$\mathbf{6}^{*}$	$\mathbf{6}^{*}$				
16	40012	37459	$\mathbf{3 0}^{*}$	$\mathbf{3 0}^{*}$				
64	40048	39424	$\mathbf{1 2 6}^{*}$	$\mathbf{1 2 6}^{*}$				
						Order n		2(p-1)

- $\mathrm{n}=40,000$
- $n n z=119,998$
*optimal
(1) $\begin{gathered}\text { Sandia } \\ \text { National }\end{gathered}$

Laboratories

Comparison of Methods -- "Real" Matrices

Engineering

Comparison of Methods -- finan512 Matrix

Comparison of Methods -- bcsstk30 Matrix

Summary

- Many models for reducing communication in matrix-vector multiplication
-1-D partitioning inadequate for many partitioning problems
- New method of 2-D matrix partitioning
- Improvement for some matrices
-Faster than fine-grain method

Future Work

- Better intuition for "corner" partitioning method
-Optimal for arrowhead matrix
-Good for finan512, bcsstk30 matrices
-When a good method?
-Reordering of matrix rows/columns for "corner" partitioning method
-Unlike 1-D graph/hypergraph, dependence on ordering
-Find optimal ordering/partition
-Extend utility of method

Acknowledgements

-Dr. Erik Boman

- Technical advisor
-Dr. Bruce Hendrickson
-Row/column reordering work
- Zoltan
- Used Zoltan for 1-D hypergraph partitioning

Extra

Sandia
National
Laboratories

Comparison of Methods -- "Real" Matrices

