

Partitioning for Parallel Sparse Matrix-Vector Multiplication

August 7, 2007

Michael Wolf University of Illinois at Urbana-Champaign (Org. 1415)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

- Motivation: large scientific problems
 - -Memory on single processor too small
 - -Runtime too long
- Need to distribute data across multiple processors
- Parallel sparse matrix-vector multiplication
 - -Distribute matrices
 - -Distribute vectors

Parallel Matrix-Vector Multiplication

Vectors partitioned identically

Objective

- Ideally we minimize total run-time
- Settle for easier objective
 - Work balanced
 - Minimize total communication volume
- •Can partition matrices in different ways
 - -1-D
 - -2-D
- •Can model problem in different ways
 - -Graph
 - Bipartite graph
 - Hypergraph

Parallel Matrix-Vector Multiplication

Parallel Mat-Vec Multiplication Communication

• x_j sent to remote processes that have nonzeros in column j

Parallel Mat-Vec Multiplication Communication

• Send partial inner-products to process that owns corresponding vector element y_i

1-D Column Partitioning

• Each process assigned nonzeros for set of columns

1-D Row Partitioning

• Each process assigned nonzeros for set of rows

- Nonzero pattern can be unsymmetric
- Rows represented by vertices in hypergraph

Hypergraph Model of 1-D (row) Partitioning

 Columns represented by hyperedges in hypergraph

Hypergraph Model of 1-D (row) Partitioning

- Partition vertices into k equal sets
- Hyperedge cut = communication volume

– Aykanat and Catalyurek (1996)

• NP-hard to solve optimally

When 1-D Partitioning is Inadequate

- For nxn matrix for any 1-D bisection:
 - -nnz = 3n-2
 - Volume ≈ 3/4*n

2-D Partitioning Methods

- More flexibility in partitioning
- Mondriaan
 - Fairly fast
 - Generally gives good partitions

- Catalyurek and Aykanat (2001)
- Assign each nz separately
- Nonzeros represented by vertices in hypergraph

 Rows represented by hyperedges

 Columns represented by hyperedges

•2n hyperedges

- Partition vertices into k equal sets
- Volume = hypergraph cut
- Minimum volume partition when optimally solved
- Larger NP-hard problem

k=2, volume = 3

 Loosening load-balancing restriction we can obtain a nontrivial partition of minimum cut

> Sandia National Laboratories

Volume = 2

 Optimal partitioning of arrowhead matrix suggests new partitioning method

1-D partitions reflected across diagonal

• Take lower triangular part of matrix

• 1-D (column) hypergraph partition of lower triangular matrix

New 2-D Method: "corner" partitioning

 Reflect partition symmetrically across diagonal

Optimal partition

Comparison of Methods -- Arrowhead Matrix

р	1D column	Mondriaan	Corner	Fine grain
2	29101	29102	2*	2*
4	40001	29778	6*	6*
16	40012	37459	30*	30*
64	40048	39424	126*	126*

- n = 40,000
- nnz = 119,998

Comparison of Methods -- "Real" Matrices

Comparison of Methods -- finan512 Matrix

Comparison of Methods -- bcsstk30 Matrix

Summary

- Many models for reducing communication in matrix-vector multiplication
- 1-D partitioning inadequate for many partitioning problems
- •New method of 2-D matrix partitioning
 - -Improvement for some matrices
 - -Faster than fine-grain method

Future Work

- Better intuition for "corner" partitioning method
 - -Optimal for arrowhead matrix
 - -Good for finan512, bcsstk30 matrices
 - -When a good method?
- Reordering of matrix rows/columns for "corner" partitioning method
 - -Unlike 1-D graph/hypergraph, dependence on ordering
 - -Find optimal ordering/partition
 - -Extend utility of method

- Dr. Erik Boman
 - Technical advisor
- Dr. Bruce Hendrickson
 - Row/column reordering work
- Zoltan
 - Used Zoltan for 1-D hypergraph partitioning

Extra

Comparison of Methods -- "Real" Matrices

