Nested Dissection Approach to Sparse Matrix Partitioning

SIAM PP08 - 3/12/2008

Erik Boman — Sandia National Laboratories *Michael Wolf* — University of Illinois at Urbana-Champaign

Parallel Sparse Matrix-Vector Multiplication

- Partition matrix nonzeros
- Partition vectors

Objective

- Ideally we minimize total run-time
- Settle for easier objective
 - Work balanced
 - Minimize total communication volume
- Can partition matrices in different ways
 - 1-D
 - 2-D
- Can model problem in different ways
 - Graph
 - Bipartite graph
 - Hypergraph

Parallel MatVec Multiplication Communication

• x_j sent to remote processes that have nonzeros in column j

• Partial inner-products sent to process that owns vector element y_i

1-D Partitioning

1-D Column

Each process
assigned nonzeros
for set of columns

1-D Row

Each process
assigned nonzeros
for set of rows

When 1-D Partitioning is Inadequate

- For any 1-D bisection of nxn arrowhead matrix:
 - nnz = 3n-2
 - Volume ≈ (3/4)n
- O(p) volume partitioning possible

- More flexibility in partitioning
- No particular partition for given row or column
- More general sets of nonzeros assigned partitions
- Fine-grain hypergraph model
 - Ultimate flexibility
 - Assign each nz separately
- Graph model for symmetric 2-D partitioning
- Vertex separator partitioning method

- Catalyurek and Aykanat (2001)
- Nonzeros represented by vertices in hypergraph

 Rows represented by hyperedges

 Columns represented by hyperedges

· 2n hyperedges

- Partition vertices into k equal sets
- For k=2
 - Volume = number of hyperedges cut
- Minimum volume partition when optimally solved
- Larger NP-hard problem than 1-D

Graph Model for Symmetric 2-D Partitioning

- Given symmetric matrix A
- Symmetric partition
 - a(i,j) and a(j,i) assigned same partition
 - Input and output vectors have same distribution
- Corresponding graph G(V,E)
 - Vertices correspond to vector elements
 - Edges correspond to off-diagonal nonzeros

Graph Model for Symmetric 2-D Partitioning

- Corresponding graph G(V,E)
 - Vertices correspond to vector elements
 - Edges correspond to off-diagonal nonzeros

Graph Model for Symmetric 2-D Partitioning

- Symmetric 2-D partitioning
 - Partition both V and E
 - Gives partition of both matrix and vectors

Communication in Graph Model

- Communication is assigned to vertices
- Vertex incurs communication iff incident edge is in different partition
- Want small vertex separator -- S={V₈}

Nested Dissection Partitioning Method - Bisection

- Suppose A is symmetric
- Let G(V,E) be graph of A
- Find small, balanced separator S
 - Yields vertex partition V = (VO, V1, S)
- Partition the edges
 - EO = {edges that touch a vertex in VO}
 - E1 = {edges that touch a vertex in V1}

Nested Dissection Partitioning Method - Bisection

- Vertices in S and corresponding edges
 - Can be assigned to either partition
 - Can use flexibility to maintain balance
- Communication Volume = 2*|5|
 - Regardless of S partitioning
 - |S| in each phase

Nested Dissection Partitioning Method

- Recursive bisection to partition into >2 partitions
- Use nested dissection!

Numerical Experiments

- Compared 3 methods
 - 1-D hypergraph partitioning
 - Fine-grain hypergraph partitioning
 - Nested dissection partitioning
- PaToH for hypergraph partitioning
- Finding separators
 - 1-D hypergraph partitioning
 - ODU minimum vertex cover software
 - Florin Dobrian, Mahantesh Halappanvar, and Alex Pothen
- Symmetric and nonsymmetric matrices
 - Mostly from Prof. Rob Bisseling (Utrecht Univ.)
- k = 4, 16, 64 partitions

Communication Volume - Symmetric Matrices

Estimated Runtimes

Nonsymmetric Matrices

- Given nonsymmetric matrix A
- Construct bipartite graph G'(R,C,E)
 - R vertices correspond to rows, C vertices to columns
 - E correspond to nonzeros
 - Can be represented by symmetric adjacency matrix

- Apply nested dissection approach to G'
 - Use same algorithm as for symmetric case

Communication Volume - Nonsymmetric Matrices

Communication Volume: 1-D is Inadequate

C-73

Communication Volume: 1-D is Inadequate

Messages Sent (or Received) per Process

Conclusions

- Several ways to reduce communication in sparse matrix-vector multiplication
 - Rich combinatorial problem!
- 1-D matrix partitioning
 - Works well for many problems (meshes)
 - Insufficient for many more irregular matrices
- New nested dissection 2-D algorithm
 - Implemented using existing algorithms and software
 - Quality better than 1-D, and similar to fine-grain hypergraph method for many matrices
 - Faster to compute than fine-grain hypergraph
 - Fewer messages than fine-grain hypergraph