Nested Dissection Approach to Sparse Matrix Partitioning

SIAM PPO8 - 3/12/2008

Erik Boman - Sandia National Laboratories Michael Wolf - University of Illinois at Urbana-Champaign

Parallel Sparse Matrix-Vector Multiplication

$$
\left[\begin{array}{l}
{\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5} \\
y_{6} \\
y_{7} \\
y_{8}
\end{array}\right]=\left[\begin{array}{llllllll}
1 & 6 & 0 & 0 & 0 & 0 & 0 & 0 \\
5 & 1 & 9 & 0 & 5 & 0 & 0 & 0 \\
0 & 8 & 1 & 7 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 & 1 & 8 & 0 & 0 \\
4 & 0 & 0 & 0 & 3 & 1 & 3 & 0 \\
0 & 0 & 0 & 6 & 0 & 9 & 1 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
4 \\
3 \\
1 \\
4 \\
2 \\
1
\end{array}\right]} \\
\mathbf{y}=\mathbf{A x}
\end{array}\right.
$$

- Partition matrix nonzeros
- Partition vectors

Objective

- Ideally we minimize total run-time
- Settle for easier objective
- Work balanced
- Minimize total communication volume
- Can partition matrices in different ways
- 1-D
- 2-D
- Can model problem in different ways
- Graph
- Bipartite graph
- Hypergraph

Parallel MatVec Multiplication Communication

- x_{j} sent to remote processes that have nonzeros in column j

- Partial inner-products sent to process that owns vector element y_{i}

1-D Partitioning

- Each process assigned nonzeros for set of columns

- Each process assigned nonzeros for set of rows

When 1-D Partitioning is Inadequate

- For any 1-D bisection of $n \times n$ arrowhead matrix:
- nnz = 3n-2
- Volume $\approx(3 / 4) n$
- O(p) volume partitioning possible

2-D Partitioning Methods

- More flexibility in partitioning
- No particular partition for given row or column
- More general sets of nonzeros assigned partitions
- Fine-grain hypergraph model
- Ultimate flexibility
- Assign each $n z$ separately
- Graph model for symmetric 2-D partitioning
- Vertex separator partitioning method

Fine-Grain Hypergraph Model

- Catalyurek and Aykanat (2001)
- Nonzeros represented by vertices in hypergraph

Fine-Grain Hypergraph Model

- Rows represented by hyperedges

Fine-Grain Hypergraph Model

- Columns represented by hyperedges

Fine-Grain Hypergraph Model

- $2 n$ hyperedges

Fine-Grain Hypergraph Model

- Partition vertices into k equal sets
- For k=2
- Volume $=$ number of hyperedges cut
- Minimum volume partition when optimally solved
- Larger NP-hard problem than 1-D

Graph Model for Symmetric 2-D Partitioning

- Given symmetric matrix A
- Symmetric partition
- $a(i, j)$ and $a(j, i)$ assigned same partition
- Input and output vectors have same distribution
- Corresponding graph G(V,E)
- Vertices correspond to vector elements
- Edges correspond to off-diagonal nonzeros

Graph Model for Symmetric 2-D Partitioning

- Corresponding graph G(V,E)
- Vertices correspond to vector elements
- Edges correspond to off-diagonal nonzeros

Graph Model for Symmetric 2-D Partitioning

- Symmetric 2-D partitioning
- Partition both V and E
- Gives partition of both matrix and vectors

Communication in Graph Model

- Communication is assigned to vertices
- Vertex incurs communication iff incident edge is in different partition
- Want small vertex separator -- $\mathrm{S}=\left\{\mathrm{V}_{8}\right\}$

Nested Dissection Partitioning Method - Bisection

- Suppose A is symmetric
- Let $G(V, E)$ be graph of A
- Find small, balanced separator S
- Yields vertex partition V = (VO,V1,S)
- Partition the edges
- EO = \{edges that touch a vertex in VO\}
- E1 = \{edges that touch a vertex in V1 $\}$

Nested Dissection Partitioning Method - Bisection

- Vertices in S and corresponding edges
- Can be assigned to either partition
- Can use flexibility to maintain balance
- Communication Volume $=2 \star|S|$
- Regardless of S partitioning
- |S| in each phase

Nested Dissection Partitioning Method

- Recursive bisection to partition into >2 partitions
- Use nested dissection!

Numerical Experiments

- Compared 3 methods
- 1-D hypergraph partitioning
- Fine-grain hypergraph partitioning
- Nested dissection partitioning
- PaToH for hypergraph partitioning
- Finding separators
- 1-D hypergraph partitioning
- ODU minimum vertex cover software
- Florin Dobrian, Mahantesh Halappanvar, and Alex Pothen
- Symmetric and nonsymmetric matrices
- Mostly from Prof. Rob Bisseling (Utrecht Univ.)
- $k=4,16,64$ partitions

Communication Volume - Symmetric Matrices

Estimated Runtimes

Nonsymmetric Matrices

- Given nonsymmetric matrix A
- Construct bipartite graph $G^{\prime}(R, C, E)$
- R vertices correspond to rows, C vertices to columns
- E correspond to nonzeros
- Can be represented by symmetric adjacency matrix

- Apply nested dissection approach to G^{\prime}
- Use same algorithm as for symmetric case

Communication Volume - Nonsymmetric Matrices

Communication Volume: 1-D is Inadequate

Communication Volume: 1-D is Inadequate

Messages Sent (or Received) per Process

Conclusions

- Several ways to reduce communication in sparse matrix-vector multiplication
- Rich combinatorial problem!
- 1-D matrix partitioning
- Works well for many problems (meshes)
- Insufficient for many more irregular matrices
- New nested dissection 2-D algorithm
- Implemented using existing algorithms and software
- Quality better than 1-D, and similar to fine-grain hypergraph method for many matrices
- Faster to compute than fine-grain hypergraph
- Fewer messages than fine-grain hypergraph

