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Optimization Problem

Objective: Generate set of operations for
computing matrix-vector product with
minimal number of multiply-add pairs (MAPs)
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Motivation

• Reducing redundant operations in building finite
element (FE) stiffness matrices
– Reuse optimized code when problem is rerun

Based on reference

element, generate code to

optimize construction of

local stiffness matrices

Can use optimized code

for every element in

domain
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Related Work

• Finite element “Compilers” (FEniCS project)
– www.fenics.org

– FIAT (automates generations of FEs)

– FFC (variational forms -> code for evaluation)

• Following work by Kirby, et al., Texas Tech,
University of Chicago on FErari
– Optimization of FFC generated code

– Equivalent to optimizing matrix-vector product code



5

Matrix-Vector Multiplication

where

Element 

dependent
Element 

independent

For 2D Laplace equation, we obtain following matrix-
vector product to determine entries in local

stiffness matrix
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Possible Optimizations - Collinear Rows
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Possible Optimizations - Collinear Rows
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Possible Optimizations - Collinear Rows

0

8

2 22

3 33 0

5 55

2 22 0

0 MAPs

Special case when 

rows identical



9

Possible Optimizations - Partial Collinear Rows

0

8

2 22

3 33 0

5 55

2 22 0



10

Possible Optimizations - Partial Collinear Rows
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Graph Model - Resulting Vector Entry Vertices

• Entries in resulting vector represented by vertices in
graph model
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Graph Model - Inner-Product Vertex and Edges

• Additional inner-product (IP) vertex

• Edges connect IP vertex to every other vertex,
representing inner-product operation
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Graph Model - Row Relationship Edges

• Operations resulting from relationships between rows
represented by edges between corresponding vertices
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Graph Model - Edge Weights

• Edge weights are MAP costs for operations
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Graph Model Solution

• Solution is minimum spanning tree (MST)
– Minimum subgraph

– Connected and spans vertices

– Acyclic

MST(5)GraphMatrix
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Graph Model Solution

• Prim’s algorithm to find MST (polynomial time)
• MST traversal yields operations to optimally compute

(for these relationships) matrix-vector product

InstructionsMST TraversalMatrix
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Graph Model Example

• Matrix used for building FE local
stiffness matrices
– 2D Laplace Equation

– 2nd order Lagrange polynomial basis

• Simplified version of matrix
– Identical rows removed
– Several additional rows removed
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Graph Model Example - Vertices
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Graph Model Example - Inner Product Edges
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Graph Model Example - Collinear Edges
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Graph Model Example - Partial Collinear Edges
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Graph Model Example - Final Graph
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Graph Model Example - Solution (MST)
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Graph Model Example - Instructions Generated

Matrix (16 nz) MST traversal Instructions (9 MAPs)
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Graph Model Results - 2D Laplace Equation

• Graph model shows significant improvement over
unoptimized algorithm

60% decrease
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Graph Model Results - 3D Laplace Equation

• Again graph model requires significantly fewer MAPs
than unoptimized algorithm

59% decrease
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Limitation of Graph Model
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• Edges connect 2 vertices

• Can represent only binary row relationships

• Cannot exploit linear dependency of more than two rows

• Thus, hypergraphs needed
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Hypergraph Model

• Same edges (2-vertex hyperedges) as graph model

• Additional higher cardinality hyperedges for more
complicated relationships
– Limiting to 3-vertex linear dependency hyperedges for this talk
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Hypergraph Model

• Extended Prim’s algorithm to include hyperedges

• Polynomial time algorithm

• Solution not necessarily a tree
– {IP,1,3,5}

– {IP,2,4,5}

• No guarantee of optimum solution

• Finding optimum solution to hypergraph problem NP-hard
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Hypergraph Model Results - 2D Laplace Equation

• Hypergraph solution slightly better for some orders
but not significantly better

• Graph algorithm close to optimal?
– 3 Columns

– Binary relationships may be good enough
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Hypergraph Model Results - 3D Laplace Equation

• Hypergraph solution significantly better than graph
solution for many orders

19% additional

decrease
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Future Work

• Higher cardinality hyperedges
- Perhaps useful for 3D FE problems
- Implemented 4, 5, 6 vertex hyperedges
- Hyperedge explosion
- Need efficient hyperedge pruning algorithms

• More complicated hyperedge relationships
– Similar to partial collinear row relationships for edges

• Optimal and more nearly optimal solution methods
– Combinatorial optimization formulation

• Other matrices
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2D Laplace Equation Matrices

• 3 Columns
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3D Laplace Equation Matrices

• 6 Columns
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Accuracy

Relative Error 2D Laplace Relative Error 3D Laplace

• Single precision input matrices

• Single precision code generation


