Combinatorial Optimization of Matrix-Vector Multiplication

> Michael Wolf University of Illinois 6/21/2007

#### **Optimization Problem**

Objective: Generate set of operations for computing matrix-vector product with minimal number of multiply-add pairs (MAPs)

$$\mathbf{y} = \mathbf{A}\mathbf{x}$$



## Motivation

Based on reference element, generate code to optimize construction of local stiffness matrices

Can use optimized code for every element in domain

- Reducing redundant operations in building finite element (FE) stiffness matrices
  - Reuse optimized code when problem is rerun

# **Related Work**

- Finite element "Compilers" (FEniCS project)
  - <u>www.fenics.org</u>
  - FIAT (automates generations of FEs)
  - FFC (variational forms -> code for evaluation)
- Following work by Kirby, et al., Texas Tech, University of Chicago on FErari
  - Optimization of FFC generated code
  - Equivalent to optimizing matrix-vector product code

For 2D Laplace equation, we obtain following matrixvector product to determine entries in local stiffness matrix

$$\mathbf{S}_{i,j}^e = y_{ni+j} = \mathbf{A}_{(ni+j,*)}\mathbf{x}$$

where

$$\mathbf{A}_{(ni+j,*)}^{T} = \begin{bmatrix} \left(\frac{\partial\phi_{i}}{\partial r}, \frac{\partial\phi_{j}}{\partial r}\right)_{\hat{e}} \\ \left(\frac{\partial\phi_{i}}{\partial r}, \frac{\partial\phi_{j}}{\partial s}\right)_{\hat{e}} \\ \left(\frac{\partial\phi_{i}}{\partial s}, \frac{\partial\phi_{j}}{\partial r}\right)_{\hat{e}} \\ \left(\frac{\partial\phi_{i}}{\partial s}, \frac{\partial\phi_{j}}{\partial s}\right)_{\hat{e}} \end{bmatrix} \qquad \mathbf{x} = \det(\mathbf{J}) \begin{bmatrix} \frac{\partial r}{\partial x} \frac{\partial r}{\partial x} + \frac{\partial r}{\partial y} \frac{\partial r}{\partial y} \\ \frac{\partial r}{\partial x} \frac{\partial s}{\partial x} + \frac{\partial r}{\partial y} \frac{\partial s}{\partial y} \\ \frac{\partial s}{\partial x} \frac{\partial r}{\partial x} + \frac{\partial s}{\partial y} \frac{\partial r}{\partial y} \\ \frac{\partial s}{\partial x} \frac{\partial s}{\partial x} + \frac{\partial s}{\partial y} \frac{\partial r}{\partial y} \\ \frac{\partial s}{\partial x} \frac{\partial s}{\partial x} + \frac{\partial s}{\partial y} \frac{\partial s}{\partial y} \end{bmatrix} \\ \mathbf{Element} \\ \mathbf{dependent}$$

#### Possible Optimizations - Collinear Rows



 $r_2 = 1.5r_1$ 

#### Possible Optimizations - Collinear Rows



 $r_2 = 1.5r_1 \Rightarrow y_2 = 1.5y_1$  1 MAP

#### Possible Optimizations - Collinear Rows



#### Possible Optimizations - Partial Collinear Rows



 $r_4 = 2.5r_1 + 8e_4$ 

#### Possible Optimizations - Partial Collinear Rows



 $\mathbf{r_4} = 2.5\mathbf{r_1} + 8\mathbf{e_4} \Rightarrow y_4 = 2.5y_1 + 8x_4$  2 MAPs

## Graph Model - Resulting Vector Entry Vertices



Entries in resulting vector represented by vertices in graph model

## Graph Model - Inner-Product Vertex and Edges



- Additional inner-product (IP) vertex
- Edges connect IP vertex to every other vertex, representing inner-product operation

## Graph Model - Row Relationship Edges



 Operations resulting from relationships between rows represented by edges between corresponding vertices

Graph Model - Edge Weights  $y_2 = -2x_2 - 2x_3 - 4x_4$ 3  $|{\bf r_1}^T|$  8 4 4 8  $\mathbf{r_2}^T$ 0 -2 -2 -4  $y_1 = 8x_1 + 4x_2 + 4x_3 + 8x_4$  $y_1 = -2y_2 + 8x_1$  $y_2 = -0.5y_1 + 4x_1$ 

Edge weights are MAP costs for operations

## **Graph Model Solution**



- Solution is minimum spanning tree (MST)
  - Minimum subgraph
  - Connected and spans vertices
  - Acyclic

## **Graph Model Solution**



- Prim's algorithm to find MST (polynomial time)
- MST traversal yields operations to optimally compute (for these relationships) matrix-vector product

# Graph Model Example



- Matrix used for building FE local stiffness matrices
  - 2D Laplace Equation
  - 2nd order Lagrange polynomial basis
- Simplified version of matrix
  - Identical rows removed
  - Several additional rows removed

#### **Graph Model Example - Vertices**



## Graph Model Example - Inner Product Edges



### Graph Model Example - Collinear Edges



## Graph Model Example - Partial Collinear Edges





#### Graph Model Example - Final Graph



## Graph Model Example - Solution (MST)



## Graph Model Example - Instructions Generated



## Graph Model Results - 2D Laplace Equation



 Graph model shows significant improvement over unoptimized algorithm

## Graph Model Results - 3D Laplace Equation

|       | Unoptimized | Graph |                      |
|-------|-------------|-------|----------------------|
| Order | MAPs        | MAPs  |                      |
| 1     | 21          | 17    | ]                    |
| 2     | 177         | 79    |                      |
| 3     | 789         | 342   |                      |
| 4     | 2586        | 1049  | 🗕 🗕 🗕 🗲 59% decrease |
| 5     | 7125        | 3592  |                      |
| 6     | 16749       | 8835  | ]                    |

 Again graph model requires significantly fewer MAPs than unoptimized algorithm

# Limitation of Graph Model



- Edges connect 2 vertices
- Can represent only binary row relationships
- Cannot exploit linear dependency of more than two rows
- Thus, hypergraphs needed

## Hypergraph Model



- Same edges (2-vertex hyperedges) as graph model
- Additional higher cardinality hyperedges for more complicated relationships
  - Limiting to 3-vertex linear dependency hyperedges for this talk

## Hypergraph Model

- Extended Prim's algorithm to include hyperedges
- Polynomial time algorithm
- Solution not necessarily a tree
  - $\{IP, 1, 3, 5\}$
  - $\{IP, 2, 4, 5\}$
- No guarantee of optimum solution
- Finding optimum solution to hypergraph problem NP-hard



# Hypergraph Model Results - 2D Laplace Equation

|       | Unoptimized | Graph | HGraph |
|-------|-------------|-------|--------|
| Order | MAPs        | MAPs  | MAPs   |
| 1     | 10          | 7     | 6      |
| 2     | 34          | 14    | 14     |
| 3     | 108         | 43    | 43     |
| 4     | 292         | 152   | 150    |
| 5     | 589         | 366   | 363    |
| 6     | 1070        | 686   | 686    |

- Hypergraph solution slightly better for some orders but not significantly better
- Graph algorithm close to optimal?
  - 3 Columns
  - Binary relationships may be good enough

# Hypergraph Model Results - 3D Laplace Equation

|       | Unoptimized | Graph | HGraph     |                |
|-------|-------------|-------|------------|----------------|
| Order | MAPs        | MAPs  | MAPs       |                |
| 1     | 21          | 17    | 17         |                |
| 2     | 177         | 79    | 68         |                |
| 3     | 789         | 342   | 297        |                |
| 4     | 2586        | 1049  | <b>852</b> | 19% additional |
| 5     | 7125        | 3592  | 3261       | decrease       |
| 6     | 16749       | 8835  | 8340       |                |

 Hypergraph solution significantly better than graph solution for many orders

## Future Work

- Higher cardinality hyperedges
  - Perhaps useful for 3D FE problems
  - Implemented 4, 5, 6 vertex hyperedges
  - Hyperedge explosion
  - Need efficient hyperedge pruning algorithms
- More complicated hyperedge relationships
  - Similar to partial collinear row relationships for edges
- Optimal and more nearly optimal solution methods
  - Combinatorial optimization formulation
- Other matrices

## Acknowledgements/Thanks

- DOE and Krell Institute
  - Financial support
  - Collaborative opportunities
- Professor Michael Heath, advisor
- Professor Robert Kirby, Texas Tech University
- Dr. Erik Boman, Sandia National Laboratories

# **2D Laplace Equation Matrices**

| Order | Rows | Entries | Nonzeros |
|-------|------|---------|----------|
| 1     | 6    | 18      | 10       |
| 2     | 21   | 63      | 34       |
| 3     | 55   | 165     | 108      |
| 4     | 120  | 360     | 292      |
| 5     | 231  | 693     | 589      |
| 6     | 406  | 1218    | 1070     |

• 3 Columns

# **3D Laplace Equation Matrices**

| Order | Rows | Entries | Nonzeros |
|-------|------|---------|----------|
| 1     | 10   | 60      | 21       |
| 2     | 55   | 330     | 177      |
| 3     | 210  | 1260    | 789      |
| 4     | 630  | 3780    | 2586     |
| 5     | 1596 | 9576    | 7125     |
| 6     | 3570 | 21420   | 16749    |

• 6 Columns

## Accuracy

#### Relative Error 2D Laplace

#### Relative Error 3D Laplace

|       | GPCR        | HGraph      |
|-------|-------------|-------------|
| Order | Error       | Error       |
| 1     | 0           | 0           |
| 2     | 2.53565e-09 | 2.55594e-09 |
| 3     | 6.40668e-09 | 2.44340e-09 |
| 4     | 2.47834e-10 | 9.30090e-09 |
| 5     | 4.95544e-09 | 5.87721e-09 |
| 6     | 4.28141e-09 | 4.28166e-09 |

|       | GPCR        | HGraph      |
|-------|-------------|-------------|
| Order | Error       | Error       |
| 1     | 0           | 0           |
| 2     | 9.33830e-09 | 7.35996e-09 |
| 3     | 2.60053e-08 | 3.51190e-08 |
| 4     | 8.31206e-09 | 1.47134e-08 |
| 5     | 4.22496e-08 | 6.30277e-08 |
| 6     | 1.07992e-06 | 1.41391e-06 |

- Single precision input matrices
- Single precision code generation