Combinatorial Algorithms in Scientific Computing MS110

Robert Kirby (Texas Tech) *Michael Wolf* (UIUC, Sandia)

2008 SIAM Annual Meeting 7/11/2008

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Combinatorial Scientific Computing (CSC)

- Long played important role in enabling scientific computing
- Traditionally researchers spread across several different communities
- Recent effort to form more cohesive CSC community
- CSC Workshops
 - San Francisco, 2/2004 (SIAM PP04)
 - Toulouse, 6/2005
 - Costa Mesa, 2/2007 (SIAM CSE07)
 - Monterey, 10/2009 (SIAM LA09)

Combinatorial Scientific Computing (CSC)

- Numerous conference minisymposia
- DOE SciDAC institute
 - Combinatorial Scientific Computing and Petascale Simulations (CSCAPES)
- For more info on CSC activities
 - http://www.cscapes.org/

Combinatorial Algorithms in Scientific Computing

- Inherently combinatorial tasks in scientific computing
 - e.g., data partitioning

- More subtle underlying discrete structures in scientific computing
 - Complements analytic structure of problem
 - e.g., combinatorial structure in discretized PDEs

Combinatorial Algorithms in Scientific Computing

- Michael Wolf
 - "Hypergraph-based combinatorial optimization of matrix-vector multiplication"
- Dmitry Karpeev
 - "Using Sieve for particle tracking, embedding meshing and field-particle interaction computations"
- Kevin Long
 - "Combinatorial dataflow analysis for differentiation of high-level PDE representations"
- Andrew Lyons
 - "Exploitation of Jacobian scarcity"

Hypergraph-Based Combinatorial Optimization of Matrix-Vector Multiplication

> Michael M. Wolf University of Illinois, Sandia National Laboratories

2008 SIAM Annual Meeting 7/11/2008

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Optimization Problem

Objective: Generate set of operations for computing matrix-vector product with minimal number of multiply-add pairs (MAPs)

Motivation

Based on reference element, generate code to optimize construction of local stiffness matrices

- Reducing redundant operations in building finite element (FE) stiffness matrices
 - Reuse optimized code when problem is rerun

Related Work

- Finite element "Compilers" (FEniCS project)
 - www.fenics.org
 - FIAT (automates generations of FEs)
 - FFC (variational forms -> code for evaluation)
- Following work by Kirby, et al., Texas Tech, University of Chicago on FErari
 - Optimization of FFC generated code
 - Equivalent to optimizing matrix-vector product code
 - Graph model

For 2D Laplace equation, we obtain following matrixvector product to determine entries in local stiffness matrix

$$\mathbf{S}_{i,j}^e = y_{ni+j} = \mathbf{A}_{(ni+j,*)}\mathbf{x}$$

where

$$\mathbf{A}_{(ni+j,*)}^{T} = \begin{bmatrix} \left(\frac{\partial\phi_{i}}{\partial r}, \frac{\partial\phi_{j}}{\partial r}\right)_{\hat{e}} \\ \left(\frac{\partial\phi_{i}}{\partial s}, \frac{\partial\phi_{j}}{\partial s}\right)_{\hat{e}} \\ \left(\frac{\partial\phi_{i}}{\partial s}, \frac{\partial\phi_{j}}{\partial s}\right)_{\hat{e}} \\ \left(\frac{\partial\phi_{i}}{\partial s}, \frac{\partial\phi_{j}}{\partial s}\right)_{\hat{e}} \end{bmatrix} \qquad \mathbf{x} = \det(\mathbf{J}) \begin{bmatrix} \frac{\partial r}{\partial x} \frac{\partial r}{\partial x} + \frac{\partial r}{\partial y} \frac{\partial r}{\partial y} \\ \frac{\partial r}{\partial x} \frac{\partial s}{\partial x} + \frac{\partial r}{\partial y} \frac{\partial s}{\partial y} \\ \frac{\partial s}{\partial x} \frac{\partial r}{\partial x} + \frac{\partial s}{\partial y} \frac{\partial r}{\partial y} \\ \frac{\partial s}{\partial x} \frac{\partial r}{\partial x} + \frac{\partial s}{\partial y} \frac{\partial r}{\partial y} \\ \frac{\partial s}{\partial x} \frac{\partial s}{\partial x} + \frac{\partial s}{\partial y} \frac{\partial r}{\partial y} \\ \frac{\partial s}{\partial x} \frac{\partial s}{\partial x} + \frac{\partial s}{\partial y} \frac{\partial r}{\partial y} \\ \frac{\partial s}{\partial x} \frac{\partial s}{\partial x} + \frac{\partial s}{\partial y} \frac{\partial s}{\partial y} \end{bmatrix}$$
Element dependent

Possible Optimizations - Collinear Rows

 $r_2 = 1.5r_1$

Possible Optimizations - Collinear Rows

 $r_2 = 1.5r_1 \Rightarrow y_2 = 1.5y_1$ 1 MAP

Possible Optimizations - Collinear Rows

Possible Optimizations - Partial Collinear Rows

 $r_4 = 2.5r_1 + 8e_4$

Possible Optimizations - Partial Collinear Rows

 $\mathbf{r_4} = 2.5\mathbf{r_1} + 8\mathbf{e_4} \Rightarrow y_4 = 2.5y_1 + 8x_4$ 2 MAPs

Graph Model - Resulting Vector Entry Vertices

 Entries in resulting vector represented by vertices in graph model

Graph Model - Inner-Product Vertex and Edges

- Additional inner-product (IP) vertex
- Edges connect IP vertex to every other vertex, representing inner-product operation

Graph Model - Row Relationship Edges

 Operations resulting from relationships between rows represented by edges between corresponding vertices

Graph Model - Edge Weights $y_2 = -2x_2 - 2x_3 - 4x_4$ 3 $|{\bf r_1}^T|$ 8 4 4 8 $\mathbf{r_2}^T$ -2 -2 -4 $y_1 = 8x_1 + 4x_2 + 4x_3 + 8x_4$ $y_1 = -2y_2 + 8x_1$ $y_2 = -0.5y_1 + 4x_1$

• Edge weights are MAP costs for operations

Graph Model Solution

- Solution is minimum spanning tree (MST)
 - Minimum cost subgraph
 - Connected and spans vertices
 - Acyclic

Graph Model Solution

- Prim's algorithm to find MST (polynomial time)
- MST traversal yields operations to optimally compute (for these relationships) matrix-vector product

Graph Model Example

- Matrix used for building FE local stiffness matrices
 - 2D Laplace Equation
 - 2nd order Lagrange polynomial basis
- Simplified version of matrix
 - Identical rows removed
 - Several additional rows removed

Graph Model Example - Vertices

Graph Model Example - Inner Product Edges

Graph Model Example - Collinear Edges

Graph Model Example - Partial Collinear Edges

Graph Model Example - Final Graph

Graph Model Example - Solution (MST)

Graph Model Example - Instructions Generated

Graph Model Results - 2D Laplace Equation

 Graph model shows significant improvement over unoptimized algorithm

Graph Model Results - 3D Laplace Equation

 Again graph model requires significantly fewer MAPs than unoptimized algorithm

Limitation of Graph Model

$$\mathbf{r_2} = 2\mathbf{r_3} + 2\mathbf{r_4} \Rightarrow y_2 = 2y_3 + 2y_4$$

- Edges connect 2 vertices
- Can represent only binary row relationships
- Cannot exploit linear dependency of more than two rows
- Thus, hypergraphs needed

Hypergraph Model

- Same edges (2-vertex hyperedges) as graph model
- Additional higher cardinality hyperedges for more complicated relationships
 - Limiting to 3-vertex linear dependency hyperedges for this talk

Hypergraph Model Solution: Modified Prim's

- Extended Prim's algorithm to include hyperedges
- Polynomial time algorithm
- Solution not necessarily a tree
 - {IP,1,3,5}
 - {IP,2,4,5}
- No guarantee of optimum solution

Hypergraph Model Solution: Modified Prim's

• No guarantee of optimum solution

Hypergraph Model Results - 2D Laplace Equation

	Unoptimized	Graph	HGraph	
Order	MAPs	MAPs	MAPs	
1	10	7	6	
2	34	14	14	
3	108	43	38	
4	292	152	131	14% additional
5	589	366	352	decrease
6	1070	686	677	

- Hypergraph solution shows modest improvement over graph solution
- Graph algorithm solutions close to optimal for some orders?
 - 3 Columns

Hypergraph Model Results - 3D Laplace Equation

Ordor	Unoptimized MAPs	Graph MAPa	HGraph MAPs	
Order				
1	21	17	17	
2	177	79	65	
3	789	342	262	
4	2586	1049	760	4 28% additional
5	7125	3592	3165	decrease
6	16749	8835	8228]

 Hypergraph solution significantly better than graph solution for many orders

Ongoing Work: New Hypergraph Method(s)

- Greedy modified Prim's algorithm yields suboptimal solutions for hypergraphs
- Want improved method that yields better (or optimal) solutions
 - -Improved solution
 - -Optimality of greedy solution
- New approach: formulate as vertex ordering

Ongoing Work: Vertex Ordering Method

- Order vertices
 - -Roughly represents order of calculation for entries
- For given vertex ordering, can determine optimal solution subhypergraph
 - -Greedy algorithm of selecting cheapest available hyperedge
 - -Fast!
- Ordering is challenging part
- Traversal of greedy solution good starting pt.
- Implemented very simple local refinement
 - -Local refinement on starting point

Vertex Ordering: Preliminary Results — 2D Laplace

Order	Graph MAPs	HGraph MAPs	Local Refine MAPs	
1	7	6	6	
2	14	14	14	
3	43	38	38	
4	152	131	129	
5	366	352	339	4% additional
6	686	677	657	decrease

- Simple local refinement method
 - Pairwise swapping to improve initial ordering
- Slight additional improvement
- Graph/hypergraph solutions close to optimal?
 - 3 Columns

Vertex Ordering: Preliminary Results — 3D Laplace

Order	Graph MAPs	HGraph MAPs	Local Refine MAPs	
1	17	17	17	
2	79	65	65	
3	342	262	239	9% additional
4	1049	760	757	decrease
5	3592	3165	3105	
6	8835	8228	8141]

- Simple local refinement method
 - Pairwise swapping to improve initial ordering
- Slight additional improvement
- Perhaps more improvement with global vertex ordering method

Future Work

- Higher cardinality hyperedges
 - Perhaps useful for 3D FE problems
 - Implemented 4, 5, 6 vertex hyperedges
 - Hyperedge explosion
 - Need efficient hyperedge pruning algorithms
- Improve hypergraph solution methods
 - Develop global vertex ordering method
- Focus on reducing runtime of resulting operations
 - Best feasible vertex ordering for given solution
- Other matrices

Acknowledgements/Thanks

- Michael Heath, advisor
- Robert Kirby, Texas Tech University
- Erik Boman, Sandia National Laboratories
- Bruce Hendrickson, Sandia National Laboratories
- Funding
 - DOE CSGF, DE-FG02-97ER25308
 - SIAM -- travel support
 - CSCAPES (Sandia) -- travel support

Extra

2D Laplace Equation Matrices

Order	Rows	Entries	Nonzeros
1	6	18	10
2	21	63	34
3	55	165	108
4	120	360	292
5	231	693	589
6	406	1218	1070

• 3 Columns

3D Laplace Equation Matrices

Order	Rows	Entries	Nonzeros
1	10	60	21
2	55	330	177
3	210	1260	789
4	630	3780	2586
5	1596	9576	7125
6	3570	21420	16749

• 6 Columns

Accuracy

Relative Error 2D Laplace

Relative Error 3D Laplace

	GPCR	HGraph
Order	Error	Error
1	0	0
2	2.53565e-09	2.55594e-09
3	6.40668e-09	2.44340e-09
4	2.47834e-10	9.30090e-09
5	4.95544e-09	5.87721e-09
6	4.28141e-09	4.28166e-09

	GPCR	HGraph
Order	Error	Error
1	0	0
2	9.33830e-09	7.35996e-09
3	2.60053e-08	3.51190e-08
4	8.31206e-09	1.47134e-08
5	4.22496e-08	6.30277e-08
6	1.07992e-06	1.41391e-06

- Single precision input matrices
- Single precision code generation