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Combinatorial Scientific Computing (CSC)

• Long played important role in enabling scientific

computing

• Traditionally researchers spread across several

different communities

• Recent effort to form more cohesive CSC

community

• CSC Workshops

– San Francisco, 2/2004 (SIAM PP04)

– Toulouse, 6/2005

– Costa Mesa, 2/2007 (SIAM CSE07)

– Monterey, 10/2009 (SIAM LA09)
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Combinatorial Scientific Computing (CSC)

• Numerous conference minisymposia

• DOE SciDAC institute

– Combinatorial Scientific Computing and Petascale

Simulations (CSCAPES)

• For more info on CSC activities

– http://www.cscapes.org/
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Combinatorial Algorithms in Scientific Computing

• Inherently combinatorial tasks in scientific

computing

– e.g., data partitioning

• More subtle underlying discrete structures

in scientific computing

– Complements analytic structure of problem

– e.g., combinatorial structure in discretized PDEs
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Combinatorial Algorithms in Scientific Computing

• Michael Wolf

– “Hypergraph-based combinatorial optimization of

matrix-vector multiplication”

• Dmitry Karpeev

– “Using Sieve for particle tracking, embedding meshing

and field-particle interaction computations”

• Kevin Long

– “Combinatorial dataflow analysis for differentiation of

high-level PDE representations”

• Andrew Lyons

– “Exploitation of Jacobian scarcity”
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Optimization Problem

Objective: Generate set of operations for
computing matrix-vector product with minimal
number of multiply-add pairs (MAPs)
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Motivation

• Reducing redundant operations in building finite
element (FE) stiffness matrices
– Reuse optimized code when problem is rerun

Based on reference

element, generate code to

optimize construction of

local stiffness matrices

Can use optimized code

for every element in

domain
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Related Work

• Finite element “Compilers” (FEniCS project)
– www.fenics.org

– FIAT (automates generations of FEs)

– FFC (variational forms -> code for evaluation)

• Following work by Kirby, et al., Texas Tech,
University of Chicago on FErari
– Optimization of FFC generated code

– Equivalent to optimizing matrix-vector product code

– Graph model
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Matrix-Vector Multiplication

where

Element 

dependent
Element 

independent

For 2D Laplace equation, we obtain following matrix-
vector product to determine entries in local

stiffness matrix
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Possible Optimizations - Collinear Rows
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Possible Optimizations - Collinear Rows

0

8

2 22

3 33 0

5 55

2 22 0

1 MAP



13

Possible Optimizations - Collinear Rows
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Possible Optimizations - Partial Collinear Rows
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Possible Optimizations - Partial Collinear Rows
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Graph Model - Resulting Vector Entry Vertices

• Entries in resulting vector represented by
vertices in graph model
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Graph Model - Inner-Product Vertex and Edges

• Additional inner-product (IP) vertex

• Edges connect IP vertex to every other vertex,
representing inner-product operation
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Graph Model - Row Relationship Edges

• Operations resulting from relationships between
rows represented by edges between
corresponding vertices
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Graph Model - Edge Weights

• Edge weights are MAP costs for operations
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Graph Model Solution

• Solution is minimum spanning tree (MST)
– Minimum cost subgraph

– Connected and spans vertices

– Acyclic

MST(5)GraphMatrix
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Graph Model Solution

• Prim’s algorithm to find MST (polynomial time)
• MST traversal yields operations to optimally

compute (for these relationships) matrix-vector
product

InstructionsMST TraversalMatrix
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Graph Model Example

• Matrix used for building FE local
stiffness matrices
– 2D Laplace Equation

– 2nd order Lagrange polynomial basis

• Simplified version of matrix
– Identical rows removed
– Several additional rows removed
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Graph Model Example - Vertices



24

Graph Model Example - Inner Product Edges
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Graph Model Example - Collinear Edges
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Graph Model Example - Partial Collinear Edges
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Graph Model Example - Final Graph
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Graph Model Example - Solution (MST)
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Graph Model Example - Instructions Generated

Matrix (16 nz) MST traversal Instructions (9 MAPs)
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Graph Model Results - 2D Laplace Equation

• Graph model shows significant improvement over
unoptimized algorithm

60% decrease
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Graph Model Results - 3D Laplace Equation

• Again graph model requires significantly fewer
MAPs than unoptimized algorithm

59% decrease
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Limitation of Graph Model

1

0

1 32
4 44 4
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0 20 2

• Edges connect 2 vertices
• Can represent only binary row relationships
• Cannot exploit linear dependency of more than

two rows
• Thus, hypergraphs needed
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Hypergraph Model

• Same edges (2-vertex hyperedges) as graph model
• Additional higher cardinality hyperedges for more

complicated relationships
– Limiting to 3-vertex linear dependency hyperedges for

this talk
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Hypergraph Model Solution: Modified Prim’s

• Extended Prim’s algorithm to include hyperedges
• Polynomial time algorithm
• Solution not necessarily a tree

– {IP,1,3,5}

– {IP,2,4,5}

• No guarantee of optimum solution
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Hypergraph Model Solution: Modified Prim’s

• No guarantee of optimum solution

9 MAPs

8 MAPs
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Hypergraph Model Results - 2D Laplace Equation

• Hypergraph solution shows modest improvement
over graph solution

• Graph algorithm solutions close to optimal for
some orders?
– 3 Columns

14% additional

decrease
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Hypergraph Model Results - 3D Laplace Equation

• Hypergraph solution significantly better than
graph solution for many orders

28% additional

decrease
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Ongoing Work: New Hypergraph Method(s)

• Greedy modified Prim’s algorithm yields
suboptimal solutions for hypergraphs

• Want improved method that yields better

(or optimal) solutions
–Improved solution

–Optimality of greedy solution

• New approach: formulate as vertex ordering
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Ongoing Work: Vertex Ordering Method

• Order vertices
–Roughly represents order of calculation for entries

• For given vertex ordering, can determine
optimal solution subhypergraph
–Greedy algorithm of selecting cheapest available
hyperedge

–Fast!

• Ordering is challenging part

• Traversal of greedy solution good starting pt.

• Implemented very simple local refinement
–Local refinement on starting point
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Vertex Ordering: Preliminary Results — 2D Laplace

• Simple local refinement method
– Pairwise swapping to improve initial ordering

• Slight additional improvement

• Graph/hypergraph solutions close to optimal?
– 3 Columns

4% additional

decrease
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Vertex Ordering: Preliminary Results — 3D Laplace

9% additional

decrease

• Simple local refinement method
– Pairwise swapping to improve initial ordering

• Slight additional improvement

• Perhaps more improvement with global vertex
ordering method
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Future Work

• Higher cardinality hyperedges
- Perhaps useful for 3D FE problems
- Implemented 4, 5, 6 vertex hyperedges
- Hyperedge explosion
- Need efficient hyperedge pruning algorithms

• Improve hypergraph solution methods
– Develop global vertex ordering method

• Focus on reducing runtime of resulting operations
– Best feasible vertex ordering for given solution

• Other matrices
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Extra
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2D Laplace Equation Matrices

• 3 Columns
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3D Laplace Equation Matrices

• 6 Columns
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Accuracy

Relative Error 2D Laplace Relative Error 3D Laplace

• Single precision input matrices

• Single precision code generation


