Modeling Large Accelerator Structures with the Parallel Field Solver Tau3P

Michael Wolf, Adam Guetz, Cho-Kuen Ng

Advanced Computations, Stanford Linear Accelerator Center

ACES Meeting - March 21, 2002 Monterey, CA

* Work supported by U.S. DOE OCTR & HENP Divisions under contract DE-AC0376SF00515

Outline

- Introduction
- Tau3P Implementation
- Simulation Results
- Parallel Performance
- Work in Progress

Introduction

*

- 3D time domain code used to calculate transmission properties of open structures & wakefields
- Uses unstructured grids to conform to geometry
- Uses the **discrete surface integrals**^{*} method

$$\oint E \bullet ds = -\iint \frac{\partial B}{\partial t} \bullet dA$$
$$\oint H \bullet ds^* = \iint \frac{\partial D}{\partial t} \bullet dA^* + \iint j \bullet dA$$

- Calculates E on primary grid, H on dual grid
- Parallel application using domain decomposition and MPI

*N.K. Madsen. Journal of Computational Physics, **119**, 34-45 (1995).

Tau3P Implementation

Title: /tmp/xfig-exp013931 Creator: fig2dev Version 3.2 Patchlevel 3c Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers.

Tau3P Implementation (cont.)

Example of Distributed Mesh

Tau3P Excitations

• Handles following excitations with appropriate boundary conditions: <u>Waveguide excitation</u>

Calculate transmission properties of traveling wave structures **Dipole excitation**

Study transient response of structures driven by electric dipoles Beam excitation

Calculate wakefields driven by a rigid beam

Waveguide Excitation

NLC RDDS Input Coupler

<u>Fundamental Mode Coupler</u> - Tau3P matching calculations provide accurate cavity dimensions for fabrication by using realistic geometry model

Snapshots of Traveling Wave

Transmission Calculations

Dipole Field Excitation

Dipole Mode Spectrum

<u>Measurement</u>	<u>Tau3P</u>
16.868	16.89
16.440	16.46
16.280	16.30
16.176	16.18
16.098	16.10
16.034	16.04

Beam Excitation

Standing Wave Detuned Structure

Beam Transit through SW Structure

Beam Excited Dipole Mode Spectrum

Parallel Performance

Load Balancing

Communication Schemes

Parallel speedup depends on:

- Repartition of mesh using weightings in ParMetis
- Communication schemes between processors blocking, non-blocking and threading

Work in Progress

- *Dielectric and lossy materials* need to modify the matrices for advancing the fields
- *Mesh Quality* time stability for complex structures depends on the quality of the primary and dual meshes
- *Load Balancing* involves optimization between mesh partitioning and communication schemes