Partitioning for Parallel Sparse Matrix-Vector Multiplication

Michael Wolf
CS 591MH
September 13, 2007

Parallel Matrix-Vector Multiplication

$$
\left[\begin{array}{l}
{\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}^{5} \\
y_{6} \\
y_{7} \\
y_{8}
\end{array}\right]=\left[\begin{array}{llllllll}
1 & 6 & 0 & 0 & 0 & 0 & 0 & 0 \\
5 & 1 & 9 & 0 & 5 & 0 & 0 & 0 \\
8 & 0 & 1 & 7 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 & 1 & 8 & 0 & 0 \\
0 & 4 & 0 & 0 & 3 & 1 & 3 & 0 \\
0 & 0 & 0 & 6 & 0 & 9 & 1 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7} \\
x_{8}
\end{array}\right]}
\end{array}\right.
$$

- Vectors partitioned identically

Objective

- Ideally we minimize total run-time
- Settle for easier objective
- Work balanced
- Minimize total communication volume
- Can partition matrices in different ways
-1-D
-2-D
- Can model communication in different ways
- Graph
- Bipartite graph
- Hypergraph

Parallel Matrix-Vector Multiplication

Parallel Matrix-Vector Multiplication Stage 1

- x_{j} sent to remote processes that have nonzeros in column j

Parallel Matrix-Vector Multiplication Stage 2

- Local partial inner-products

Parallel Matrix-Vector Multiplication Stage 3

- Send partial inner-products to process that owns corresponding vector element y_{i}

Parallel Matrix-Vector Multiplication Stage 4

- Accumulate partial inner-products to obtain complete resulting vector

1 -D Column Partitioning

- Each process assigned nonzeros for set of columns

1 -D Column Partitioning

- Only "fan-in" communication stage necessary

1-D Row Partitioning

- Each process assigned nonzeros for set of rows

1-D Row Partitioning

- Only "fan-out" communication stage necessary

Graph Model of 1-D Partitioning

- Each row or column represented by graph vertex
-Weighted by number of nonzeros in row/column

Graph Model of 1-D Partitioning

- Nonzeros represented by edges between 2 vertices (corresponding to nonzero row, col)

Graph Model of 1-D Partitioning

- Partition into k equal sets
- Such that number of cut edges is minimized

Graph Model Shortcomings

- Inaccurate approximation of communication volume
- Approximate volume: 6
- Actual volume: 4

Graph Model Shortcomings

- Requires symmetric nonzero pattern
- NP-hard to solve optimally

Hypergraph Model of 1-D (Row) Partitioning

- Nonzero pattern can be unsymmetric
- Rows represented by vertices in hypergraph
- Weighted by number of nonzeros in row

Hypergraph Model of 1-D (Row) Partitioning

- Columns represented by hyperedges in hypergraph

Hypergraph Model of 1-D (Row) Partitioning

- Partition vertices into k equal sets
- Hyperedge cut = communication volume
- Aykanat and Catalyurek (1996)
- NP-hard to solve optimally

Graph Model Revisited

- Bisection: count boundary vertices
- Slightly more complicated for k>2

When 1-D Partitioning is Inadequate

"Arrowhead" matrix

When 1-D Partitioning is Inadequate

- For nxn matrix for any 1-D bisection:
$-n n z=3 n-2$
- Volume $\approx 3 / 4^{*}$ n

2-D Partitioning Methods

- More flexibility
- Yield lower communication volume for many problems

2-D Partitioning Methods: Cartesian

- Different variations
- Two-stage partitioning of rows and columns with 1D hypergraph partitioning

2-D Partitioning Methods: Cartesian

- Block version shown for clarity
- Stage 1: partition rows

2-D Partitioning Methods: Cartesian

- Stage 2: partition columns
- Load imbalance

2-D Partitioning Methods: Mondriaan

- Piet Mondria(a)n
-Dutch painter (1872-1944)
-Colored rectangles
-Black rectilinear lines

-2D Mondriaan Method
-Bisseling, Vastenhouw
-Irregular rectangle partitions

2-D Partitioning Methods: Mondriaan

- Recursive bisection hypergraph partitioning
- Each level: 1D row or column partitioning

2-D Partitioning Methods: Mondriaan

- Block version shown for clarity
- Level 1-- entire matrix
- Row partitioning (cut: 4 vs. 5)

2-D Partitioning Methods: Mondriaan

- Level 2 -- upper partition
- Column partitioning

2-D Partitioning Methods: Mondriaan

- Level 2 -- lower partition
- Row partitioning (balance)

2-D Partitioning Methods: Mondriaan

- Mondriaan
- Fairly fast
- Generally yields good partitions
- Does not suffer from poor load-balancing

2-D Method: Fine-Grain Hypergraph Model

- Catalyurek and Aykanat (2001)
- Assign each nz separately
- Nonzeros represented by vertices in hypergraph

2-D Method: Fine-Grain Hypergraph Model

- Rows represented by hyperedges

2-D Method: Fine-Grain Hypergraph Model

- Columns represented by hyperedges

2-D Method: Fine-Grain Hypergraph Model

- $2 n$ hyperedges

2-D Method: Fine-Grain Hypergraph Model

- Partition vertices into k equal sets
- Volume = hypergraph cut
- Minimum volume partitioning when optimally solved
- Larger NP-hard problem

2-D Method: Fine-Grain Hypergraph Model

- Loosening load-balancing restriction we can obtain minimum cut (for nontrivial partitioning)

New 2-D Method: "Corner" Partitioning

- Optimal partitioning of arrowhead matrix suggests new partitioning method

New 2-D Method: "Corner" Partitioning

-1-D partitions reflected across diagonal

New 2-D Method: "Corner" Partitioning

- Take lower triangular part of matrix

New 2-D Method: "Corner" Partitioning

- 1-D (column) hypergraph partitioning of lower triangular matrix

New 2-D Method: "Corner" Partitioning

- Reflect partitioning symmetrically across diagonal

New 2-D Method: "Corner" Partitioning

- Optimal (non-trivial) partitioning

Comparison of Methods -- Arrowhead Matrix

k	1D Column	Mondriaan	Corner	Fine-Grain
2	29101	29102	2*	2*
4	40001	29778	6*	6*
16	40012	37459	30*	30*
64	40048	39424	126*	126*

- $\mathrm{n}=40,000$
- nnz = 119,998
*optimal

Comparison of Methods -- "Real" Matrices

Comparison of Methods -- finan512 Matrix

Comparison of Methods -- bcsstk30 Matrix

Summary

- Many models for reducing communication in matrix-vector multiplication
-1-D partitioning inadequate for many partitioning problems
- New method of 2-D matrix partitioning
- Improvement for some matrices
-Faster than fine-grain method

Future Work

- Better intuition for "corner" partitioning method
-Optimal for arrowhead matrix
-Good for finan512, bcsstk30 matrices
-When effective?
-Reordering of matrix rows/columns for "corner" partitioning method
-Unlike 1-D graph/hypergraph, dependence on ordering
-Find optimal ordering/partition
-Extend utility of method

Acknowledgements

- Work at Sandia National Laboratories
-CSCAPES SciDAC project
-Dr. Erik Boman (SNL)
- Technical advisor
- Dr. Bruce Hendrickson (SNL)
- Row/column reordering work
- Zoltan Team (SNL)
- Used Zoltan for 1-D hypergraph partitioning

