Partitioning for Parallel Sparse Matrix-Vector Multiplication

Michael Wolf CS 591MH September 13, 2007

Vectors partitioned identically

Objective

- Ideally we minimize total run-time
- Settle for easier objective
 - Work balanced
 - Minimize total communication volume
- •Can partition matrices in different ways
 - -1-D
 - -2-D
- Can model communication in different ways
 - -Graph
 - Bipartite graph
 - Hypergraph

• x_j sent to remote processes that have nonzeros in column j

• Local partial inner-products

• Send partial inner-products to process that owns corresponding vector element y_i

• Accumulate partial inner-products to obtain complete resulting vector

1-D Column Partitioning

• Each process assigned nonzeros for set of columns

1-D Column Partitioning

• Only "fan-in" communication stage necessary

1-D Row Partitioning

• Each process assigned nonzeros for set of rows

1-D Row Partitioning

• Only "fan-out" communication stage necessary

 Each row or column represented by graph vertex

- Weighted by number of nonzeros in row/column

Nonzeros represented by edges between
 2 vertices (corresponding to nonzero row, col)

- Partition into k equal sets
 - Such that number of cut edges is minimized

Graph Model Shortcomings

- Inaccurate approximation of communication volume
 - Approximate volume: 6
 - Actual volume: 4

Graph Model Shortcomings

- Requires symmetric nonzero pattern
- NP-hard to solve optimally

Hypergraph Model of 1-D (Row) Partitioning

- Nonzero pattern can be unsymmetric
- Rows represented by vertices in hypergraph
 - Weighted by number of nonzeros in row

Hypergraph Model of 1-D (Row) Partitioning

 Columns represented by hyperedges in hypergraph

Hypergraph Model of 1-D (Row) Partitioning

- Partition vertices into k equal sets
- Hyperedge cut = communication volume
 Aykanat and Catalyurek (1996)
- NP-hard to solve optimally

Graph Model Revisited

- Bisection: count boundary vertices
- Slightly more complicated for k>2

When 1-D Partitioning is Inadequate

When 1-D Partitioning is Inadequate

- For nxn matrix for any 1-D bisection:
 - -nnz = 3n-2

– Volume ≈ 3/4*n

2-D Partitioning Methods

- More flexibility
- Yield lower communication volume for many problems

2-D Partitioning Methods: Cartesian

- Different variations
- Two-stage partitioning of rows and columns with 1D hypergraph partitioning

2-D Partitioning Methods: Cartesian

- Block version shown for clarity
- Stage 1: partition rows

2-D Partitioning Methods: Cartesian

- Stage 2: partition columns
- Load imbalance

- Piet Mondria(a)n
 - -Dutch painter (1872-1944)
 - -Colored rectangles
 - -Black rectilinear lines

- •2D Mondriaan Method
 - -Bisseling, Vastenhouw
 - –Irregular rectangle partitions

- Recursive bisection hypergraph partitioning
- Each level: 1D row or column partitioning

- Block version shown for clarity
- Level 1-- entire matrix
- Row partitioning (cut: 4 vs. 5)

- Level 2 -- upper partition
- Column partitioning

- Level 2 -- lower partition
- Row partitioning (balance)

- Mondriaan
 - Fairly fast
 - Generally yields good partitions
 - Does not suffer from poor load-balancing

 Rows represented by hyperedges

 Columns represented by hyperedges

• 2n hyperedges

- Partition vertices into k equal sets
- Volume = hypergraph cut
- Minimum volume partitioning when optimally solved
- Larger NP-hard problem

 Loosening load-balancing restriction we can obtain minimum cut (for nontrivial partitioning)

 Optimal partitioning of arrowhead matrix suggests new partitioning method

1-D partitions reflected across diagonal

• Take lower triangular part of matrix

 1-D (column) hypergraph partitioning of lower triangular matrix

Reflect partitioning symmetrically across diagonal

• Optimal (non-trivial) partitioning

Comparison of Methods -- Arrowhead Matrix

k	1D Column	Mondriaan	Corner	Fine-Grain
2	29101	29102	2*	2*
4	40001	29778	6*	6*
16	40012	37459	30*	30*
64	40048	39424	126*	126*

- n = 40,000
- nnz = 119,998

*optimal

Comparison of Methods -- "Real" Matrices

Comparison of Methods -- finan512 Matrix

Comparison of Methods -- bcsstk30 Matrix

- Many models for reducing communication in matrix-vector multiplication
- 1-D partitioning inadequate for many partitioning problems
- •New method of 2-D matrix partitioning
 - –Improvement for some matrices
 - -Faster than fine-grain method

- Better intuition for "corner" partitioning method
 - -Optimal for arrowhead matrix
 - -Good for finan512, bcsstk30 matrices
 - -When effective?
- Reordering of matrix rows/columns for "corner" partitioning method
 - -Unlike 1-D graph/hypergraph, dependence on ordering
 - -Find optimal ordering/partition
 - -Extend utility of method

Acknowledgements

- Work at Sandia National Laboratories
 –CSCAPES SciDAC project
- Dr. Erik Boman (SNL)
 - Technical advisor
- Dr. Bruce Hendrickson (SNL)
 - Row/column reordering work
- Zoltan Team (SNL)
 - Used Zoltan for 1-D hypergraph partitioning