Intro to Mesfi Generation

Michael \mathcal{M}. Wolf
April 20, 2005

- Introduction to Mesfi Generation
- Mesfr Quality
- Serial Mesfing Methods
- Quadtree/Octree
- Advancing Front
- Delaunay
- Parallel Mesf Generation
- Why Paralle l?
- Categorization Parallelmethods
- Subdomains, interfaces, separators
- CSAR Mesf Repair in Rocket Simulation

Introduction to Mesfing

- CAD (Continuous Model)
- Mesf (Discrete Model)
- Domain on which to compute

Adaptive Simulation Process

Types of Mestres: Typical Element Types

- $2 \mathcal{D}$
- Triangles, Quadrilaterals
- $3 \mathcal{D}$
- Tetrakedra, Hexakedra, Prisms, Pyramids

Types of Meshes: Regular vs Irregular

Regular

Irregular

- Regular (Structured)
- Interior nodes attacked to same number of elements
- Irregular (Unstructured)
- Interior nodes attached to variable number of elements
- Poor quality elements often yield poor solutions
- Usually regular te trafiedron (4 equilateral faces) is prototypic good element
- How to quantify "Good" element
- Difiedral angles
- Volume
- Skew
- Algebraic means
- Etc.
- Introduction to Mesfigeneration
- Mesfi Quality
- Serial Mesfing Metfods
- Quadtree/Octree
- Advancing Front
- Delaunay
- Parallel Mesf Generation
- Why Paralle l?
- Categorization Parallelmethods
- Subdomains, interfaces, separators
- CSAR Mesf Repair in Rocket Simulation
- Going to present $2 \mathcal{D}$ versions of methods but $3 \mathcal{D}$ equivalents are similar
- Focus on Triangle methods but there are numerous interesting Quad methods

Quadtree/Octree

- Setup Bounding Box

Quadtree/Octree

- Recursively Build Quadtree to resolve geometry

Quadtree/Octree

- Recursively Build Quadtree to res olve geometry

Quadtree/Octree

- Recursively Build Quadtree to resolve geometry

Quadtree/Octree

- Add nodes to:
- Intersection of 2 quadtree lines
- Intersection of boundary and quadtree line
- Remove nodes not outside boundary

Quadtree/Octree

- Mesfistructure using nodes with triangles

Quadtree/Octree

- Final Mesf

Advancing Front

Advancing Front

- Place nodes around boundary.

- Front initially set to be boundary.

- Loop througfr all edges on front.
- Find vertex which is optimalfor eachedge

- Create triangle
- Remove edge from front
- Add newedges to front

Advancing Front

- Checkradius around optimal node for nodes currently on front

Advancing Front

- If frontalnode is found in radius, use instead

- If choice between multiple nodes, chose best quality element
- Continue untilfinisfed

De launay

Delaunay

Empty Circle (Sphere) Property:
No other vertex is contained within the circumcircle of any triangle

De launay

Empty Circle Property:
No other vertex is contained within the circumcircle of any triangle

De launay

Delaunay

Empty Circle Property:
No other vertex is contained within the circumcircle of any triangle
Δ

Delaunay

Empty Circle Property:
No other vertex is contained within the circumcircle of any triangle

Delaunay

Empty Circle Property:
No other vertex is contained within the circumcircle of any triangle

$$
\square
$$

Valid Delaunay Triangulation

Valid Delaunay Triangulation

\mathcal{N} on- Delaunay Triangulation

\mathcal{N} on- Delaunay Triangulation

Delaunay - Node Insertion

Want to insert one node

Delaunay - Node Insertion (Lawson)

Lawson Algorithm

1. Subdivide triangle that contains new point

Delaunay - Node Insertion (Lawson)

Lawson Algorithm

2. Empty circle check for new and surrounding triangles

Delaunay - Node Insertion (Lawson)

Lawson Algorithm

3. Move diagonal if
 necessary and recheck

Delaunay - Node Insertion

Want to insert one node

Delaunay - Node Insertion (Bowyer- Watson)

Bowyer-Watson Algorithm

1. Find all triangles whose
circumcircle contains the new node.

$\mathcal{D e}$ launay - \mathcal{N} ode Insertion (Bowyer- Watson)

Bowyer-Watson Algorithm

1. Find all triangles whose
circumcircle contains the new node.

$\mathcal{D e}$ launay - \mathcal{N} ode Insertion (Bowyer-Watson)

Bowyer-Watson Algorithm
2. Remove edges interior to these triangles

Delaunay - Node Insertion (Bowyer- Watson)

Bowyer-Watson Algorithm
3. Connect nodes of this empty
space to new node.

Delaunay

-Begin with Bounding Triangles

* From S. Owen

Delaunay

Delaunay

Delaunay

- Insert boundary nodes using Delaunay method (Lawson or Bowyer-Watson)

Delaunay

- Insert boundary nodes using Delaunay method (Lawson or Bowyer-Watson)

Delaunay

- Insert boundary nodes using Delaunay method (Lawson or Bowyer-Watson)

Delaunay

-Delete outside triangles

Delaunay - Interior \mathcal{N} (odes

Grid Based

- Nodes introduced based on a regular lattice

Delaunay - Interior \mathcal{N} odes

Grid Based
-Nodes introduced based on a regular lattice

Delaunay - Interior Nodes

Centroid

- Nodes introduced at triangle centroids
-Continues until edge length, $l \approx h$

Delaunay - Interior Nodes

Centroid

- Nodes introduced at triangle centroids
-Continues until edge length, $l \approx h$

Delaunay - Interior Nodes

Circumcenter
-Nodes introduced at triangle circumcenters

- Order of insertion based on minimum angle of any triangle
-Continues until minimum angle $>$ predefined minimum ($\alpha \approx 30^{\circ}$)

Delaunay - Interior Nodes

Circumcenter ("Guaranteed Quality")
-Nodes introduced at triangle circumcenters

- Order of insertion based on minimum angle of any triangle
\cdot Continues until minimum angle $>$ predefined minimum $\left(\alpha \approx 30^{\circ}\right)$

Delaunay - Interior \mathcal{N} odes

Voronoi-Segment
-Nodes introduced at midpoint of segment connecting the circumcircle centers of two adjacent triangles

Delaunay - Interior Nodes

Voronoi-Segment
-Nodes introduced at midpoint of segment connecting the circumcircle centers of two adjacent triangles

Delaunay - Interior Nodes

Edges
\bullet Nodes introduced at along existing edges at $l=h$
-Check to ensure nodes on nearby edges are not too close

Delaunay - Interior \mathcal{N} odes

Edges

- Nodes introduced at along existing edges at $l=h$
-Check to ensure nodes on nearby edges are not too close

Delaunay - Constrained Boundaries

-Nodes and edges introduced where Delaunay edges intersect boundary

* From S. Owen

Delaunay - Constrained Boundaries

Boundary Intersection
-Nodes and edges introduced where Delaunay edges intersect boundary

Delaunay - Constrained Boundary

-Edges swapped between adjacent pairs of triangles until boundary is maintained

Delaunay

Local Swapping
-Edges swapped between adjacent pairs of triangles until boundary is maintained

Delaunay - Constrained Boundary

-Edges swapped between adjacent pairs of triangles until boundary is maintained

Delaunay - Constrained Boundary

-Edges swapped between adjacent pairs of triangles until boundary is maintained

Delaunay - Constrained Boundary

Local Swapping

-Edges swapped between adjacent pairs of triangles until boundary is maintained

- Introduction to Mesfigeneration
- Mesfr Quality
- Serial Mesfing Metfods
- Quadtree/Octree
- Advancing Front
- Delaunay
- Parallel Mesfigeneration
- Why Paralle l?
- Categorization Parallelmethods
- Subdomains, interfaces, separators
- CSAR Mesf Repair in Rocket Simulation

Parallel Mesfigeneration

- Why Paralle l?
- Meskes require too much memory to generate serially
- Mesf generation becomes computational bottleneck in simulation
- Already have parallel simulation and need to remestr/repair/refine

Categorization of Parallel Mesf Generation

- Nikos Chrisochoides in [1] advocated the use of "off-the-shelf" serial mesh generators to develop parallel mesh generator.
- Using this idea parallel mesh generators can be categorized by:
- Underlying sequential mesh generation algorithm
- Parallel Coupling

```
Categorization of Parallel Mesf Generation
```

- Underlying sequential mesh generation algorithm
- Octree
- Delaunay
- Etc.
- Parallel Coupling
- Process interface meshed before subproblems meshed
- Subproblems meshed and then process interface meshed
- Process interface and subproblems simultaneously meshed

Interface/Artificial Boundary

- Process Boundaries must be wellchosen
- Load must be balanced
- Process boundaries should be well spaced
- Process boundaries should not form small angle with other process boundaries or physical boundaries
- Ulsually not a problem if mest partitioner is reasonable
- Constraine d optimization
- Changing domains can pose a problem
- Introduction to Mesfi Generation
- Mesfr Quality
- Serial Mesfing Metfods
- Quadtree/Octree
- Advancing Front
- Delaunay
- Parallel Mesf Generation
- Why Paralle l?
- Categorization Parallelmethods
- Subdomains, interfaces, separators
- CSARSesf Repair in Rocket Simulation
- Ind pendent S tidy wit fir Professor He at and Damrong Guoy
- Want to improve mesfiquality of adaptively refined mesfin rocket simulation
- Center for the Simulation of Advanced Rockets (CSAR)
- Terry Wilmartfind Phil Alexander also working on as pests of this project

Evolving Geometry of Rocket

- Shrinking solid propellant
- Expanding gas flow
- Deforming due to fight pressure
- Crack propagation

Courtesy of Damrong Guoy, CSAR

Evolving Geometry

- http://www.cse.uiuc.edu/~jiao/Rocprop/movies/starslice_entropy.mpg
- http://www.cse.uiuc.edu/~jiao/Rocprop/results.html

Courtesy of Jim Jiao (via Damrong Guoy), CSAR

- Elements are distorted as a result of the changing geometry
- Elements in expanding region are stretched
- Elements in compressed region are flattened

Solving Mesf Distortion problem

- Mesfismootfing
- Moderate change ingeometry
- Localmesfr repair
$-S$ ignificant distortion in local region
- Globalremesfing
-Severe deformity beyond repair

Courtesy of Damrong Guoy, CSAR

Local Mesf Repair

- Repair local distortion
- Preserve large part of the mesfi
- Locally refine and coarsenthemesfi
- Many basic operations

Courtesy of Damrong Guoy, CSAR

Local Mest Repair

- Basic operations
- Vertex relocation
- Vertexinsertion
-Edge contraction
- Connectivity flip

Courtesy of Damrong Guoy, CSAR

Local Mest Repair

- Basic operations
- Vertex relocation
- Vertexinsertion
-Edge contraction
- Connectivity flip

Courtesy of Damrong Guoy, CSAR

Local Mest Repair

- Basic operations
- Vertex relocation
- Vertexinsertion
-Edge contraction
- Connectivity flip

Courtesy of Damrong Guoy, CSAR

Local Mest Repair

- Basic operations

$$
\begin{aligned}
& \text {-Vertex relocation } \\
& \text {-Vertexinsertion } \\
& \text {-Edge contraction } \\
& \text {-Connectivity flip }
\end{aligned}
$$

Courtesy of Damrong Guoy, CSAR

Simmetrix

- Ulsing Simmetrix software
(M.S fiepfiard) for mesfrepair
- Linux, Mac OS X, Windows
-S erial and paralle [(?)
-Geometric and discrete modelsupport

Damrong's Global Remesfing Result

reportNumMeshEntity() num entity in mesh:-
13979 vertices
85533 edges
139095 faces
67540 regions
reportMeshQualityStatistics() supported metrics:-
1. aspect ratio $=$ longest edge by shortest altitude
2. smallest dihedral angle
3. largest dihedral angles

5. rbyR
= unitized ratio of inradius to circumradius
6. volume
aspect ratio
small dih angle
large dih angle
volume skewness
rbyR
volume
\qquad minimum \qquad average \qquad maximum
aspect ratio small dih angle large dih angle
volume skewness rbyR volume
\qquad
.
olum
\square 1.32
22.09
68.88
155.65
$\begin{array}{lll}0.006635360 & 0.520993266 & 0.992803313 \\ 0.103372444 & 0.670502505 & 0.996991125\end{array}$
0.000000625
0.000034702
0.000242023
Courtesy of Damrong Guoy, CSAR

Before Mesf Repair

```
reportNumMeshEntity() num entity in mesh:-
    143389 vertices
    935693 edges
    1560104 faces
    767799 regions
reportMeshQualityStatistics() supported metrics:-
    1. aspect ratio = longest edge by shortest altitude
    2. smallest dihedral angle (degree)
    3. largest dihedral angles (degree)
    4. volume skewness = ((optimal size) - (size)) / (optimal size)
    5. rbyR \(\quad=\) unitized ratio of inradius to circumradius
    6. volume
\begin{tabular}{lrrrr} 
& minimum & & average & \\
& 1.24 & & 4.56 & \\
aspect ratio & 0.71 & & 34.87 & \\
small dih angle & 71.08 & & 116.54 & 69.77 \\
large dih angle & 0.000208097 & 0.707317863 & 0.999999960 \\
volume skewness & 0.368 \\
rbyR & 0.000517771 & 0.490753236 & 0.999882321 \\
volume & 0.000000044 & 0.000003054 & 0.000028641
\end{tabular}
```


After Mesf Repair

reportNumMeshEntity() num entity in mesh:39211 vertices			
219771 edges			
336631 faces			
156070 regions			
reportMeshQualityStatistics() supported metrics:-			
1. aspect ratio = longest edge by shortest altitude			
2. smallest dihedral angle (degree)			
3. largest dihedral angles (degree)			
4. volume skewness = ((optimal size) - (size)) / (optimal size)			
5. rbyR $\quad=$ unitized ratio of inradius to circumradius			
6. volume			
	minimum	average	maximum
aspect ratio	1.29	3.28	29.84
small dih angle	2.50	38.90	69.07
large dih angle	72.34	108.67	173.16
volume skewness	0.004655401	0.550685298	0.999879335
rbyR	0.014748121	0.631093733	0.997732522
volume	0.000000214	0.000015025	0.000096563

Future \mathcal{W} ork (near future)

- Better improvement of mesfiquality
- Learnfow to use Symmetrix better
- More iterative mesh-repairing strategy
- Parallelmesfi-repair

Acknowle dgements

[1] L. Paul Chew, Nikos Chrisochoides, and Florian Sukup.
"Parallel Constrained Delaunay Meshing," In the proceedings of 1997 ASME/ASCE/SES summer meeting, Special Symposium on Trends in Unstructured Mesh Generation, pp 89-96, June 29 - July 2, 1997, Northwestern University, Evanston, IL.
[2] Nikos Chrisochoides. "A Survey of Parallel Mesh Generation Methods," BrownSC-2005-09.
[3] Damrong Guoy. "Tools and Techniques for Mesh Repair in Rocket Simulation" CSAR seminar. March 30, 2005.
[4] Steve Owen. "An Introduction to Unstructured Mesh Generation." Mesh Generation and Simulation: A Short Course. USNCCM'03
http://www.andrew.cmu.edu/user/sowen/usnccm03/short_cou rse.html

