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Challenges in E&M Modeling of Accelerators

• Accurate modeling essential for modern 
accelerator design

• Reduces Design Cost
• Reduces Design Cycle

• Conformal meshes (Unstructured grid)
• Large, complex electromagnetic structures

• 100’s of millions of DOFs
• Small beam size

• Large number of mesh points
• Long run time

• Parallel Computing needed (time and storage)
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Next Linear Collider (NLC)

Cell to cell variation of order microns to 
suppress short range wakes by detuning   
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• NLC X-band structure showing damage in the structure cells 
after high power test  

• Theoretical understanding of underlying processes lacking 
so realistic simulation is needed

End-to-end NLC Structure Simulation
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Parallel Time-Domain Field Solver – Tau3P

Coupler Matching
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Parallel Time-Domain Field Solver – Tau3P

The DSI formulation yields:
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α • α, β are constants proportional to dt
• AH,AE are matrices
• Electric fields on primary grid
• Magnetic fields on embedded dual grid
• Leapfrog time advancement
• (FDTD) for orthogonal grids

• Follows evolution of E and H fields inside accelerator cavity
• DSI method on non-orthogonal meshes
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Tau3P Implementation

Example of Distributed Mesh

Typical Distributed Matrix 

• Very Sparse Matrices
– 4-20 nonzeros per row

• 2 Coupled Matrices (AH,AE)
• Nonsymmetric (Rectangular)
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Parallel Performance of Tau3P (ParMETIS)
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• 257K hexahedrons
• 11.4 million non-zeroes



10

Communication in Tau3P (ParMETIS Partitioning)

Communication vs. Computation
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Improving Performance of Tau3P

• Performance greatly improved by better mesh 
partitioning
– Previous work by Wolf, Folwell, Devine, and Pinar

• Possible improvements in scaled 
matrix/vector multiplication with vector 
addition algorithm
– Different MPI communication methods
– Different algorithm stage orderings
– Thread algorithm stages
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MPI 2-Sided Communication
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Blocking vs. Nonblocking Communication

• Blocking
– Resources can be safely used after return of call
– MPI_Recv does not return until mesg received
– Send behavior depends on mode

• Nonblocking
– Resources cannot be safely used after return
– MPI_Irecv returns immediately 
– Enables overlapping of communication with other 

operations
– Additional overhead required
– Used with MPI_Wait, MPI_Wait{all,any,some}, 

MPI_Test*
• Blocking sends can be used with nonblocking 

receives and vice versa.
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Buffered Communication Mode

• MPI_Bsend, MPI_Ibsend
• A user defined buffer is explicitly attached 

using MPI_Buffer_attach
• Send posting/completion independent of 

receive posting

Sending Process

Send Posted

Send Completed

Receiving Process

Receive Posted

Receive Completed

Receive Posted

Receive PostedData Movement
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Synchronous Communication Mode

• MPI_Ssend, MPI_Issend
• Send can be posted independent of receive 

posting
• Send completion requires receive posting

Sending Process

Send Posted

Send Completed

Receiving Process

Receive Completed

Receive Posted

Receive PostedData Movement
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Ready Communication Mode

• MPI_Rsend, MPI_Irsend
• Send posting requires receive to be 

already posted

Sending Process

Send Posted

Send Completed

Receiving Process

Receive Completed

Receive Posted

Data Movement
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Standard Mode Send

• MPI_Send, MPI_Isend
• Behavior is implementation dependent
• Can act either as buffered (system buffer) 

or synchronous

Sending Process

Send Posted

Send Completed

Receiving Process

Receive Posted

Receive Completed

Receive Posted

Receive PostedData Movement

Receive Completed

Receive Posted

Receive PostedOR
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Persistent Communication

• Used when communication function with same 
arguments repeatedly called

• Bind list of communication arguments to 
persistent communication request

• Potentially can reduce communication 
overhead

• Nonblocking
• Argument list is bound using

– MPI_Send_init, MPI_Bsend_init, MPI_Ssend_init, 
MPI_Rsend_init

• Request is initiated using MPI_Start
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Basic Algorithm

• Scaled Matrix/Vector Multiplication 
with vector addition

hAe H

vv ⋅⋅=+ α
• Row partitioning of matrix and vector so all 

nonlocal operations are due to 
matrix/vector multiplication

• 3 main stages of algorithm
– Multiplication and summation with 

local nonzeros
– Communication of remote vector 

elements corresponding to nonlocal
nonzeros

– Remote multiplication and 
summation with nonlocal nonzeros
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Implementation

• 42 different algorithms implemented
– 3 Blocking send/recv algorithms
– 3 Nonblocking send/recv algorithms
– 36 Blocking send/nonblocking recv

algorithms
• 6 different orderings
• Standard, buffered, synchronous, persistent 

standard, persistent buffered, persistent 
synchronous
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Blocking Send/Blocking Receive Algorithms

RCLCComm3

RCCommLC2

Comm/RCLC1

Stage 3Stage 2Stage 1Ordering

Sends: MPI_Send, MPI_Sendrecv
Recvs: MPI_Recv, MPI_Sendrecv
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Nonblocking Send/Nonblocking Receive Algorithms
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RCWaitLCSend/
Recv
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1

Ordering

Sends: MPI_Isend
Recvs: MPI_Irecv
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Blocking Send/Nonblocking Receive
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Sends: MPI_Send, MPI_Bsend,MPI_Ssend, MPI_Send_init, 
MPI_Bsend_init, MPI_Ssend_init

Recvs: MPI_Irecv
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Problem Setup

• Attempted to keep work per processor 
invariant

• Built nine 3D rectangular meshes using Cubit 
– External dimensions of meshes the same
– Each mesh used for a particular number of 

processors (2, 4, 8, 16, 32, 64, 128, 256, 512)
– Number of elements of each mesh controlled so 

that each matrix would have approximately 
150,000 nonzeros per process for each mesh

• RCB 1D partitioning used
– Meshes built to keep neighboring processors to 

minimum
• All runs on IBM SP at NERSC (seaborg)
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Blocking Communication
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Nonblocking Communication
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Blocking Send/Nonblocking Recv: Standard
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Orderings for Blocking Send/Nonblocking Recv

LCSends/Waits/RCRecv12

Send/Waits
/RC

LCRecv11

RCLCSends/WaitsRecv10
RCSend/WaitsLCRecv9

RCWaitLCSendRecv8
RCLCWaitSendRecv7

Stage 
5

Stage 
4

Stage 3Stage 
2

Stage 
1

Ordering

• Orderings 7-10 performed significantly worse 
than 11-12 for all MPI modes

• Subsequent graphs show only best algorithms
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Blocking Send/Nonblocking Recv: Standard
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Blocking Send/Nonblocking Recv: Buffered



31

Blocking Send/Nonblocking Recv: Synchronous
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Blocking Send/Nonblocking Recv: Persistent Standard
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Blocking Send/Nonblocking Recv: Persistent Buffered
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Blocking Send/Nonblocking Recv: Persistent Synchronous
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Ordering 11
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Ordering 12
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Best 5
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Observations/Conclusions

• Slight variation of algorithm can give very 
different performance

• Algorithm (with Tau3P data) very sensitive to 
stage ordering

• Combined communication/remote computation 
steps very beneficial

• Standard and Synchronous modes good
• Buffered modes costly
• Persistent communication costly
• Some factors could be machine dependent
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Future Work

• Threaded algorithms
– Preliminary results not good

• Visualization of simulations
• Real accelerator structure
• Scalability of fixed size problem
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