
Improving the Performance of the
Scaled Matrix/Vector Multiplication

with Vector Addition in Tau3P, an
Electromagnetic Solver

Michael M. Wolf, University of Illinois,
Urbana-Champaign; Ali Pinar and

Esmond G. Ng, Lawrence Berkeley
National Laboratory

September 8, 2004

2

Outline

• Motivation
• Brief Description of Tau3P
• Tau3P Performance
• MPI 2-Sided Communication
• Basic Algorithm
• Implementation
• Results
• Conclusions
• Future Work

3

Challenges in E&M Modeling of Accelerators

• Accurate modeling essential for modern
accelerator design

• Reduces Design Cost
• Reduces Design Cycle

• Conformal meshes (Unstructured grid)
• Large, complex electromagnetic structures

• 100’s of millions of DOFs
• Small beam size

• Large number of mesh points
• Long run time

• Parallel Computing needed (time and storage)

4

Next Linear Collider (NLC)

Cell to cell variation of order microns to
suppress short range wakes by detuning

5

• NLC X-band structure showing damage in the structure cells
after high power test

• Theoretical understanding of underlying processes lacking
so realistic simulation is needed

End-to-end NLC Structure Simulation

6

Parallel Time-Domain Field Solver – Tau3P

Coupler Matching

R T
ReflectedIncident

Transmitted

Coupler Matching

Wakefield Calculations Rise Time Effects

7

Parallel Time-Domain Field Solver – Tau3P

The DSI formulation yields:

∫∫∫∫∫

∫∫∫

•+•
∂
∂=•

•
∂
∂−=•

**
* dAjdA

t
DdsH

dA
t
BdsE

eAh
hAe

E

H
vv

vv

⋅⋅=+

⋅⋅=+

β

α • α, β are constants proportional to dt
• AH,AE are matrices
• Electric fields on primary grid
• Magnetic fields on embedded dual grid
• Leapfrog time advancement
• (FDTD) for orthogonal grids

• Follows evolution of E and H fields inside accelerator cavity
• DSI method on non-orthogonal meshes

8

Tau3P Implementation

Example of Distributed Mesh

Typical Distributed Matrix

• Very Sparse Matrices
– 4-20 nonzeros per row

• 2 Coupled Matrices (AH,AE)
• Nonsymmetric (Rectangular)

9

Parallel Performance of Tau3P (ParMETIS)

2.0
2.8

3.9 4.4
5.7

6.8

9.2

Parallel Speedup

• 257K hexahedrons
• 11.4 million non-zeroes

10

Communication in Tau3P (ParMETIS Partitioning)

Communication vs. Computation

11

Improving Performance of Tau3P

• Performance greatly improved by better mesh
partitioning
– Previous work by Wolf, Folwell, Devine, and Pinar

• Possible improvements in scaled
matrix/vector multiplication with vector
addition algorithm
– Different MPI communication methods
– Different algorithm stage orderings
– Thread algorithm stages

12

MPI 2-Sided Communication

MPI_Send

MPI_Bsend

MPI_Rsend

MPI_Ssend

MPI_Isend

MPI_Issend

MPI_Recv
MPI_Irecv

2-Sided

MPI_Ibsend

MPI_Irsend

MPI_SendRecv

MPI_Send_init

MPI_Bsend_init

MPI_Rsend_init

MPI_Ssend_init

MPI_Recv_init

Nonblocking

Nonblocking, Persistent

Blocking,Combined

Blocking

Standard

Buffered

Ready

Synchronous Synchronous

Ready

Buffered

Standard Standard

Buffered

Synchronous

Ready

13

Blocking vs. Nonblocking Communication

• Blocking
– Resources can be safely used after return of call
– MPI_Recv does not return until mesg received
– Send behavior depends on mode

• Nonblocking
– Resources cannot be safely used after return
– MPI_Irecv returns immediately
– Enables overlapping of communication with other

operations
– Additional overhead required
– Used with MPI_Wait, MPI_Wait{all,any,some},

MPI_Test*
• Blocking sends can be used with nonblocking

receives and vice versa.

14

Buffered Communication Mode

• MPI_Bsend, MPI_Ibsend
• A user defined buffer is explicitly attached

using MPI_Buffer_attach
• Send posting/completion independent of

receive posting

Sending Process

Send Posted

Send Completed

Receiving Process

Receive Posted

Receive Completed

Receive Posted

Receive PostedData Movement

15

Synchronous Communication Mode

• MPI_Ssend, MPI_Issend
• Send can be posted independent of receive

posting
• Send completion requires receive posting

Sending Process

Send Posted

Send Completed

Receiving Process

Receive Completed

Receive Posted

Receive PostedData Movement

16

Ready Communication Mode

• MPI_Rsend, MPI_Irsend
• Send posting requires receive to be

already posted

Sending Process

Send Posted

Send Completed

Receiving Process

Receive Completed

Receive Posted

Data Movement

17

Standard Mode Send

• MPI_Send, MPI_Isend
• Behavior is implementation dependent
• Can act either as buffered (system buffer)

or synchronous

Sending Process

Send Posted

Send Completed

Receiving Process

Receive Posted

Receive Completed

Receive Posted

Receive PostedData Movement

Receive Completed

Receive Posted

Receive PostedOR

18

Persistent Communication

• Used when communication function with same
arguments repeatedly called

• Bind list of communication arguments to
persistent communication request

• Potentially can reduce communication
overhead

• Nonblocking
• Argument list is bound using

– MPI_Send_init, MPI_Bsend_init, MPI_Ssend_init,
MPI_Rsend_init

• Request is initiated using MPI_Start

19

Basic Algorithm

• Scaled Matrix/Vector Multiplication
with vector addition

hAe H

vv ⋅⋅=+ α
• Row partitioning of matrix and vector so all

nonlocal operations are due to
matrix/vector multiplication

• 3 main stages of algorithm
– Multiplication and summation with

local nonzeros
– Communication of remote vector

elements corresponding to nonlocal
nonzeros

– Remote multiplication and
summation with nonlocal nonzeros

20

Implementation

• 42 different algorithms implemented
– 3 Blocking send/recv algorithms
– 3 Nonblocking send/recv algorithms
– 36 Blocking send/nonblocking recv

algorithms
• 6 different orderings
• Standard, buffered, synchronous, persistent

standard, persistent buffered, persistent
synchronous

21

Blocking Send/Blocking Receive Algorithms

RCLCComm3

RCCommLC2

Comm/RCLC1

Stage 3Stage 2Stage 1Ordering

Sends: MPI_Send, MPI_Sendrecv
Recvs: MPI_Recv, MPI_Sendrecv

22

Nonblocking Send/Nonblocking Receive Algorithms

RCLCWaitSendRecv6

RCWaitLCSend/
Recv

5

RCWaitLCSendRecv4

Stage 5Stage 4Stage
3

Stage
2

Stage
1

Ordering

Sends: MPI_Isend
Recvs: MPI_Irecv

23

Blocking Send/Nonblocking Receive

LCSends/Waits/RCRecv12

Send/Waits
/RC

LCRecv11

RCLCSends/WaitsRecv10
RCSend/WaitsLCRecv9

RCWaitLCSendRecv8
RCLCWaitSendRecv7

Stage
5

Stage
4

Stage 3Stage
2

Stage
1

Ordering

Sends: MPI_Send, MPI_Bsend,MPI_Ssend, MPI_Send_init,
MPI_Bsend_init, MPI_Ssend_init

Recvs: MPI_Irecv

24

Problem Setup

• Attempted to keep work per processor
invariant

• Built nine 3D rectangular meshes using Cubit
– External dimensions of meshes the same
– Each mesh used for a particular number of

processors (2, 4, 8, 16, 32, 64, 128, 256, 512)
– Number of elements of each mesh controlled so

that each matrix would have approximately
150,000 nonzeros per process for each mesh

• RCB 1D partitioning used
– Meshes built to keep neighboring processors to

minimum
• All runs on IBM SP at NERSC (seaborg)

25

Blocking Communication

RCLCComm3
RCCommLC2

Comm/RCLCorig

Stage
3

Stage
2

Stage
1

Method

26

Nonblocking Communication

RCLCWaitSendRecvOrd. 6
RCWaitLCSend/RecvOrd. 5

RCWaitLCSendRecvOrd. 4
S5S4S3S2S1

27

Blocking Send/Nonblocking Recv: Standard

28

Orderings for Blocking Send/Nonblocking Recv

LCSends/Waits/RCRecv12

Send/Waits
/RC

LCRecv11

RCLCSends/WaitsRecv10
RCSend/WaitsLCRecv9

RCWaitLCSendRecv8
RCLCWaitSendRecv7

Stage
5

Stage
4

Stage 3Stage
2

Stage
1

Ordering

• Orderings 7-10 performed significantly worse
than 11-12 for all MPI modes

• Subsequent graphs show only best algorithms

29

Blocking Send/Nonblocking Recv: Standard

30

Blocking Send/Nonblocking Recv: Buffered

31

Blocking Send/Nonblocking Recv: Synchronous

32

Blocking Send/Nonblocking Recv: Persistent Standard

33

Blocking Send/Nonblocking Recv: Persistent Buffered

34

Blocking Send/Nonblocking Recv: Persistent Synchronous

35

Ordering 11

0 100 200 300 400 500 600
6

8

10

12

14

16

18

20
Ordering 11 - All

processors

Ti
m

e

orig
ST
BU
SY
PST
PBU
PSY

36

Ordering 12

0 100 200 300 400 500 600
6

8

10

12

14

16

18

20
Ordering 12 - All

processors

Ti
m

e

orig
ST
BU
SY
PST
PBU
PSY

37

Best 5

50 100 150 200 250 300 350 400 450 500
8

8.5

9

9.5

10

10.5

11

11.5

Best 5

processors

Ti
m

e

orig
11ST
12ST
11SY
12SY

38

Observations/Conclusions

• Slight variation of algorithm can give very
different performance

• Algorithm (with Tau3P data) very sensitive to
stage ordering

• Combined communication/remote computation
steps very beneficial

• Standard and Synchronous modes good
• Buffered modes costly
• Persistent communication costly
• Some factors could be machine dependent

39

Future Work

• Threaded algorithms
– Preliminary results not good

• Visualization of simulations
• Real accelerator structure
• Scalability of fixed size problem

40

Acknowledgements

• LBNL
– Ali Pinar, Esmond Ng

• SLAC (ACD)
– Adam Guetz, Cho Ng, Nate Folwell, Kwok Ko

• MPI
– Prof. Heath’s CS 554 Class Notes
– Using MPI, Gropp, Lusk, Skjellum
– MPI: The Complete Reference, Snir, et al.

• Work supported by U.S. DOE CSGF contract DE-FG02-97ER25308

