A Survey of Mesf Partitioning Tecfniques for Irregular Grids

Michael \mathcal{M}. Wolf

Overview

- Static Global Mesf Partitioning
- Mesfinde pendent Partitioning
- Random Partitioning
- Scattered Decomposition
- Regular Domain Partitioning
- Geometric Partitioning Algorithms (1D/2D/3D)
- Recursive Coordinate Bisection (RCB)
- Recursive Inertial Bisection (RIB)
- Hilbert Space-Filing Curve ($\mathcal{H S} \mathcal{F} C$)
- Grapf Partitioning Algoritfms
- Greedy Bisection
- Recursive Layered (Graph) Bisection
- ParMEIIS
- Problems witf Standard Grapf Partitioning Model
- Hypergrapf
- LocalRefinement
- Kernigfan-Lin Algoritfm
- HelpfulSets

Global Static Partitioning Algorithms

- Partition entire mesf
- Partition once
- Not concerned witf refining or evolving partition as the simulation progresses
- Algoritfins may be applicable to dynamic partitioning scfemes

Geometry Independent(?) Partitioning Algoritims

- Kind of ge ometry inde pendent
- Based on the order on wficfithe elements are operated
- Ignores x,y,z position of elements
- Ignores mesficonnectivity

Random Partitioning (Geometry Independent)

- Eacfi element is distributed to a randomly chosen processor
- On average, work is well balanced
- Nogrouping bymesf connectivity
- No grouping by mesfilocality
- Communication is tfus $\mathcal{B A D}$!!!
- Each element is distributed in order to the processor with the current smallest subdomain
- Work is well balanced
- Neighbor elements wont be on same processor.
- Communication is thus $\mathcal{B A D}$!!!

- First n/p elements givento proc 0 .
- Second n / p elements given to proc 1.
- ...etc.
- Data Locality if numbering supports.
- Communication is better but still possible problems

Geometric Partitioning Algoritfms

- Elements grouped bygeometric region
- Based on x,y,z position of elements
- Ignores element adjacency
- $1 \mathcal{D}, 2 \mathcal{D}$, or $3 \mathcal{D}$
- Fast
- Load Balance (at least in terms of e (ements) can be guaranteed

Recursive Coordinate Bisection (Geometric)

$$
\text { RCB- } 1 \mathcal{D} \text { Partition }
$$

Adj. Procs (Max/Sum): 2/14
Bound. Objs (Max/Sum): 3128/23654
RCB-3D Partition

- The figher the dimension, the lower the surface/volume ratio.
- Lower bandwidth
- The figher the dimension, the more neigftroring subdomains eacf subdomain will bound.
- More communications, more totallatency.

RCB 1-D Scalability Leveling Off

Recursive Inertial Bisection (Geometric)

- RCB problem whenmesf not aligned witf XYZ axes
- RIB uses idea of inertia to improve upon RCB

Recursive Inertial Bisection (Geometric)

RIB-3D Partition

RIB -- 3D (8 procs)

Bound. Objs (Max/Sum): 1570/7927
Tau3P Run-time: 154.6

Hilbert Space Filling Curve (Geometric)

RDDS (5 cell w/ couplers) $\mathcal{H S} \mathcal{F C}$-3D Partition

HSFC -- 3D (8 procs)

Bound. Objs (Max/Sum): 2030/9038
Tau3P Run-time: 194.4

Graph Partitioning $\mathcal{A l g o r i t 斤 m s ~}$

- Build graph out of mesfi elements
- $\mathcal{G}=(\mathcal{V}, \mathcal{E})$
- Elements are graph vertices
- Graph vertices of adjacent elements connected by edges in graph

Graph Partitioning Properties

- Each Partition "should" be continuous.
- Uses element connectivity so partitions fave little discontinuity.
- Slower than basic geometric methods

Greedy Bisection (Graph)

- Build grapf
- Start at vertex of lowest degree
- Find neighboring layer.
- Repeat with vertices in that layer to find next layer, etc.
- Stop when n / p vertices are found
- Repeat process

Greedy Bisection (Graph)

Recursive Layered (Graph) Bisection

- Build graph
- Start from a seed vertex,
- Find neighboring layer.
- Repeat with vertices in that layer to find next layer, etc.
- Stop when number of vertices in layers reaches half.
- Now fave 2 sets
- Recursively Repeat.

Recursive Layered (Grapf) Bisection

Choosing Seed Points

- Choice of Seed Points are Important
- Boundary of domain can be good choice.
- 1 of 2 points maximum distance apart.

Good choice

Bad choice

ParMETIS (graph)

- Ulses a standard grapf approach
- Partition the vertices of the grapf
- Minimize the (weighted) edge cut
- $\mathcal{N P}$-fard problem
- Ulses fieuristics to generate approximate solutions

ParMEIIS (Grapf)

- Main ParMEIIS initial partition algoritfm called ParMETIS_PartKway.
- Multi-levelk-way partitioning algoritfm
- Step 1: Grapf gradually coarsened down to grapf of a few fundred vertices.
- Step 2: K-way partition of coarse grapf computed
- Step 3: Grapf projected back to original grapf by periodically refining partition.

ParMETIS (8 procs)

Tau3P Run-time: 140.6

ParMETIS

- Multilevelmakes K-way grapf partitioning algoritfim more acceptable.
- Does agreat job of minimizing cut (i.e. bandwidth).
- However, pieces can be disconnected.
- Not as load balanced as geometric methods.
- More ne igfibors than $1 \mathcal{D}$ geome tric methods (larger number of communications required).

Complications in Grapf Partitioning

- Several potential sfortcomings in standard grapf partitioning model.
- Incorrect edge cut metric
- Limited in the scope of problems that can be naturally expressed (problem for other paralle (partitioning problems)

- Edge cuts not proportional to total volume
- Overcounting

Metrics

- Communication costs are dependent on latency (totalnumber of messages sent) as well as bandwidth
- Slowest process often most important
- Limited in the scope of problems that can be naturally expressed
- May want to limit communication to nearby processors
- Want to minimize objective function based on all of these, weighted by importance

Hypergrapts

- Hypergrapfs can be used to better minimize communication in standard grapf problem.
- Minimizes number of boundary cuts
- Build grapf out of mesf elements
- $\mathcal{G}=(\mathcal{V}, \mathcal{H})$
- Elements are grapf vertices
- A fyperedge exists for each vertex
- Hyperedge \mathcal{H}_{1} contains \mathcal{V}_{1} and its neigfroring vertices

Hypergrapf Partitioning

- Standard Grapf Model(Cut=4)
- Hypergrapf Model(Cut=3)

Local Refinement

- After initial partition, make small local changes to improve partition quality
- Swap small number of elements across process boundaries

Kernighan- Lin Algoritfm

- Swap pairs of nodes to decrease the cut
- Allowintermediate increases in the cut size to avoid local minima
- Loop
- Logically exchange pair of nodes with largest gain from swapping
- lock those nodes
- until all nodes are locked
- If new partition is better than old, save.
- Perform the swaps for real to obtain final partition on the best partition found
- Different feuristics used to improve speed of algoritim.

Kernigfan- Lin Algoritfm

- Does not partition poorly partitioned meskes well.
- Oftenused in conjunction witf a very computationally "cheap"global partitioning method.

- A set of nodes is helpful if moving it from one processor to another (and rebalance) reduces the cut size.
- Step 1. Find a set of nodes in one partition and move it to the other partition to decrease the cut size
- Step 2. Rebalance the load
- Must be a net reduction in cut size after the two steps.

Helpful Sets

Acknowle dgements

K. Devine, \mathcal{B}. Hendrickson, \mathcal{E}. Boman, \mathcal{M}.

St.Jofn, and C. Vaugfan. "Zoltan: \mathcal{A}
Dynamic Load-Balancing Library for Parallel
Applications; Ulser's Guide." Sandia
\mathcal{N} ational Laboratories \mathcal{T} ecf. Rep.S $\mathcal{A N} \mathcal{N} 99$. 1377, Albuquerque, $\mathcal{N M}, 1999$.
Grapf Partitioning Models for Parallel
Computing, Bruce Hendrickson and Tamara \mathcal{G}. Kolda, Paralle [Computing. 26:1519-1534, 2000 .

Overview

- Static Mesf Partitioning
- Recursive Spectral Partitioning
- Greedy Bisection
- Recursive Spectral Bisection
- Grapf Partitioning $\mathcal{A l g o r i t \hbar m s}$
- Iostle
- Geometric Partitioning Algorithms (1D/2D/3D)
- Octree Partitioning (various traversalschemes including $\mathcal{H S} \mathcal{F}$ C)
- Multi-level Hybrid Mettiods
- Dynamic Load Balancing/Data Migration
- Dynamic Load Balancing
- Centralized
- Decentralized
- Fully Distributed
- Diffusion
- Dimension Exchange
- Advancing Front $\mathcal{A l g o r i t f m}$
- Hypergrapf
- Greedy algorithm

$\mathcal{T} O D O$

Hypergrapf

- Kway grapf partitioning?
- Understand Kernighan Lin Algorithm

