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Introduction

hydrodynamic and wave parameters along the Alaskan coast
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« Sandia National Laboratories (SNL), the U.S. DOE, and the U.S. DOD operate research and
defense sites along rapidly degrading coastline (Utgiagvik, Atgasuk, Oliktok Point).
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Block failure along Alaskan Arctic coastline (Drew Point).
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ALBANY (https://github.com/gahansen/Albany).

« ALBANY is an open-source, multi-physics research platform
developed mainly at Sandia National Laboratories.

 ALBANY is written in object-oriented C++, is parallel, can handle
unstructured grids, and uses the implicit finite element method for
solving general partial differential equations.

In late July and early August 2018, another small team lead
by Ben Jones went back to Drew Point to collect field data
on land and sea. The summary of observations and
measurements made are shown below:
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