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Naval Arctic Strategy now includes blue water operations, such as anti-submarine warfare, and mine warfare, requiring
an accurate and reliable understanding of seafloor acoustics and seabed strength. Data on Arctic seafloor properties is
extremely sparse, limiting our ability to predict mission critical geo-acoustical and geo-mechanical properties.
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 We have very little knowledge on seafloor properties, limiting our ability to distribution with depth

predict SONAR behavior through the seafloor. ‘\

« One of the largest influences on the speed of sound through the seabed is the / bulk
distribution of free gas (i.e. gas bubbles). density modulus
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ﬁ Current SONAR algorithms do not take gas into account,
because we can't reliably predict seafloor gas distribution. B, e = 2-2 GPa
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Can be used to build a system that predicts or forecasts seafloor properties like we forecast the weather. GML can produce maps of continuous seafloor properties with
estimates of uncertainty, while also integrating physically consistent models. It is superior to traditional interpolation methods.
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Based on sparse known data, and hundreds
of dense calculated predictors, GML produces
continuous maps of desired seafloor
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Each site shows the results of all 12
realizations. These profiles of gas hydrate
saturation with depth correspond to the 2
sites marked on the main map figure.

/N Seafloor

Free gas

26.5 26.5

Rock physical models can use GML-
Occlusions of water .
amdorasinhyare Predicted seafloor parameters to map
(not considered) . .
geo-acoustic and geo-mechanical

sediment properties.
Marin-Moreno, H. et al. (2017), J. Geophys. Res. Solid Earth

Seafloor

2 Temperature (C) TOC

-96 -94 -92 -90 -88 -96 -94 -92 -90 -88
Longitude Longitude

Lee, et al. (2019). Global Biogeochemical Cycles, 33(1), 37-46

Gas Hydrate
Stability Zone
(GHSZ)

Cementing
hydrate at grain
contacts

Locarnini, et al. (2013). World ocean atlas 2013. Volume 1, Temperature.

Pore-filling
hydrate

Film of water trapped
between the grain and
hydrate (not considered

Depth / Hydrostatic Pressure

|
Grain Free Gas Eunei

Cementing hydrate

enveloping the grain j (o
w

Ry Ron

Elastic Wave Energy Output

29.0

Determined and uncertain model input Conclusions

parameters obtained from the Global 030- | Ensembles of stochastic simulations
Predictive Seabed Model (GPSM)? |

These maps show the input parameters that were used to generate the
modeled results in the main map. Sampling on these input parameters
generates the 12 realizations. Uncertain parameters are assumed to be
normally distributed with a mean value and standard deviation
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Better estimates of sediment grain
size and thermal properties will help

map methane gas phase diagrams.
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Future work will focus on integrating
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ensemble realizations to create
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