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•	 Noise generated by submarine A can be heard by submarine B via sound 
propagation through the water column and the sediments. 

•	 To reliably predict sound propagation pathways, we need an accurate 
understanding of seabed physical properties.

•	 We have very little knowledge on seafloor properties, limiting our ability to 
predict SONAR behavior through the seafloor.

•	 One of the largest influences on the speed of sound through the seabed is the 
distribution of free gas (i.e. gas bubbles).

Naval Arctic Strategy now includes blue water operations, such as anti-submarine warfare, and mine warfare, requiring 
an accurate and reliable understanding of seafloor acoustics and seabed strength. Data on Arctic seafloor properties is 
extremely sparse, limiting our ability to predict mission critical geo-acoustical and geo-mechanical properties.

Current SONAR algorithms do not take gas into account, 
because we can’t reliably predict seafloor gas distribution.

Geospatial Machine Learning (GML) 
Can be used to build a system that predicts or forecasts seafloor properties like we forecast the weather. GML can produce maps of continuous seafloor properties with 
estimates of uncertainty, while also integrating physically consistent models. It is superior to traditional interpolation methods. 

Integrate physical models to produce predictions of 
seafloor geo-acoustic and geo-mechanical properties

Global Observations (Data)
Collect and use all known data on 
seafloor, organized as a gridded 
dataset. Data outside of the Arctic can 
and should be used!

Find Correlations in Geospatial 
Machine Learning Algorithm

Uncertainty
GML produces estimates of seafloor 
quantities and their uncertainty, which is 
based on prediction error. A well sampled 
parameter space will reduce parameter 
uncertainty.

Forecast
Based on sparse known data, and hundreds 
of dense calculated predictors, GML produces 
continuous maps of desired seafloor 
quantities, such as porosity, sediment type, 
total organic carbon content, etc.

Feature Selection & Validation
Only use the best predictors, based on individual 
predictive skill via 10-fold validation. Predictors must 
perform better than random noise. Guide

Uncertainty results can be used to guide 
future data acquisition campaigns. Increasing 
observations where prediction error 
(uncertainty) is high will benefit predictive 
skill globally. 

Better estimates of sediment grain 
size and thermal properties will help 
map methane gas phase diagrams.
Nole, M. et al. (2018), EPSL
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GPSM: GLOBAL PREDICTIVE SEAFLOOR MODEL
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Profiles of gas hydrate 
saturation with depth 
at the 2 marked sites 
after 30kyrs
Each site shows the results of all 12 
realizations. These profiles of gas hydrate 
saturation with depth correspond to the 2 
sites marked on the main map figure.

Conclusions

Ensembles of stochastic simulations 

can produce maps of seafloor 

characteristics relevant to national 

security and defense, natural resource 

exploration, and climate change.

Future work will focus on integrating 

ensemble realizations to create 

probabilistic nowcasts and forecasts. 
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Some example values

Bair = 0.000142 GPa

Bwater = 2.2 Gpa

Bsediment =  40 GPa

Sound travels through the water and through the sediments.

sediment

Rock physical models can use GML-
predicted seafloor parameters to map 
geo-acoustic and geo-mechanical 
sediment properties.
Marin-Moreno, H. et al. (2017), J. Geophys. Res. Solid Earth
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Spangenberg and Kulenkampff, 2006] relate to hydrate saturation and habit and in the associated effectiveness
of our models. The P and Swave velocities of sediments hosting cementing hydrate, both when hydrate coats
andcementsgrain contactsorwhenhydrate formsonly atgrain contacts, arehigher than thoseof the sediment
without hydrate because the hydrate contributes to support any pressure loading. This is reflected in an
increase of the composite’s bulk and shear moduli [Ecker et al., 1998] even for low hydrate saturations below
approximately 40% [Priest et al., 2009;Waite et al., 2009; Dai et al., 2012]. In contrast, sediments hosting pore-
filling hydrate with saturations below approximately 25–40% do not show significant changes in P and S
wave velocities [Priest et al., 2009;Waite et al., 2009; Dai et al., 2012] because the hydrate is suspended within
the water and hence only increases the bulk modulus of the effective pore fluid [Ecker et al., 1998]. For pore-
filling hydrate saturations above 25–40%, hydrate starts bridging sediment grains, and the elastic frame
moduli and associated P and Swave velocities progressively increase [Waite et al., 2009; Dai et al., 2012].

P and S wave attenuation may be used as an alternative indirect geophysical parameter to estimate hydrate
saturation [Guerin and Goldberg, 2002; Priest et al., 2006; Best et al., 2013], and it is indeed an attractive alter-
native especially in pore-filling hydrate-bearing reservoirs where traditional P and S wave velocity methods
are not effective. However, current economically exploitable hydrate-bearing sand reservoirs are likely to
have hydrate saturations above 40% and thus unlikely to present, initially, a pore-filling hydrate habit.
Even in this case, though, sediment shearing occurs during hydrate production [Hyodo et al., 2013] and when
hydrate saturations start to be less than approximately 40%, it is sensible to think that pore-filling hydrate
may become an important habit. Also, laboratory experiments on cementing and load-bearing hydrate show
that repeated cycles of hydrate dissociation and formation tend to create a pore-filling distribution in an
excess water environment [Choi et al., 2014]. This behavior is also likely to occur during production because
of hydrate re-formation.

In situ measurements of elastic wave energy losses caused exclusively by the presence of hydrate in sedi-
ments are challenging because (i) it is difficult to isolate elastic wave energy losses within the sediment from
elastic wave scattering in spatially heterogeneous media [Huang et al., 2009] and (ii) our understanding of the
multiple energy loss mechanisms coexisting in hydrate-bearing sediments is still limited [Priest et al., 2006;
Best et al., 2013]. Here, to overcome the above limitations, we work with attenuation differences between
the hydrate-bearing sediment and the host sediment without hydrate and present a novel approach, the
Hydrate-Bearing Effective Sediment (HBES) model, to integrate state-of-the-art understanding and models

Figure 1. Idealized conceptual illustration of the microstructure of hydrate-bearing sediments (not to scale).
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Average maximum predicted gas hydrate 
saturation at the Gulf of Mexico 

Based on 12 realizations of 
sampled uncertain input 
parameters. Two locations 
are chosen to show hydrate 
distribution with depth
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Figure 5. a) Bulk dissociation of gas hydrate upon burial beneath the BHSZ results in hydrate existing 283	

above and separately from a free gas phase underneath, while b) dissociation of gas hydrate in pores 284	

characterized by a pore size distribution can result in a gradation from hydrate-stable to gas-stable 285	

regions. 286	

 287	

Free gas can also migrate independently of sedimentation when enough of it exists to 288	

form a connected phase and a driving force exists to initiate flow. Free gas in hydrate systems is 289	

less dense than water, so it is able to migrate buoyantly once a critical gas saturation for 290	

percolation is achieved. As gas migrates upward through the three-phase stability region, the 291	

methane it supplies partitions into hydrate and free gas depending on the system’s gas pressure, 292	
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GPSM predicted

Determined and uncertain model input 
parameters obtained from the Global 
Predictive Seabed Model (GPSM)2 
These maps show the input parameters that were used to generate the 
modeled results in the main map. Sampling on these input parameters 
generates the 12 realizations. Uncertain parameters are assumed to be 
normally distributed with a mean value and standard deviation


